(完整)七年级-相交线与平行线讲义含辅助线
七年级数学相交线与平行线讲义

相交线与平行线一、相交线同步知识梳理1.如果两个角有一条公共边,并且它们的另一边互为反向延长线,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有公共顶点,并且其中一个角的两边分别是另一个角两边的反向延长线,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是对顶角相等.4.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.5.垂线的性质性质1:平面内,过一点有且只有一条直线与已知直线垂直.性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.6.直线外一点到这条直线的垂线段的长度叫做点到直线的距离.7.内错角为“Z”型,同位角为“F”型,同旁内角为“U”型。
二、同步题型分析题型1:对顶角以及邻补角例题1:图中是对顶角的是( ).例题2:如图,∠1的邻补角是( ).(A)∠BOC(B)∠BOC和∠AOF(C)∠AOF(D)∠BOE和∠AOF题型2:垂线例题3:如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.题型3:同位角、内错角、同旁内角例题4:如图所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.三、课堂达标检测1、如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°2、判断正误(1)如果两个角相等,那么这两个角是对顶角.( )(2)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( )(3)有一条公共边的两个角是邻补角.( )(4)如果两个角是邻补角,那么它们一定互为补角.( )(5)对顶角的角平分线在同一直线上.( )(6)有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )3、如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c4、如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.5、如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角6、如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对一、平行线及其判定同步知识梳理1.在同一平面内,不相交的两条直线叫做平行线.若直线a与直线b平行,则记作a∥b.2.在同一平面内,两条直线的位置关系只有相交、平行.3.平行公理是:经过直线外一点有且只有一条直线与这条直线平行.4.平行公理的推论是如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即三条直线a,b,c,若a∥b,b∥c,则a∥c.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.这个判定方法1可简述为:同位角相等,两直线平行.(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.这个判定方法2可简述为:内错角相等,两直线平行.(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.这个判定方法3可简述为:同旁内角互补,两直线平行.二、同步题型分析题型1:例题1:如图,根据下列条件,可推得哪两条直线平行?并说明理由•⑴∠CBD=∠ADB;⑵∠BCD+∠ADC=180°⑶∠ACD=∠BACAB C DO例题2:已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)例题3:已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)例题4:已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.三、课堂达标检测1、如图① 不能判定a ∥b 的一组条件是( )A .∠1=∠2B .∠1=∠5C .∠3=∠4D .∠2=∠62、如图② 能够判定DE ∥BC 的条件是( )A . ∠DCE+∠DEC= 180B . ∠EDC=∠DCBC . ∠BGF=∠DCBD . CD ⊥AB ,GF ⊥AB3、已知:如图,∠1=∠2.求证:AB ∥CD .(1)分析:如图,欲证AB ∥CD ,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( ) ∴∠1=_______.( )∴AB ∥CD .(___________,___________)(2)分析:如图,欲证AB ∥CD ,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( ) 又∠1=∠2,(已知)从而∠3=_______.( )∴AB ∥CD .(___________,___________)4、如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系. 解:∵AD 是∠BAC 的平分线(已知)∴∠BAC =2∠1(角平分线定义)又∵EF 平分∠DEC (已知)∴ ( )又∵∠1=∠2(已知)∴ ( )∴AB ∥DE ( )5、已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质)A B CD EF 1 2即∠3=___.∴DF ___AE .(____,____)6、已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )7、已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)① ∵∠3+∠4=180°,( )∴c ∥______.(________,________)② 由①、②,因为a ∥______,c ∥______, ∴a ______c .(________,________)8、如图,∠D =∠A,∠B =∠FCB,求证:ED∥CF.E BAFDC一、能力培养1、如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数.2、如图所示,L1,L2,L3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.3、已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.解析:考察角平分线的性质,对顶角的性质34l3l2l1124、当两条直线相交于一点时,共有2对对顶角;当三条直线相交于一点时,共有6对对顶角;当四条直线相交于一点时,共有12对对顶角.问:当有100条直线相交于一点时共有对顶角.5、已知平面内有一条直线m及直线外三点A,B,C,分别过这三个点作直线m的垂线,想一想有几个不同的垂足?画图说明.6、已知点M,试在平面内作出四条直线l1,l2,l3,l4,使它们分别到点M的距离是1.5cm.·M2、已知∠B=∠C,∠1=∠2。
初中数学第五章 相交线与平行线(讲义及答案)附解析

初中数学第五章 相交线与平行线(讲义及答案)附解析一、选择题1.如图所示,已知 AB ∥CD ,下列结论正确的是( )A .∠1=∠2B .∠2=∠3C .∠1=∠4D .∠3=∠42.下列说法中,正确的有( )①等腰三角形的两腰相等; ②等腰三角形底边上的中线与底边上的高相等; ③等腰三角形的两底角相等; ④等腰三角形两底角的平分线相等.A .1个B .2个C .3个D .4个3.如图,∠1的同位角是( )A .∠2B .∠3C .∠4D .∠54.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°5.如图,直线12//,,140l l αβ∠=∠∠=︒,则2∠等于( )A .140︒B .130︒C .120︒D .110︒ 6.如图,在ABC 中,//EF BC ,ED 平分BEF ∠,且70∠︒=DEF ,则B 的度数为( )A .70°B .60°C .50°D .40°7.如图,//,AD BC D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H ,点F 是边AB 上一点,使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若100DEH ︒∠=,则BEG ∠的度数是( )A .30︒B .40︒C .50︒D .60︒8.已知两个角的两边两两互相平行,则这两个角的关系是( )A .相等B .互补C .相等或互补D .相等且互补9.下列所示的四个图形中,∠1和∠2是同位角的是( )A .②③B .