相交线与平行线课前引入(第14节)
相交线平行线教案

相交线平行线教案教案标题:相交线与平行线教学目标:1. 理解相交线和平行线的概念。
2. 能够通过观察和推理判断两条线是否相交或平行。
3. 能够运用相交线和平行线的性质解决相关问题。
教学重点:1. 相交线和平行线的定义和性质。
2. 通过观察和推理判断两条线是否相交或平行。
3. 运用相交线和平行线的性质解决相关问题。
教学准备:1. 教师准备:白板、黑板笔、教学投影仪等。
2. 学生准备:课本、笔记本等。
教学过程:一、导入(5分钟)1. 教师通过举例子或者展示图片引入相交线和平行线的概念,激发学生对这一主题的兴趣。
2. 引导学生思考:你们在生活中遇到过哪些相交线和平行线的例子?二、知识讲解(15分钟)1. 教师简要介绍相交线和平行线的定义,并通过示意图进行解释。
2. 教师讲解相交线和平行线的性质,如相交线的垂直性、平行线的对应角相等等。
三、示例分析(15分钟)1. 教师给出一些示例,让学生观察并判断两条线是否相交或平行。
2. 引导学生通过观察和推理,解释自己的判断依据,并与同桌讨论。
3. 教师随机选择几组学生进行讨论和展示,引导学生共同探讨相交线和平行线的性质。
四、练习与巩固(20分钟)1. 学生个人或小组完成课本上的练习题,运用所学知识判断两条线是否相交或平行。
2. 教师巡回指导,及时纠正学生的错误,解答疑惑。
3. 教师选取几道题目进行讲解,让学生理解解题思路和方法。
五、拓展应用(10分钟)1. 教师提出一些拓展问题,让学生运用所学知识解决更复杂的问题。
2. 学生个人或小组完成拓展问题,并进行讨论和展示。
六、总结与反思(5分钟)1. 教师总结本节课的重点内容,强调相交线和平行线的定义和性质。
2. 学生回顾课堂内容,思考自己对相交线和平行线的理解程度,并提出问题或疑惑。
教学延伸:1. 学生可以通过实际测量角度来验证相交线的性质,如垂直角、对顶角等。
2. 学生可以通过绘制图形来探索平行线的性质,如平行线之间的夹角等。
新人教版七年级下册第五章《相交线与平行线》全章教案(

(此文档为word格式,下载后您可任意编辑修改!)第五章相交线与平行线(总第一课时)5.1.1相交线教学过程设计一、联系生活,导入新知生:欣赏美丽的跨海大桥图片,观察思考两直线的位置关系有哪几种?师:这些直线有些是相交线,有些是平行线.相交线、平行线有许多重要性质,并且在生产和生活中有广泛应用.它们就是我们本章要研究的课题.【板书】第五章相交线、平行线5.1 相交线、对顶角【设计意图】在欣赏美丽的图画中寻找出数学模型,让学生体会“数学就在我们身边,初步培养学生从实物中抽象出简单的几何图形的能力,激发学生学习兴趣.二、合作探究,形成概念师:取两根木条a、b,用钉子将它们钉在一起,并且能随意张开.生:画出图形,并用几何语言描述所画的图形.师:思考所画的图形中有几个小于平角的角?生:四个.师:为了方便描述,我们用::∠1、∠2、∠3、∠4来表示这四个角,如果把这四个角中任意两个角组成一对,一共可以组成几对呢?生:(互相补充)∠1和∠2,∠1和∠3,∠1和∠4,∠2和∠3,∠2和∠4,∠3和∠4.师:以小组为单位讨论:这六对角按位置特点来分可以分成几类?为什么?生1:一类是相邻的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,一类是相对的∠1和∠3,∠2和∠4.生2:一类是有公共边的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,另一类是无公共边的……师:把这六对角分成两类,一类是有一条公共边,另一边互为反向延长线(∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4);另一类是没有公共边,两边都互为反向延长线(∠1和∠3,∠2和∠4),这就是今天要学的对顶角和邻补角.【板书】:两条直线相交得到的四个角中:有一个公共顶点,两边互为反向延长线的两个角互为对顶角;有一条公共边,另一边互为反向延长线的两个角互为邻补角.师:强调“相交直线”的前提条件.对顶角:有公共顶点无公共边.....邻补角:有公共顶点且有一公共边......“互为”两个字的含义是什么?生:互为是针对两个角而言,如∠1是∠3的对顶角,反过来∠3也是∠1的对顶角.【设计意图】引导学生按位置关系进行分类,并针对分类的原因进行探索和交流,让学生经历概念的形成过程,真正理解对顶角和邻补角的概念.在探索过程中,渗透分类思想,培养探究意识和合作交流能力,调动学生参与积极性.三、及时巩固,加深理解1、下列各图中,∠l和∠2是对顶角吗?为什么?(1)(2)(3)(4)【设计意图】本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象.2.下列各图中,∠l和∠2是邻补角吗?为什么?(1)(2)(3)师:图(1)中的邻补角可以看成是怎样形成的?邻补角为什么互补?生:一条直线和一条射线相交形成,邻补角构成一个平角.3、请分别画出图中的∠l对顶角和∠2的邻补角.4、如图,三条直线AB、CD、EF相交于点O,∠AOE的对顶角是,∠EOD的邻补角是.【设计意图】通过辨、画、找,及时反馈学生思维上的一些偏差,加深对两个概念的理解,在画邻补角和找邻补角中让学领会分类思想.四、师生互动,再探性质师:在刚才的练习中,我们知道互为邻补角的两个角的和为180度,互为对顶角的两个角有什么样的大小关系呢?(演示相交线模型)生:相等.师:为什么?生:(讨论交流)生1:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换)生2:∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等)师:很好,根据上一章补角的性质“同角的补角相等”说明了对顶角相等这一性质.【板书】:对顶角相等.【设计意图】引导学生观察、猜测、推理,得到本节课的重点——对顶角相等,让学生深刻理解性质,训练学生的说理能力,树立学好几何图形的信心.五、变式训练,提升能力1.已知直线a、b相交,∠l=40°,求∠2、∠3、∠4的度数.2.变式1:把∠l=40°变为∠l=90°,求∠2、∠3、∠4的度数.变式2:把∠l=40°变为∠l=n°,求∠2、∠3、∠4的度数.变式3:把∠l=40°改为∠2是∠l的3倍,求∠1、∠2∠3、∠4的度数.变式4:如图,直线AB、CD相交于O点,OE平分∠AOD,若∠1=20°,那么∠2=______.变式5:如图,直线AB、CD相交于O点,∠AOE=90°,若∠1=20°,那么∠2=____,∠3=____,∠4=____.3.右图是对顶角量角器,你能说出用它测量角的原理吗?4.如图,要测量两堵围墙所形成的角AOB的度数,但人不能进入围墙,如何测量?5.如图,三条直线AB、CD、EF相交于点O,图中共有几对对顶角?变式:图中共有几对邻补角?师:解决这类题目的关键是要善于从复杂图形中分离出基本图形.对顶角、邻补角的基本图形是两条直线相交,则三条直线相交的图形应分解为三个两条直线交于一点的图形.如:为此,对顶角有2×3=6个,邻补角的对数为4×3=12个.【设计意图】通过变式,由易到难,培养学生举一反三的能力,在利用数学解决实际问题中感受成功,培养学生从现实情境中建立几何模型的能力,思考题能很好地培养学生的化归能力.六:回顾梳理,归纳小结师:这节课你学到什么知识?理解的怎样?你有哪些方面的感悟?还有什么疑惑?生:……七:布置作业,分层发散1.课本:P7-91,2,8,9;2.探究(选做)四条直线相交于一点,共有几对对顶角?几对邻补角?n条直线呢?【教学反思】:(总第二课时)5.1.2垂线(第1课时)教学过程设计(总第三课时)5.1.2垂线(第2课时)教学过程设计养,同时也培养了学生的合作意识和竞争意识,使学生更深入的得到结论。
相交线与平行线教案人教版(教案)

相交线与平行线教案人教版(优秀教案)一、教学目标:知识与技能:1. 理解相交线与平行线的概念,掌握它们的性质和特征。
2. 学会使用画图工具和几何语言描述相交线与平行线。
过程与方法:1. 通过观察、操作、思考、交流等活动,培养学生的空间观念和逻辑思维能力。
2. 学会用画图软件(如几何画板)绘制相交线与平行线,提高运用信息技术的能力。
情感态度价值观:2. 感受数学与实际生活的联系,学会运用数学知识解决生活中的问题。
二、教学重点与难点:重点:1. 掌握相交线与平行线的概念及性质。
2. 学会用画图工具和几何语言描述相交线与平行线。
难点:1. 理解平行线的判定与性质。
2. 运用相交线与平行线的知识解决实际问题。
三、教学方法与手段:采用问题驱动法、案例分析法、合作学习法等多种教学方法,结合多媒体课件、几何画板等教学手段,引导学生观察、操作、思考、交流,从而达到教学目标。
四、教学过程:1. 导入新课:通过展示实际生活中的相交线与平行线图片,引导学生关注数学与生活的联系,激发学习兴趣。
2. 自主探究:让学生利用几何画板或其他画图工具,绘制相交线与平行线,观察它们的特征,总结性质。
3. 课堂讲解:讲解相交线与平行线的概念、性质和判定方法,引导学生理解并掌握知识。
4. 巩固练习:设计相关练习题,让学生运用所学知识解决问题,巩固所学内容。
5. 课堂小结:总结本节课的主要内容和收获,引导学生思考数学的实际应用。
五、课后作业:1. 完成练习册的相关题目。
2. 收集生活中的相交线与平行线图片,下节课分享。
教学反思:本节课通过问题驱动、案例分析等教学方法,引导学生观察、操作、思考、交流,有效地完成了教学目标。
在教学过程中,注意关注学生的学习情况,针对性地进行讲解和辅导,提高了学生的学习兴趣和数学素养。
结合几何画板等教学手段,使学生更好地理解和掌握相交线与平行线的知识。
但在课堂时间的安排上,可以更加合理,以确保学生有足够的时间进行自主探究和巩固练习。
七年级数学下册《相交线与平行线》教案