①②③C .①②④D .①④ 10.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线二、填空题11.如图,//AB CD ,BD 平分ABC ∠,:4:1C DBA ∠∠=,则CDB ∠=______.12.如图,AB ∥CD,BF 平分∠ABE,DF 平分∠CDE,∠BFD=35°,那么∠BED 的度数为_______.13.如图,已知AB∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC与∠AEC之间的数量关系是_____________________________14.如图①:MA1∥NA2,图②:MA11NA3,图③:MA1∥NA4,图④:MA1∥NA5,……,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1______.(用含n的代数式表示)15.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.16.如图,a∥b,∠2=∠3,∠1=40°,则∠4的度数是______度.17.如图,直线a∥b∥c,直角∠BAC的顶点A在直线b上,两边分别与直线a,c相交于点B,C,则∠1+∠2的度数是___________.18.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.19.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E,若∠1=62°,则∠2=______.20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.三、解答题21.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN ∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒; (3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠, 1CBD CBN n∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)22.如图1,D 是△ABC 延长线上的一点,CE //AB . (1)求证:∠ACD =∠A+∠B ;(2)如图2,过点A 作BC 的平行线交CE 于点H ,CF 平分∠ECD ,FA 平分∠HAD ,若∠BAD =70°,求∠F 的度数.(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.23.如图①,已知AB ∥CD ,一条直线分别交AB 、CD 于点E 、F ,∠EFB =∠B ,FH ⊥FB ,点Q 在BF 上,连接QH .(1)已知∠EFD =70°,求∠B 的度数;(2)求证: FH 平分∠GFD .(3)在(1)的条件下,若∠FQH =30°,将△FHQ 绕着点F 顺时针旋转,如图②,若当边FH 转至线段EF 上时停止转动,记旋转角为α,请直接写出当α为多少度时,QH 与△EBF 的某一边平行?24.如图1,AB ∥CD ,点E 在AB 上,点G 在CD 上,点 F 在直线 AB ,CD 之间,连接EF ,FG ,EF 垂直于 FG ,∠FGD =125°.(1)求出∠BEF 的度数;(2)如图 2,延长FE 到H ,点M 在FH 的上方,连接MH ,Q 为直线 AB 上一点,且在直线 MH 的右侧, 连接 MQ ,若∠EHM=∠M +90°,求∠MQA 的度数;(3)如图 3,S 为 NB 上一点,T 为 GD 上一点,作直线 ST ,延长 GF 交 AB 于点 N ,P 为直线 ST 上一动点,请直接写出∠PGN ,∠SNP 和∠GPN 的数量关系 .(题中所有角都是大于 0°小于 180°的角)25.如图,已知C 为两条相互平行的直线AB ,ED 之间一点,ABC ∠和CDE ∠的角平分线相交于F ,180FDC ABC ∠+∠=︒.(1)求证://AD BC ;(2)连结CF ,当//CF AB ,且32CFB DCF ∠=∠时,求BCD ∠的度数;(3)若DCF CFB ∠=∠时,将线段BC 沿直线AB 方向平移,记平移后的线段为PQ (B ,C 分别对应P ,Q ,当20PQD QDC ∠-∠=︒时,请直接写出DQP ∠的度数______.26.如图,如图1,在平面直角坐标系中,已知点A (﹣4,﹣1)、B (﹣2,1),将线段AB 平移至线段CD ,使点A 的对应点C 在x 轴的正半轴上,点D 在第一象限. (1)若点C 的坐标(k ,0),求点D 的坐标(用含k 的式子表示);(2)连接BD 、BC ,若三角形BCD 的面积为5,求k 的值;(3)如图2,分别作∠ABC 和∠ADC 的平分线,它们交于点P ,请写出∠A 、和∠P 和∠BCD 之间的一个等量关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的性质即可得到结论.【详解】∵AB∥CD,∴∠1=∠4,故选 C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.2.D解析:D【解析】分析:等腰三角形中顶角平分线,底边中线及高互相重合,即三线合一,两腰上的角平分线、中线及高都相等.详解:①等腰三角形的两腰相等;正确;②等腰三角形底边上的中线与底边上的高相等;正确;③等腰三角形的两底角相等;正确;④等腰三角形两底角的平分线相等.正确.故选D.点睛:本题主要考查了等腰三角形的性质以及命题与定理的概念,能够熟练掌握.3.D解析:D【分析】根据同位角定义可得答案.【详解】解:解:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角,根据定义,结合图形,∠1的同位角是∠5.故选:D.【点睛】本题考查同位角的定义,解题关键是熟练理解同位角的定义,本题属于基础题型.4.C解析:C【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选C.【点睛】考查了平行线的性质,解题时注意:两直线平行,内错角相等.5.A解析:A【分析】作出如下图所示的辅助线,然后再利用平行线的性质即可求解.【详解】解:如图所示,作直线m∥n∥l1∥l2,此时有∠3=∠1=40°,∠6=180°-∠2,∠4=∠5,又∠α=∠3+∠4,∠β=∠5+∠6=∠5+(180°-∠2),且∠α=∠β,∴∠3+∠4=∠5+(180°-∠2),由于∠4=∠5,∴∠3=180°-∠2,代入数据:40°=180°-∠2,∴∠2=140°,故选:A .【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.6.D解析:D【分析】由角平分线的定义求出∠BEF=140°,再根据平行线的性质“两直线平行,同旁内角互补”求出∠B 的度数即可.【详解】∵ED 平分BEF ∠,且70∠︒=DEF ,∴70DEB ∠=︒∴270140BEF ︒=∠=⨯︒∵//EF BC∴180B BEF ∠+∠=︒∴180********B BEF ∠=︒-∠=︒-︒=︒故选D【点睛】此题主要考查了平行线的性质和角平分的性质,此题难度不大,注意掌握相关性质的运用7.B解析:B【分析】AD ∥BC ,∠D=∠ABC ,则AB ∥CD ,则∠AEF=180°-∠AED-∠BEG=180°-2β,在△AEF 中,100°+2α+180°-2β=180°,故β-α=40°,即可求解.【详解】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠FAE=80°,∠AEF=180°-∠FEG-∠BEG=180°-2β,在△AEF中,在△AEF中,80°+2α+180-2β=180°故β-α=40°,而∠BEG=∠FEG-∠FEB=β-α=40°,故选:B.【点睛】此题考查平行线的性质,解题关键是落脚于△AEF内角和为180°,即100°+2α+180°-2β=180°,题目难度较大.8.C解析:C【解析】分类讨论:两个角的两边方向是否相同.若相同,则相等;否则互补.故选C. 9.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C.【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.10.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D .【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.二、填空题11.30°【分析】先由AB//CD 得到∠CDB=∠ABD,∠C+∠ABC=180︒,设出∠ABD=x°,依据“平分,”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°解析:30°【分析】先由AB//CD 得到∠CDB=∠ABD ,∠C+∠ABC=180︒,设出∠ABD=x°,依据“BD 平分ABC ∠,:4:1C DBA ∠∠=”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°,∠ABD ,∠C+∠ABC=180︒,BD 平分ABC ∠,∴∠ABD=∠CBD∵:4:1C DBA ∠∠=,∴4C DBA ∠=∠设∠ABD=x°,则∠CBD=x°,∠C=4x°,∴2x°+4x°=180°,解得,x=30∴∠ABD=30°,∴∠CDB=30°,故答案为:30°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,求出∠ABD=30°是解此题的关键. 12.70°【分析】此题要构造辅助线:过点E ,F 分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥A解析:70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为70°.【点睛】本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.13.4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=18解析:4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°-(4x°+4y°),求出∠AEC=4(x°+y°),∠AFC═3(x°+y°),即可得出答案.【详解】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°),∴∠AEC=180°-(∠CAE+∠ACE)=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),∠AFC=180°-(∠FAC+∠FCA)=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),∴∠AFC=34∠AEC,即:4∠AFC=3∠AEC,故正确答案为:4∠AFC=3∠AEC.【点睛】本题考查了平行线性质和三角形内角和定理的应用,注意:两直线平行,同旁内角互补.14.【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2解析:n180︒【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2×180∘,如图③中,∠A1+∠A2+∠A3+∠A4=540∘=3×180∘,…,第n个图,∠A1+∠A2+∠A3+…+∠A n+1学会从=n180︒,故答案为180n︒.点睛:平行线的性质.【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80解析:80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.16.40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.解析:40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.故答案为:40.17.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵b∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.18.65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.19.121°【分析】由AC∥BD,根据两直线平行,同位角相等,即可求得∠B的度数;由邻补角的定义,求得∠BAC的度数;又由AE平分∠BAC交BD于点E,即可求得∠BAE的度数,根据三角形外角的性质即解析:121°【分析】由AC∥BD,根据两直线平行,同位角相等,即可求得∠B的度数;由邻补角的定义,求得∠BAC的度数;又由AE平分∠BAC交BD于点E,即可求得∠BAE的度数,根据三角形外角的性质即可求得∠2的度数.【详解】∵AC∥BD,∴∠B=∠1=64°,∴∠BAC=180°-∠1=180°-62°=118°,∵AE平分∠BAC交BD于点E,∴∠BAE=12∠BAC=59°,∴∠2=∠BAE+∠B=62°+59°=121°.故答案为121°.【点睛】此题考查了平行线的性质,角平分线的定义,邻补角的定义以及三角形外角的性质.题目难度不大,注意数形结合思想的应用.20.(n ﹣1)×180【分析】分别过P1、P2、P3作直线AB 的平行线P1E ,P2F ,P3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=18解析:(n ﹣1)×180【分析】分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P 1+∠2=2×180,∠1+∠P 1+∠P 2+∠2=3×180°,∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.【详解】解:如图,分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,∵AB ∥CD ,∴AB ∥P 1E ∥P 2F ∥P 3G .由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180° ∴(1)∠1+∠2=180°,(2)∠1+∠P 1+∠2=2×180,(3)∠1+∠P 1+∠P 2+∠2=3×180°,(4)∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,∴∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.三、解答题21.(1)120º,120º;(2)160;(3)()1360n m n -⋅- 【分析】(1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据 12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出 60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据ADB ADH BDH ∠=∠+∠即可得到结果; (2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠求解即可; (3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n∠=∠, 1CBD CBN n∠=∠求解即可; 【详解】 解:(1)如图示,分别过点,C D 作CGEF ,DH EF ,∵EFMN , ∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒ ∴60DBN CBN CBD ∠=∠-∠=︒,又∵60FAD FAC CAD ∠=∠-∠=︒,∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,∴120ADB ADH BDH ∠=∠+∠=︒.(2)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒, ∵1403CBD CBN ∠=∠=︒, 1403CAD FAC ∠=∠=︒ ∴80DBN CBN CBD ∠=∠-∠=︒,又∵80FAD FAC CAD ∠=∠-∠=︒,∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,∴160ADB ADH BDH ∠=∠+∠=︒.故答案为:160;(3)同理(1)的求法∵EF MN ,∴EF MN CG DH ,∴ACG FAC m ∠=∠=︒,∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,∴3602CBN GCB m ∠=∠=︒-︒, ∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-=︒, ∴()1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=-︒︒-︒︒-+︒. 故答案为:()1360n m n-⋅-. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.22.(1)证明见解析;(2)∠F=55°;(3)∠MQN =12∠ACB ;理由见解析. 【分析】(1)首先根据平行线的性质得出∠ACE =∠A ,∠ECD =∠B ,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出∠FCD =12∠ECD ,∠HAF =12∠HAD ,进而得出∠F =12(∠HAD+∠ECD ),然后根据平行线的性质得出∠HAD+∠ECD 的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出12QGR QGD ∠=∠,12NQG AQG ∠=∠,180MQG QGR ∠+∠=︒ ,再通过等量代换即可得出∠MQN =12∠ACB . 【详解】解:(1)∵CE //AB ,∴∠ACE =∠A ,∠ECD =∠B ,∵∠ACD =∠ACE+∠ECD ,∴∠ACD =∠A+∠B ;(2)∵CF 平分∠ECD ,FA 平分∠HAD ,∴∠FCD =12∠ECD ,∠HAF =12∠HAD , ∴∠F =12∠HAD+12∠ECD =12(∠HAD+∠ECD ), ∵CH //AB ,∴∠ECD =∠B ,∵AH //BC ,∴∠B+∠HAB =180°,∵∠BAD =70°,110B HAD ∴∠+∠=︒,∴∠F =12(∠B+∠HAD )=55°; (3)∠MQN =12∠ACB ,理由如下: GR 平分QGD ∠,12QGR QGD ∴∠=∠. GN 平分AQG ∠,12NQG AQG ∴∠=∠. //QM GR ,180MQG QGR ∴∠+∠=︒ .∴∠MQN =∠MQG ﹣∠NQG=180°﹣∠QGR ﹣∠NQG=180°﹣12(∠AQG+∠QGD ) =180°﹣12(180°﹣∠CQG+180°﹣∠QGC ) =12(∠CQG+∠QGC ) =12∠ACB . 【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.23.(1)35°;(2)见解析;(3)30°或65°或175°或210°【分析】(1)利用AB ∥CD ,得到∠B =∠BFD ,又∠B=∠EFB ,由此得到∠EFB=∠BFD=12∠EFD=35°; (2)由(1)知∠EFB =∠BFD ,利用FH ⊥FB ,得到∠BFD +∠DFH =90°,∠EFB +∠GFH =90°,再由等角的余角相等得到∠DFH =∠GFH 即可求解;(3)按QH 分别与△EBF 的三边平行三种情况分类讨论即可.【详解】解:(1)AB ∥CD ,∴∠B =∠BFD .∵∠EFB =∠B ,∴∠EFB =∠BFD =12∠EFD =35°, ∴∠B =35°,故答案为:35°;(2)∵FH ⊥FB ,∴∠BFD +∠DFH =90°,∠EFB +∠GFH =90°∵∠EFB =∠BFD ,由等角的余角相等可知,∴∠DFH =∠GFH .∴FH 平分∠GFD .(3)分类讨论:情况一:QH 与△EFB 的边BF 平行时,如下图1和图4所示:当为图1时:∵BF与HQ平行,∴∠H+∠BFH=180°,又∠H=60°,∴∠BFH=120°,此时旋转角α=∠BFQ=120°-∠HFQ=120°-90°=30°,当为图4时:此时∠HFB=∠H=60°,旋转角α=∠1+∠2+∠3=360°-(∠HFB+∠HFQ)=360°-(60°+90°)=210°;情况二:QH与△EFB的边BE平行时,如下图2所示:此时∠1=∠3=35°,∠2=∠4=30°,∴旋转角α=∠BFQ=∠1+∠2=35°+30°=65°;情况三:QH与△EFB的边EF平行时,如下图3所示:此时∠3=∠Q=30°,∴旋转角α=∠BFQ=∠1+∠2+∠3=35°+110°+30°=175°,综上所述,旋转角α=30°或65°或175°或210°.故答案为:α=30°或65°或175°或210°.【点睛】本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,周角的定义等,熟练掌握平行线的性质是解决本题的关键.24.(1)145︒;(2)55︒;(3)2125PGN SNP NPG ∠+∠-︒=∠【分析】(1)过点F 作//FN AB ,根据AB ∥CD ,EF 垂直于FG ,∠FGD =125°可计算NFG ∠,EFN ∠,从而求算BEF ∠;(2)作//FN AB ,//HK AB 交MQ 于点K ,由(1)知55,=35NFG EFN ∠=︒∠︒,从而求算35AEF EHL ∠=∠=︒,再根据90EHM M ∠=∠+︒,设M x ∠=︒,利用外角求出MHL ∠,从而求算MQA ∠;(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,设SNP x ∠=︒ ,则NPI x ∠=︒ 设IPG y ∠=︒ ,则PGT y ∠=︒,从而表示PGN ∠,进而寻找数量关系.【详解】(1)过点F 作//FN AB ,如图:∵AB ∥CD ,EF 垂直于FG ,∠FGD =125°∴55,905535NFG EFN ∠=︒∠=︒-︒=︒∴180145BEF EFN ∠=︒-∠=︒(2)作//FN AB ,//HK AB 交MQ 于点K ,如图:由(1)知:55,905535NFG EFN ∠=︒∠=︒-︒=︒∴35AEF EHL ∠=∠=︒又∵90EHM M ∠=∠+︒,设M x ∠=︒∴90EHM x ∠=︒+︒∴903555MHL x x ∠=︒+︒-︒=︒+︒∴5555MKH MQA MHL M x x ∠=∠=∠-∠=︒+︒-︒=︒(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,如图:设SNP x ∠=︒ ,则NPI x ∠=︒设IPG y ∠=︒ ,则PGT y ∠=︒又∵125FGD ∠=︒∴125PGN y ∠=︒-︒∴2125PGN SNP NPG ∠+∠-︒=∠【点睛】本题考查平行线的性质综合,转化相关的角度是解题关键.25.(1)证明见解析;(2)∠BCD =108°;(3)70°【分析】(1)根据两直线平行,内错角相等得出∠EDF =∠DAB ,由角平线的定义得出∠EDF =∠FDC ,最后根据同旁内角互补,两直线平行进行求证;(2)设∠DCF =x ,则∠CFB =1.5x ,由两直线平行,内错角相等得出∠ABF =1.5x ,由角平分线的定义得出∠ABC =3x ,最后利用两直线平行,同旁内角互补得出关于x 的方程,求解即可;(3)画出图形,根据两直线平行,同旁内角互补得出∠CDF =∠CBF ,由角平分线的定义与已知条件可求出∠ABC 与∠FDC ,由平移的性质与平行公理的推论得出AD ∥PQ ,最后根据两直线平行,同旁内角互补列式求解.【详解】解:(1)证明:∵AB ∥DE ,∴∠EDF =∠DAB ,∵DF 平分∠EDC ,∴∠EDF =∠FDC ,∴∠FDC =∠DAB ,∵∠FDC +∠ABC =180°,∴∠DAB+∠ABC=180°,∴AD∥BC;(2)∵32CFB DCF∠=∠,设∠DCF=x,则∠CFB=1.5x,∵CF∥AB,∴∠ABF=∠CFB=1.5x,∵BE平分∠ABC,∴∠ABC=2∠ABF=3x,∵AD∥BC,∴∠FDC+∠BCD=180°,∵∠FDC+∠ABC=180°,∴∠BCD=∠ABC=3x,∴∠BCF=2x,∵CF∥AB,∴∠ABC+∠BCF=180°,∴3x+2x=180°,∴x=36°,∴∠BCD=3×36°=108°;(3)如图,∵∠DCF=∠CFB,∴BF∥CD,∴∠CDF +∠BFD=180°,∵AD∥BC,∴∠CBF +∠BFD=180°,∴∠CDF=∠CBF,∵AD,BE分别平分∠ABC,∠CDE,∴∠ABC=2∠CBF,∠CDE=2∠FDC,∴∠ABC=∠CDE=2∠FDC,∵∠FDC+∠ABC=180°,∴∠ABC=120°,∠FDC=60°,∵线段BC沿直线AB方向平移得到线段PQ,∴BC∥PQ,∵AD∥BC,∴AD∥PQ,∵∠PQD﹣∠QDC=20°,∴∠QDC=∠PQD﹣20°,∴∠FDC+∠QDC +∠PQD=60°+∠PQD﹣20°+∠PQD=180°,∴∠PQD=70°,即∠DQP=70°.故答案为:70°.【点睛】本题考查平行线的判定与性质,平行公理的推论,角平分线的定义,平移的性质,熟练运用平行线的判定与性质是解题的关键.26.(1)D(k+2,2);(2)k=2;(3)∠BPD=12∠BCD+12∠A,理由详见解析【分析】(1)由平移的性质可得出答案;(2)过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,由四边形BEFD的面积可得出答案;(3)过点P作PE∥AB得出∠PBA=∠EPB,由平移的性质得出AB∥CD,由平行线的性质得出PE∥CD,则∠EPD=∠PDC,得出∠BPD=∠PBA+∠PDC,由角平分线的性质得出∠PBA=12∠ABC,∠PDC=12∠ADC,即可得出结论.【详解】解:(1)∵点A(﹣4,﹣1)、B(﹣2,1),C(k,0),将线段AB平移至线段CD,∴点B向上平移一个单位,向右平移(k+4)个单位到点D,∴D(k+2,2);(2)如图1,过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,∵A(﹣4,﹣1)、B(﹣2,1),C(k,0),D(k+2,2),∴BE=1,CE=k+2,DF=2,EF=k+4,CF=2,∵S四边形BEFD=S△BEC+S△DCF+S△BCD,∴1(12)(k4)2⨯+⨯+=111(k2)22522⨯⨯++⨯⨯+,解得:k=2.(3)∠BPD=12∠BCD+12∠A;理由如下:过点P作PE∥AB,如图2所示:∴∠PBA=∠EPB,∵线段AB平移至线段CD,∴AB∥CD,∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,∴∠EPD=∠PDC,∴∠BPD=∠PBA+∠PDC,∵BP平分∠ABC,DP平分∠ADC,∴∠PBA=12∠ABC,∠PDC=12∠ADC,∴∠BPD=12∠ABC+12∠ADC=12∠BCD+12∠A.【点睛】本题考查了平移的综合问题,掌握平移的性质、平行线的性质、角平分线的性质是解题的关键.。
七年级相交线平行线知识点

七年级相交线平行线知识点在数学学科中,相交线和平行线是非常基础的知识点。
在七年级学生学习中,这个知识点也占有非常重要的地位。
本文将着重介绍七年级相交线平行线知识点,以期能够让同学们更好地掌握这个知识点,并且在考试中获得高分。
一、相交线和平行线的定义相交线是指在同一平面内,两条直线交叉成交的情况。
而平行线则是指在同一平面内,两条直线永不相交的情况。
二、相交线和平行线的性质1.同侧内角相加定理同侧内角指的是两条平行线被一条相交线所穿过后,位于两条平行线同侧的两个角。
同侧内角相加定理指的是,两个同侧内角之和等于180度。
2.同侧外角相等定理同侧外角指的是两条平行线被一条相交线所穿过后,位于两条平行线同侧的两个角。
同侧外角相等定理指的是,在平行线上,同侧外角的度数相等。
3.对顶角相等定理对顶角指的是,一条直线穿过两条平行线所形成的角对称角之间的角。
对顶角相等定理指的是,在两条平行线相交的情况下,对顶角的度数相等。
三、相交线和平行线的判定方法1. 同线测量法同线测量法是指,在已知两个角相等或者加起来等于180度的前提下,用直尺量出另外两条线段,并且测量它们的长度是否相等。
如果相等,则这两条线段构成的两条直线是平行的。
2. 画辅助线法画辅助线法是指,在有一条直线上已知两个角,想要判定与这条直线平行的另一条直线,可以画一条相交于原直线的辅助线,从而形成三角形或者四边形,在结合一些定理进行推导,从而得到所需要的结论。
3. 角平分线法角平分线法是指,在一个角内,构造一条角平分线,使得这条角平分线将原角分成两个相等的角,则这两个角所在的直线互相垂直。
四、练习题1.已知图中AB // CD,AC与BD相交于点O,则∠AOC+∠BOD=2.在图中的平行线AB和CD交于点P,∠APD=110°,则∠CPD=3.在图中的平行线AB和CD交于点P,AP:PB=3:2,则CP:PD=答案:1.180度2.70度3.4:3总结:相交线和平行线是基础知识,但是在数学学习中非常重要,同学们一定要认真学习、掌握相关知识点,并且多做练习题来加深对知识的理解。
北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(全章知识梳理与考点分类讲解)【知识点一】平行线的判定方法11.方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称为:同位角相等,两直线平行.2.表达方式:因为∠1=∠2,(已知)所以a//b(同位角相等,两直线平行)特别提醒:“同位角相等,两直线平行”是通过两个同位角的大小关系(相等)推导出两直线的位置关系(平行).它是构建起角的大小关系与直线的位置关系的桥梁.【知识点二】平行线的画法过直线外一点画已知的直线平行线的步骤一落:把三角尺的一边落在一直的直线上;二靠:紧靠三角尺的另一边放一直尺;三移:把三角尺沿着直尺移动使其经过已知点;四画:沿三角尺的一边画直线.此直线即为已知直线的平行线.特别提醒:1.经过直线上一点不可以作已知直线的平行线.2.画线段或射线的平行线是画它们所在直线的平行线.3.移动是要始终保持紧靠.【知识点三】平行线的性质及其推论1.平行线的性质:过直线外一点有且只有一条直线与这条直线平行.2.表达方式:如果a//b,b//c,那么a//b.特别提醒:平行线的性质的前提是“过直线外一点”,若点在直线上,则不可能有平行线.【考点目录】【平行线性质求角的等量关系】【考点1】同位角相等两直线平行;【考点2】内错角相等两直线平行;【考点3】同旁内角互补两直线平行;【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度;【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度;【考点6】平行线判定与性质证明;【平行线间的距离】【考点7】平行线间的距离(应用).【平行线性质求角的等量关系】【考点1】同位角相等两直线平行【答案】相等;理由见分析【分析】根据平行投影可得∠B=∠E,再根据垂直可得∠C=∠F=90°,然后利用“角边角”证明△ABC 和△DEF全等,根据全等三角形对应边相等即可得证.解:两根旗杆的高度相等.理由如下:∵太阳光线AB与DE是平行,∴∠B=∠E,∵两根旗杆都垂直于地面放置,∴∠C=∠F=90°,∵两根旗杆在太阳光下的影子一样长,∴BC =EF ,∵在△ABC 和△DEF 中B E BC EF C F ∠∠⎧⎪⎨⎪∠∠⎩===∴△ABC ≌△DEF (ASA ),∴AC =DF ,即两根旗杆的高度相等.【点拨】本题考查了全等三角形的应用,根据题意找出三角形全等的条件,然后证明两三角形全等是解题的关键.【变式1】(2023·黑龙江齐齐哈尔·统考中考真题)如图,把一块三角板的30︒角顶点A 放在直尺的一边BC 上,若1:23:7∠∠=,则2∠=()A .126︒B .118︒C .105︒D .94︒【答案】C 【分析】根据平行线的性质和平角的定义即可得到结论.解:如图,由题意知:DE BC ∥,∴31∠=∠,∵1:23:7∠∠=,∴3:23:7∠∠=,∴3327∠=∠,∵2330180∠+∠+︒=︒,∴322301807∠+∠+︒=︒,∴2105∠=︒.故选:C .【点拨】本题考查的是平行线的性质和平角的定义.熟练掌握两直线平行,同位角相等是解题的关键.【变式2】(2022·甘肃嘉峪关·校考一模)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为.【答案】60°/60度【分析】由a∥b,根据两直线平行,同位角相等,即可求得∠3=∠1=60°,又由对顶角相等,即可求得答案.解:∵a∥b,∴∠3=∠1=60°,∴∠2=∠3=60°.故答案为:60°.【点拨】此题考查了平行线的性质.此题比较简单,注意掌握数形结合思想的应用.【考点2】内错角相等两直线平行【例2】(2014下·贵州铜仁·七年级统考期末)已知:如图,点D、E分别在AB、BC上,DE AC∥,165∠=︒,265∠=︒,请说明:F CBF ∠=∠.(不必注明依据)【答案】证明见分析【分析】根据平行线的性质得出165C ∠=∠=︒,得出2C ∠=∠,根据平行线的判定得出AF BC ∥,再根据平行线的性质即可得证.解:∵DE AC ∥,165∠=︒,265∠=︒,∴165C ∠=∠=︒,∴2C ∠=∠,∴AF BC ∥,∴F CBF ∠=∠.【点拨】本题考查平行线的判定和性质,能灵活运用平行线的性质和判定定理进行推理是解题的关键.【变式1】(2023·吉林白城·校联考三模)已知,如图,AB ∥CD ,∠A=70°,∠B=40°,则∠ACD=()A .55°B .70°C .40°D .110°【答案】B解:AB CD ∥.A ACD ∴∠=∠70.A ∠=︒ 70.ACD ∠=︒故选B.【点拨】两直线平行,内错角相等.【变式2】(2023·辽宁阜新·统考中考真题)如图,直线a b ,直线l 与直线a 相交于点P ,直线l 与直线b 相交于点Q ,PM l ⊥于点P ,若155∠=︒,则2∠=.︒【答案】35【分析】本题主要考查平行线性质以及垂线的性质.根据平行线性质得3155∠=∠=︒,利用垂线性质即可求得2∠.解:直线a b ,3155∴∠=∠=︒,又PM l ⊥ 于点P ,90MPQ ∴∠=︒,2903905535∴∠=︒-∠=︒-︒=︒.故答案为:35.【考点3】同旁内角互补两直线平行【例3】(2023下·山东烟台·六年级统考期末)如图,ABD ∠和BDC ∠的角平分线交于点E ,BE 交CD 于点F ,1290∠+∠=︒.(1)试说明://AB CD .(2)若228∠=︒,求3∠的度数.【答案】(1)见分析;(2)62︒【分析】(1)根据角平分线的定义,结合1290∠+∠=︒,可得180ABD BDC ∠+∠︒=,进而即可得到结论;(2)由228∠=︒,得162∠=︒,进而得62ABF ∠=︒,结合//AB CD ,即可得到答案.解:(1)∵ABD ∠和BDC ∠的角平分线交于点E ,∴21ABD ∠∠=,22BDC ∠∠=,又∵1290∠+∠=︒,∴2(12)180ABD BDC ∠+∠∠+∠=︒=,∴//AB CD ;(2)∵228∠=︒,1290∠+∠=︒,∴162∠=︒,又∵BF 平分ABD ∠,∴162ABF ∠=∠=︒,又∵//AB CD ,∴362ABF ∠=∠=︒.【点拨】本题主要考查角平分线的定义,平行线的判定和性质定理,掌握“同旁内角互补,两直线平行”,“两直线平行,内错角相等”,是解题的关键.【变式1】(2012下·广东茂名·七年级统考期中)两条平行线被第三条直线所截,一对同旁内角的比为4:5,则这两个角中较小的角的度数为()A .20︒B .80︒C .100︒D .120︒【答案】B【分析】根据比例设两个角为4x 、5x ,再根据两直线平行,同旁内角互补列式求解即可.解:设两个角分别为4x 、5x ,∵这两个角是两平行线被截所得到的同旁内角,∴45180x x +=︒,解得20x =︒,480x =︒,5100x =︒,所以较小的角的度数等于80︒.故选:B .【点拨】本题考查了平行线的性质,主要利用了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.【变式2】(2023下·辽宁大连·七年级统考期末)如图,AB ∥CD ,射线AE 交CD 于点F ,若∠1=116°,则∠2的度数等于.【答案】64°【分析】根据两直线平行,同旁内角互补可求出∠AFD 的度数,然后根据对顶角相等求出∠2的度数.解:∵AB ∥CD ,∴∠1+∠AFD =180°.∵∠1=116°,∴∠AFD =64°.∵∠2和∠AFD 是对顶角,∴∠2=∠AFD =64°.故答案为64°.【点拨】本题考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度【例4】(2017下·北京东城·七年级统考期中)已知:直线AB CD ,点M 、N 分别在直线AB 、直线CD 上,点E 为平面内一点,(1)如图1,请写出AME ∠,E ∠,ENC ∠之间的数量关系,并给出证明;(2)如图2,利用(1)的结论解决问题,若30AME ∠=︒,EF 平分MEN ∠,NP 平分ENC ∠,EQ NP ∥,求FEQ ∠的度数;(3)如图3,点G 为CD 上一点,AMN m EMN ∠=∠,GEK m GEM ∠=∠,EH MN 交AB 于点H ,GEK ∠,BMN ∠,GEH ∠之间的数量关系(用含m 的式子表示)是.【答案】(1)MEN AME ENC ∠=∠+∠,证明见分析;(2)15︒;(3)180GEK BMN m GEH ∠+∠-∠=︒.【分析】(1)过点E 作EE AB ' ,根据平行线的性质进行证明即可;(2)利用EF 平分MEN ∠,NP 平分ENC ∠,可得11,22NEF MEN ENP ENC ∠=∠∠=∠,再根据MEN AME ENC ∠=∠+∠,进行等量代换进行计算即可;(3)由已知条件可得11,22NEF MEN ENP ENC ∠=∠∠=∠,1EMN HEM AMN m∠=∠=∠,再根据平行线的性质进行各角的等量转换即可.解:(1)MEN AME ∠=∠+∠,证明如下:如图1所示,过点E 作EE AB ' ,∵AB CD ,∴AB CD EE 'P P ,∴1,2AME ENC ∠=∠∠=∠,∵12MEN ∠=∠+∠,∴MEN AME ENC ∠=∠+∠.(2)∵EF 平分MEN ∠,NP 平分ENC ∠,∴11,22NEF MEN ENP ENC ∠=∠∠=∠.∵EQ NP ∥,30AME ∠=︒,∴12QEN ENP ENC ∠=∠=∠.∵MEN AME ENC ∠=∠+∠,∴30MEN ENC AME ∠-∠=∠=︒,∴111130152222FEQ FEN QEN MEN ENC AME ∠=∠-∠=∠-∠=∠=⨯︒=︒.(3)180GEK BMN m GEH ∠+∠-∠=︒.证明如下:∵AMN m EMN ∠=∠,GEK m GEM ∠=∠,∴1EMN AMN m ∠=∠,1GEM GEK m∠=∠.∵EH MN ,∴1EMN HEM AMN m∠=∠=∠,∵11GEH GEM HEM GEK AMN m m ∠=∠-∠=∠-∠,∴m GEH GEK AMN ∠=∠-∠,∵180AMN BMN ∠=︒-∠,∴()180m GEH GEK BMN ∠=∠-︒-∠,180GEK BMN m GEH ∠+∠-∠=︒.故答案为:180GEK BMN m GEH ∠+∠-∠=︒.【点拨】本题考查了平行线的判定和性质,角的平分线,熟练掌握平行线的判定和性质是解题的关键.【变式1】(2022下·贵州黔南·七年级统考期中)如图,在五边形ABCDE 中,AE BC ∥,则C D E ∠+∠+∠=()A .540︒B .360︒C .270︒D .180︒【答案】B 【分析】首先过点D 作DF AE ∥,交AB 于点F ,由AE BC ∥,可证得AE DF BC ∥∥,然后由两直线平行,同旁内角互补可知180E EDF Ð+Ð=°,180CDF C Ð+Ð=°,继而证得结论.解:过点D 作DF AE ∥,交AB 于点F ,AE BC ∥,AE DF BC ∴∥∥,180E EDF ∴∠+∠=︒,180CDF C Ð+Ð=°,360C CDE E \Ð+Ð+Ð=°.故选:B .【点拨】此题考查了平行线的性质,注意掌握辅助线的作法,注意数形结合思想的应用.【变式2】(2023下·广东江门·七年级统考期末)如图,AB ∥CD ,∠ABF =23∠ABE ,∠CDF =23∠CDE ,则∠E :∠F 等于【答案】3:2解:如图,过点E、F分别作EG∥AB、FH∥AB,又因AB∥CD,根据平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE;∵∠ABF=23∠ABE,∠CDF=23∠CDE,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF=23(∠ABE+∠CDE)=23∠BED,∴∠BED:∠BFD=3:2.故答案为:3:2.【点拨】本题主要考查了平行线的性质,解决这类题目要常作的辅助线(平行线),充分运用平行线的性质探求角之间的关系是解题的关键.【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度【例5】(2023上·广东潮州·八年级校考阶段练习)如图,A B、两处是灯塔,船只在C处,B处在A 处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求船只与两灯塔的视角ACB的度数.【答案】85°【分析】根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°,然后根据平行线的性质与三角形内角和定理即可求解.解:如图,根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°.∵∠BAE=45°,∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°.∵AE ,DB 是正南正北方向,∴BD ∥AE ,∵∠DBA=∠BAE=45°,又∵∠DBC=80°,∴∠ABC=80°-45°=35°,∴∠ACB=180°-∠ABC-∠BAC=180°-60°-35°=85°.题的关键.【变式1】(2023下·甘肃白银·八年级统考期末)如图所示,已知AB EF ∥,那么BAC ACE CEF ∠+∠+∠=()A .180°B .270°C .360°D .540°【答案】C 【分析】先根据平行线的性质得出180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒,,进而可得出结论.解:过点C 作CD EF ∥,∥Q AB EF ,AB CD EF \∥∥,∴180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒①,②,由①②+得,360BAC ACD DCE CEF ∠+∠+∠+∠=︒,即360BAC ACE CEF Ð+Ð+Ð=°.故选:C .【点拨】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.【变式2】(四川省成都市金牛区2020-2021学年七年级下学期期末数学试题)一副直角三角板如图放在直线m 、n 之间,且//m n ,则图中1∠=度.【答案】15【分析】如图,过点A 作AC ∥m ,则有////AC m n ,然后可得,45BAC CAD CAD ADE ∠=∠∠=∠=︒,进而问题可求解.解:如图所示,过点A 作AC ∥m ,∵//m n ,∴////AC m n ,∴1,45BAC CAD ADE ∠=∠∠=∠=︒,∵60BAC CAD ∠+∠=︒,∴115BAD CAD ∠=∠-∠=︒;故答案为15.【点拨】本题主要考查平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.【考点6】平行线判定与性质证明【例6】(2023下·七年级课时练习)如图,BD 平分ABC ∠,ED BC ∥,130∠=︒,4120∠=︒.(1)求2∠,3∠的度数;(2)证明:DF AB .【答案】(1)230∠=︒,360∠=︒;(2)见详解【分析】(1)根据BD 平分ABC ∠,112ABD ABC ∠=∠=∠,即有130ABD ∠=∠=︒,60ABC ∠=︒,再结合ED BC ∥,即可求解;(2)由60ABC ∠=︒,4120∠=︒可得ABC ∠4=180+∠︒,则DF AB ,问题得解.解:(1)∵BD 平分ABC ∠,130∠=︒,∴112ABD ABC ∠=∠=∠,∴130ABD ∠=∠=︒,60ABC ∠=︒,∵ED BC ∥,∴2130∠=∠=︒,360ABC ∠=∠=︒,即:230∠=︒,360∠=︒;(2)∵60ABC ∠=︒,4120∠=︒,∴ABC ∠4=180+∠︒,∴DF AB .【点拨】本题主要考查了角平分线的定义,平行线的判定与性质等知识,掌握两直线平行同位角相等;两直线平行同位角相等;两直线平行,同旁内角互补是解答本题的关键.【变式1】(2020上·河南洛阳·七年级统考期末)如图,若12∠=∠,DE BC ∥,则下列结论:①FG DC ;②AED ACB ∠=∠;③CD 平分ACB ∠;④190B ∠+∠=︒;⑤BFG BDC ∠=∠.其中,正确结论的个数为()A .2个B .3个C .4个D .5个【答案】B 【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出2DCB =∠∠,得出FG DC ,①正确;由平行线的性质得出⑤正确;即可得出结果.解:DE BC ∥,1DCB ∴∠=∠,AED ACB ∠=∠,故②正确;12∠=∠ ,2DCB ∴∠=∠,FG DC ∴∥,故①正确;BFG BDC ∴∠=∠,故⑤正确;而CD 不一定平分ACB ∠,1B ∠+∠不一定等于90︒,故③,④错误;故选:B .【点拨】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.【变式2】(2021下·江苏盐城·七年级统考期中)如图a b ,c 与a 相交,d 与b 相交,下列说法:①若12∠=∠,则3=4∠∠;②若14180∠+∠=︒,则c d ∥;③4231∠-∠=∠-∠;④1234360∠+∠+∠+∠=︒正确的有(填序号)【答案】①②③【分析】根据平行线的性质和判定逐一进行判断即可.解:如图,①若∠1=∠2,则b ∥e ,则∠3=∠4,故原说法正确;②若∠1+∠4=180°,则c ∥d ;故原说法正确;③由a ∥b 得到∠1=∠6,∠5+∠4=180°,由∠2+∠3+∠5+180°-∠6=360°得,∠2+∠3+180°-∠4+180°-∠1=360°,则∠4-∠2=∠3-∠1,故原说法正确;④由③得,只有∠1+∠4=∠2+∠3=180°时,∠1+∠2+∠3+∠4=360°.故原说法错误.正确的有①②③,故答案为:①②③.【点拨】本题考查了平行线的判定与性质,熟练掌握平行线的性质与判定是解题的关键.【平行线间的距离】【考点7】平行线间的距离(应用)【例7】(2022下·贵州遵义·七年级校考阶段练习)如图,直线a b ∥,AB 与a ,b 分别交于点A ,B ,且AC AB ⊥,AC 交直线b 于点C .(1)若160∠= ,求2∠的度数;(2)若6,8AC AB ==,10BC =,求直线a 与b 的距离.【答案】(1)30︒;(2)245【分析】(1)由直线a b ∥,根据平行线的性质得出3160∠=∠=︒,再由AC AB ⊥,根据垂直的定义即可得到结果;(2)过A 作AD BC ⊥于D ,根据1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ,即可求解.解:(1)∵a b∥∴3160∠=∠=︒又∵AC AB⊥∴290330∠=︒-∠=︒(2)如图,过A 作AD BC ⊥于D ,则AD 的长即为直线a 与b 的距离∵6,8AC AB ==,10BC =,ABC 是直角三角形∵1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ∴8624105AB AC AD BC ⨯⨯===∴直线a 与b 的距离245【点拨】本题考查了平行线的性质及三角形的面积,解题的关键是掌握:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.【变式1】(2021下·安徽合肥·八年级统考期末)如图,123////l l l ,且相邻两条直线间的距离都是2,A ,B ,C 分别为1l ,2l ,3l 上的动点,连接AB 、AC 、BC ,AC 与2l 交于点D ,90ABC ∠=︒,则BD 的最小值为()A.2B.3C.4D.5【答案】A【分析】求BD的最小值可以转化为求点B到直线AC的距离,当BD⊥AC时,BD有最小值,根据题意求解即可.解:由题意可知当BD⊥AC时,BD有最小值,此时,AD=CD,∠ABC=90°,∴BD=AD=BD=12AC=2,∴BD的最小值为2.故选:A.【点拨】本题考查平行线的性质,需结合图形,根据平行线的性质推出相关角的关系从而进行求解.【变式2】(2019下·上海金山·七年级统考期中)已知直线a∥b∥c,a与b的距离是5cm,b与c的距离是3cm,则a与c的距离是.【答案】8cm或2cm【分析】直线c的位置不确定,可分情况讨论.(1)直线c在直线b的上方,直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,直线a和直线c之间的距离为5cm-3cm=2cm.解:(1)直线c在直线b1:直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,如图2:直线a和直线c之间的距离为5cm-3cm=2cm;所以a与c的距离是8cm或2cm,故答案为8cm或2cm.【点拨】此题考查两线间的距离,本题需注意直线c的位置不确定,需分情况讨论.。
《平行线的性质》相交线与平行线PPT免费课件(第2课时)

课堂检测 拓广探索题
如图,AB∥CD,猜想∠A、∠P 、∠PCD的数
量关系,并说明理由.
解法一:作∠PCE =∠APC,交AB于E.
A
∴ AP∥CE ∴ ∠AEC=∠A,∠P=∠PCE.
∴ ∠A+∠P=∠PCE+∠AEC,
C
∵AB∥CD ∴ ∠ECD=∠AEC,
∴∠A+∠P =∠PCE+∠ECD=∠PCD.
A
B
A
B
A E1
B
E
E1
E2
E2
E3
C
D
C
D
C
D
当有一个拐点时: ∠A+∠E+∠C= 360°
当有两个拐点时: ∠A+∠ E1 + ∠ E2 +∠C = 540° 当有三个拐点时: ∠A+∠ E1 + ∠ E2 +∠ E3 +∠C = 720°
探究新知 若有n个拐点,你能找到规律吗?
A
B
E1
E2 …
【思考】在填写依据时要注意什么问题?
巩固练习
如图,AB∥EF,∠ECD=∠E,则∠A=∠ECD.
理由如下:
B
A
∵∠ECD=∠E, ∴CD∥EF( 内错角相等,两直线平行 又AB∥EF,
D
C
)E
F
∴CD∥AB(平行于同一直线的两条直线互相__平__行_ ).
∴∠A=∠ECD( 两直线平行,同位角相等 __ ).
= ∠ E1 +∠ E2
探究新知
若左边有n个角,右边有m个角,你能找到规律吗?
A
F1 F2 Fn-1
B E1
人教版七年级下数学第五章-相交线与平行线-知识点+考点+典型例题

【知识重点】1.两直线订交2.邻补角:有一条公共边,另一条边互为反向延伸线的两个角互为邻补角。
3.对顶角( 1)定义:有一个公共极点,且一个角的两边分别是另一个角的两边的反向延伸线,这样的两个角互为对顶角( 或两条直线订交形成的四个角中,不相邻的两个角叫对顶角)。
( 2)对顶角的性质:对顶角相等。
4.垂直定义:当两条直线订交所形成的四个角中,有一个角是90°那么这两条线相互垂直。
5.垂线性质:①过一点有且只有一条直线与已知直线垂直;②垂线段最短。
6.平行线的定义:在同一平面内,不订交的两条直线叫平行线,“平行”用符号“∥”表示,如直线a,b 是平行线,可记作“a∥ b”7.平行公义及推论(1)平行公义:过已知直线外一点有且只有一条直线与已知直线平行。
(2)推论:假如两条直线都与第三条直线平行,那么这两条直线也相互平行。
注:(1)平行公义中的“有且只有”包括两层意思:一是存在性;二是独一性。
(2)平行拥有传达性,即假如a∥ b,b∥ c,则 a∥ c。
8.两条直线的地点关系:在同一平面内,两条直线的地点关系有订交和平行。
9.平行线的性质:(1)两直线平行,同位角相等(在同一平面内)(2)两直线平行,内错角相等(在同一平面内)(3)两直线平行,同旁内角互补(在同一平面内)10.平行线的判断(1)同位角相等,两直线平行;(在同一平面内)( 2)内错角相等,两直线平行;(在同一平面内)(3)同旁内角互补,两直线平行;(在同一平面内)( 4)假如两条直线都和第三条直线平行,那么这两条直线也相互平行;增补:(5)平行的定义;(在同一平面内)( 6)在同一平面内,垂直于同向来线的两直线平行。
......11.平移的定义及特点定义:将一个图形向某个方向平行挪动,叫做图形的平移。
特点:①平移前后的两个图形形状、大小完整同样;②平移前与平移后两个图形的对应点连线平行且相等。
【典型例题】考点一:对有关观点的理解对顶角的性质,垂直的定义,垂线的性质,点到直线的距离,垂线性质与平行公义的差别等例 1:判断以下说法的正误。
北师大版七年级数学下册第二章相交线与平行线暑假培训讲义集体备课教案:平行线、平行线的构造(含答案)

四川省渠县崇德实验学校北师大版七年级数学下册第二章相交线与平行线暑假培训讲义集体备课教案(授课内容:平行线、平行线的构造)知识梳理 一、平行线1.平行线:在同一平面内,永不相交的两条直线称为平行线.用“//”表示. 2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 【例】如图1,过直线a 外一点A 作b//a ,c//a ,则b 与c 重合.3.平行公理推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 简记为:平行于同一条直线的两条直线平行. 【例】如图2,若b//a ,c//a ,则b//c .图1 图2 图34.平行线的性质(1)两直线平行,同位角相等.如图3,若a//b ,则Ð1=Ð2. (2)两直线平行,内错角相等.如图3,若a//b ,则Ð2=Ð3. (3)两直线平行,同旁内角互补.如图3,若a//b ,则Ð3+Ð4=180°. 5.平行线的判定(1)同位角相等,两直线平行.如图3,若Ð1=Ð2,则a//b . (2)内错角相等,两直线平行.如图3,若Ð2=Ð3,则a//b . (3)同旁内角互补,两直线平行.如图3,若Ð3+Ð4=180°,则a//b . 二、平行的构造1.如图4,若a//b ,则Ð1=Ð2+Ð3 2.如图5,若a//b ,则Ð1+Ð2+Ð3=360°(c )b aAcba b a4321a b` 213`a b213图4 图5例题讲解 一、平行线下列说法中:下列说法中:①如果两条直线都和第三条直线平行,那么这两条直线也互相平行;①如果两条直线都和第三条直线平行,那么这两条直线也互相平行; ②过直线外一点,有且只有一条直线和这条直线相交;②过直线外一点,有且只有一条直线和这条直线相交; ③如果同一平面内的两条直线不相交,那么它们互相平行;③如果同一平面内的两条直线不相交,那么它们互相平行; ④过直线外一点,有且只有一条直线与已知直线平行.④过直线外一点,有且只有一条直线与已知直线平行. 正确的是__________.【解析】①③④.【提示】这道题主要考查平行线的概念和平行公理.(1)如图2-1,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若125Ð=°,则2Ð的度数是(的度数是( ) A .155° B .135° C .125° D .115°(2)如图2-2,已知AB//CD ,EF 分别交AB 、CD 于M 、N ,EMB Ð=50°,MG 平分BM BMF F Ð,交CD 于G ,MGN Ð的度数为__________.FE AMBC N G D12图2-1 图2-2(3)证明:三角形三个内角的和等于180°.【解析】(1)D ;(2)65°;(3)证法1:如右图,过△ABC 的顶点A 作直线l//BC . 则B Ð1=Ð,C Ð2=Ð(两直线平行,内错角相等). 又因为BAC Ð1+Ð+Ð2=180°.(平角的定义) 所以B BAC C Ð+Ð+Ð=180°(等量代换). 即三角形三个内角的和等于180°. 证法2:如右图,延长BC ,过C 作CE//AB , 则A Ð1=Ð(两直线平行,内错角相等),B Ð2=Ð(两直线平行,同位角相等).又∵BCA Ð+Ð1+Ð2=180°, ∴BCA A B Ð+Ð+Ð=180°, 即三角形三个内角的和等于180°.【提示】这道题主要考查平行线的性质,(3)题证明方法老师可以自行补充,这个结论和平行公理是等价的.平行公理是等价的.另外,另外,这种证明题需要学生先转化成常规的已知和求证,这种证明题需要学生先转化成常规的已知和求证,然后然后再证明,重点强调格式.(1)根据图在()根据图在( )内填注理由:)内填注理由: ①∵B CEF Ð=Ð(已知),(已知),∴AB//CD ( );); ②∵B BED Ð=Ð(已知),(已知),∴AB//CD ( );); ③∵B CEB Ð+Ð=180°(已知),(已知),l21CB A 21DCEBAA CDBFE∴AB//CD ( ).).(2)已知:如图所示,ABC ADC Ð=Ð,BF 和DE 分别平分ABC Ð和ADC Ð,AED EDC Ð=Ð.求证:ED//BF .证明:∵BF 和DE 分别平分ABC Ð和ADC Ð(已知)(已知)∴EDC Ð=__________ADC Ð,FBA Ð=__________ABC Ð( ), 又∵ADC ABC Ð=Ð(已知),(已知), ∴Ð__________FBA =Ð(等量代换).(等量代换). 又∵AED EDC Ð=Ð(已知),(已知),∴Ð__________=Ð__________(等量代换),(等量代换), ∴ED//BF ( ).).【解析】(1)①同位角相等,两直线平行;②内错角相等,两直线平行; ③同旁内角互补,两直线平行. (2)12;12;角平分线定义;EDC ;AED ;FBA ;同位角相等,两直线平行. 【提示】这道题主要考查平行的判定,这道题主要考查平行的判定,也通过这道题规范孩子们的书写过程,也通过这道题规范孩子们的书写过程,也通过这道题规范孩子们的书写过程,这种题型也是这种题型也是各学校的必考题型.如图,已知EF BC ^,C Ð1=Ð,Ð2+Ð3=180°.证明:AD BC ^.【解析】C Ð1=ÐQ ,(已知)\GD//AC ,(同位角相等,两直线平行) \CAD Ð=Ð2.(两直线平行,内错角相等)A CD BF EABCDEFG123又Ð2+Ð3=180°Q ,(已知)\CAD Ð3+=Ð180°.(等量代换)\AD//EF ,(同旁内角互补,两直线平行) \ADC EFC Ð=Ð.(两直线平行,同位角相等)EF BC ^Q ,(已知) ADC \Ð=90°,\AD BC ^.【提示】平行的性质和判定结合,时间可以留长点.请你分析下面的题目,从中总结规律,填写在空格上,并选择一道题目具体书写证明. (1)如图5-1,已知:AB//CD ,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AME Ð,CNE Ð.求证:MG//NH .从本题我能得到的结论是:_____________.(2)如图5-2,已知:AB//CD ,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分BMF Ð,CNE Ð.求证:MG//NH .从本题我能得到的结论是:_____________.(3)如图5-3,已知:AB//CD ,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AMF Ð,CNE Ð,相交于点O .求证:MG NH ^.从本题我能得到的结论是:_____________________.图5-1 图5-2 图5-3【解析】(1)两直线平行,同位角的角平分线平行.A CG EB M H NDFOACGEB MHNDF A CG EBMHNDF(2)证明:∵AB//CD ,∴BMF CNE Ð=Ð,又∵MG ,NH 分别平分BMF Ð,CNE Ð,∴GMF BMFCNE HNM 11Ð=Ð=Ð=Ð22,∴MG//NH , 从本题我能得到的结论是:两直线平行,内错角的角平分线平行. (3)证明:∵AB//CD ,∴AMF CNE Ð+Ð=180°,又∵MG ,NH 分别平分AMF Ð,CNE Ð, ∴GMF HNE AMF CNE 11Ð+Ð=Ð+Ð=90°22,∴MON GMF HNE Ð=180°-Ð-Ð=90°,∴MG NH ^.从本题我能得到的结论是:两直线平行,同旁内角的角平分线垂直.【提示】平行线的性质和判定相结合,练习平行线倒角.二、平行线的构造(1)如图6-1,已知直线a//b ,Ð1=40°,Ð2=60°,则Ð3等于_________.(2)如图6-2,l 1//l 2,Ð1=120°,=Ð2100°,则Ð3=_________.(3)如图6-3,AB//CD ,ABE Ð=120°,ECD Ð=25°,则E Ð=_________.图6-1 图6-2 图6-3【解析】(1)100°;(2)40°;(3)85°.321b aED CBAl 1l 2321【提示】练习基础的平行线倒角模型:铅笔模型和猪蹄模型.(1)如图7-1,AB//CD ,BAFEAF 1Ð=Ð3,FCD ECF 1Ð=Ð3,AEC Ð=128°,则AFC Ð的度数为________.(2)如图7-2,已知:AB//CD ,ABP Ð和CDP Ð的平分线相交于点E ,ABE Ð和CDE Ð的平分线相交于点F ,BFD Ð=54°,则BPD Ð=________,BED Ð=________.图7-1 图7-2【解析】(1)58°;(2)144°;108°. 【提示】铅笔模型和猪蹄模型综合.(1)如图8-1,AB//CD ,A Ð=32°,C Ð=70°,则F Ð=________.(2)如图8-2,AB//CD ,E Ð=37°,C Ð=20°,则EAB Ð的度数为________.图8-1 图8-2【解析】(1)38°;(2)57°. 【提示】铅笔模型和猪蹄模型的变形.EF A BPCDFD CBEAED CBA如图,直线AC//BD ,连结AB ,直线AC 、BD 及线段AB 把平面分成①、②、③、④四个部分,规定线上各点不属于任何部分,规定线上各点不属于任何部分,当动点当动点P 落在某个部分时,落在某个部分时,连结连结P A 、PB ,构成PAC Ð,APB Ð,PBD Ð三个角。
人教版数学七年级下册《相交线与平行线》知识点

人教版数学七年级下册《相交线与平行线》知识点第五章相交线与平行线知识结构图:相交线:