七年级数学下册《相交线与平行线》教案教案要做的充分仔细才能更好的给学生们上课。
下面是店铺为大家整理的“七年级数学下册《相交线与平行线》教案”,仅供参考,希望对大家有帮助,欢迎阅读!更多内容请关注!七年级数学下册《相交线与平行线》教案一、学生起点分析学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。
这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。
学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。
二、教学任务分析针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。
因此,本节课的目标是:1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。
2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。
《平行线》相交线与平行线PPT课件

(A)1 (B) 2 (C)3 (D)4
• 课本13页 练习
问题探究
问题1:如下图,AD∥BC,在AB上取 一点M,过M画MN∥BC交CD于N, 并说明MN与AD的位置关系,为什么?
A M B
D N C
问题探究
2、
经过直线外一点,有且只有一条直线与这条直线平行。
如图:AB∥EF, CD∥EF, 直线AB与CD相交吗?为什么?
A
B
P
C
D
E
F
平行公理推论: 如果两条直线都和第三条直线平行,那 么这两条直线也互相平行。
∵ b∥a b ∥ c
∴ a ∥c
a
c
b
平行线具有传递性。
练习一下:
1.判断正错(正打“√”,错打“×” ) 1.两条不相交的直线叫平行线. 2.在同一平面内的两条直线不平行就相交 3.一条直线的平行线有且只有一条 4.过一点,有且只有一条直线与这条直线平行 5.a,b,c是三条直线,如果a∥b且b∥c则a∥c 6.有且只有一个公共点的两直线是相交直线。
0 1 2 3 4 5 6 7 8 9 10
议一议 你能用移动三角尺的方法画
两条平行线吗?
过已知直线外一点画它的平行线.
一、帖(线)
二、靠(尺)
●
三、移(点)
四、画(线)
经过点P能画出一条直线与已知直线a平行 P●
a
经过点P你还能画出一条直线与直线a平行吗? (不能)
平行公理:经过直线外一点,有且只有 一条直线与这条直线平行。
2.在同一平面内,直线a与b满足下列条件
1、a与b没有公共点,则a与b的位置关 系__平_行__。
新人教版七年级下册第五章《相交线与平行线》全章教案(共12份)

赣县四中七年级数学组主备人:李政授课时间:月日总课时数:第五章相交线与平行线相交线二次备课教学目标:1.理解对顶角和邻补角的概念,能在图形中识别.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中识别对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确识别对顶角和邻补角.难点:在较复杂的图形中准确识别对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并答复以下问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:〔1〕识别对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.〔2〕对顶角是成对存在的,它们互为对顶角,如∠1是二次备课∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地识别对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补〔邻补角定义〕,∴∠l=∠3〔同角的补角相等〕.注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2〔邻补角定义〕,∴∠1=∠3〔等量代换〕.学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
新人教版七年级下册第五章《相交线与平行线》全章教案(共12份)

赣县四中七年级数学组主备人:李政授课时间:月日总课时数:第五章相交线与平行线5.1.1相交线Array教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.Array 2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
人教版七年级下册数学《平行线》相交线与平行线说课教学课件

获取新知 知识点三:平行线的传递性质
由平行公理,进一步可以得到如下结论:
如果两条直线都与第三条直线平行,那么
这两条直线也互相平行.
几何语言表达:
a
因为a//c , c//b(已知)
c
所以a//b(如果两条直线都和第三条直线
b
平行,那么这两条直线也互相平行).
随堂演练
1. 下列生活实例中:①交通道口的斑马线;②天上的彩虹;
二、平行线的表示法:
我们通常用“//”表示平行.
A
B
C
D
a∥b
AB ∥ CD
读作:“AB 平行于 CD”
a b
读作:“a平行于b ”
二 平行线的画法、平行公理及推论
动手画一画:平行线的画法:
(1)放 (2)靠 (3)推 (4)画
活动三:同一平面内两直线的位置关系
同一平面内,两条不 重合的直线位置关系
4. 如图,当风车的一片叶子AB旋转到与地面MN平行时, 叶子CD所在的直线与地面MN__相__交____,理由是经___过__直____ _外__一__点__,___有__且__只__有___一__条__直__线__与___这__条__直__线___平__行_. 线
5.如图,在长方体的各条棱中,与AB平行的有_C_D__、__A_1_B_1_、__C_1_D_1,
种位置关系:相交和平行.
例题讲解 例1 判断下列说法是否正确,并说明理由. (1)不相交的两条直线是平行线; (2)在同一平面内,两条不相交的线段是平行 线解.:(1)不正确; 理由:根据定义,它缺少了“在同一平面内”这一条件.
(2)不正确; 理由:定义中指出的是两条不相交的“直线”,而不是“线段”.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章相交线与平行线
5.1.1相交线
一、复习引入
请说出以下几种情况中的直线之间分别是什么关系,形成了什么样的角度。
(1)(2) (3)
2.生活中有哪些具体的事物中存在以上几种关系?
设计意图:学生能够直接回忆起小学学过的直线相交与平行的关系,并思考生活中的实例,能使学生调动思维的活跃性,快速进入新知识。
二、情景导入
下图是一段铁路桥梁的侧面图,找出图中的相交线、平行线.
师:相交线和平行线都有许多重要性质,并且在生产和生
活中有广泛应用.我们将在前一章的基础上,进一步研究直线间
的位置关系,同时还要介绍一些有关推理证明的常识,为后面
的学习做些准备.
设计意图:在具体的情境中提出问题,吸引学生的注意力,激
发学生学习的兴趣和积极性,从而自然引入新课。
通过实际事例,体会相交线与平行线的表现形式。
三、活动导入
教师出示一块布片和一把剪刀,请学生表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?
师:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.
设计意图:设计学生剪布的活动,激发学生的好奇心理,观察剪刀剪布的过程,引入两条相交直线所成的角,从一个动态的活动中学生可以直观地观察到剪刀中的“两条相交直线”所成角的变化过程,从而自然引入课堂。
5.1.2 垂线
一、情景导入
如图,取两根木条a 、b ,将它们钉在一起,固定木条a ,转动木
条b.当b 的位置变化时,a 、b 所成的角α是也会发生变化,当α=
90º时;垂直.
设计意图:创设两根木条转动的情境,吸引学生的注意力,在观察转
动的过程中发现垂直这一特殊情况下两根木条形成的四个角都是直角,从而调动学生思维的活跃性,快速进入课堂。
二、复习引入
1.叙述邻补角及对顶角的定义。
2.对顶角有怎样的性质。
师:前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。
设计意图:让学生先对上节课学过的邻补角和对顶角有一个回顾,再顺延到相交线中的特殊情况——垂直,这可以让学生的头脑先有一个预热,能够更好地接受新知识。
三、课件引入
教师用多媒体展示出红十字会的标志、田径场上纵横交错的跑道线和人民大会堂的画面。
师:这几幅图看上去都有一种什么感觉啊?
生:比较规整、匀称.
教师再用多媒体展示出一些杂乱无章的直线相交的画面,与前面几幅图片对比。
师:哪幅图更漂亮?为什么?你能不能再举出几个类似的例子?
设计意图:用直观的画面使学生对垂直一开始就有一个直观的印象,并通过美观的图像吸引学生的注意力,开动学生的思维和积极性,使学生快速进入课堂。
α · a b b 如
5.1.3 同位角、内错角、同旁内角
一、复习导入
回答下列问题:
1.如图,∠1与∠3,∠2与∠4是什么角?它们的大小有什么关系?
2.如图,∠1与∠2,∠l与∠4是什么角?它们有什么关系?
3.如图,三条直线AB、CD、EF交于一点O,则图中有几对对顶角,有几对邻补角?
4.如图,三条直线AB、CD、EF两两相交,则图中有几对对项角,有几对邻补角?
5.三条直线相交除上述两种情况外,还有其他相交的情形吗?
学生答后,教师出示复合投影片1,在(1、2题的)图上添加一条直线CD,使CD 与EF相交于某一点(如图),直线AB、CD都与EF相交或者说两条直线AB、CD被第三条直线EF所截,这样图中就构成八个角,在这八个角中,有公共顶点的两个角的关系前面已经学过,今天,我们来研究那些没有公共顶点的两个角的关系.
设计意图:通过复合投影片演示了同位角、内错角、同旁内角的产生过程,并从演示过程中看到,这些角也是与相交线有关系的角,两条直线被第三条直线所截,是相交线的又一种情况.学生可以集中注意力,发散思维,并从中认识到事物间是发展变化的辩证关系。
二、故事引入
中国最早的风筝据说是由古代哲学家墨翟制作的,风筝的骨架构成了多种关系的角。
a1
a2
a3
8
7
6
5
4
3
2
1
这就是我们这节课要讨论的问题:两条直线和第三条直线相交的关系。
设计意图:用历史上的故事情境迅速吸引了学生,激发了学生的学习兴趣,主动积极地建构他们的数学认知结构,学生体会到数学在生活中的运用是无处不在的,从而更想探知这其中的奥秘。
三、情境引入
复习:平面上两条直线有哪两种位置关系?
请大家观察以下几幅图画,在这几幅图中找出一些直线相交的现象来。
它们有什么特点?
设计意图:创设多种现实生活中一条直线同时与另外两条直线相交的情形,吸引学生的注意力,使学生认识到生活中这样的情形是无处不在的,从而调动学生思维的活跃性,快速进入课堂。
5.4平移
一、情景导入
仔细观察下面的图案,它们有什么共同特点?
它们都是由一些相同的部分组成的.
能否根据其中相同的部分绘制出整个图案?若能,请你想象可以怎么绘制?
这种绘制方法实际上就是平移.那么究竟什么是平移?平移有哪些性质?下面我们就来探讨一下.
设计意图:运用多媒体展示出直观形象、生动活泼的画面,具有较强的演示力和感染力,把平移的过程演化为生动直观的形象,使学生产生浓厚的学习兴趣。
二、课件引入
教师先用多媒体展示出缆车、电梯和窗户的运动过程。
请大家观察动画,然后思考:
(1)画面中,缆车的形状、大小在运动的前后是否发生了改变?电梯上的人呢?推拉的玻璃窗呢?
(2)如果滑行的缆车车头向前移动了80米,那么缆车的其它部位(如车尾)向什么方向移动?移动了多少距离?
设计意图:通过观察生活实例,让学生对平移运动形成直观上的初步认识。
同时,通过两个问题的提出,帮助学生理解平移运动不会改变物体的大小、形状以及在平移过程中,物体上的每个部位都沿相同方向移动了相同的距离。
三、活动引入
师:上课之前,先请一位同学到教室前面来表演一下齐步走,其他同学一起来给他喊口令。
(一位同学上来表演,其他同学齐声喊“一二一……”)
师:这位同学走得非常标准,大家给他鼓掌(同学们鼓掌),看完他的表演之后,请大家回想一下,他在齐步走的过程中,整个人都在运动,但是,他的脑袋的运动跟他手脚的运动有什么区别呢?
生:他的手脚一直在摆动,而他的脑袋只是直直地向前运动。
师:非常好,我们把这种“直直的”运动就叫做“平移”。
设计意图:“齐步走”的活动可以让每个学生都亲身参与,带动课堂气氛,突出学生的主体地位,学生在回想同学齐步走的同时就可以把平移运动和其他运动区分开来,从而快速接受新知识。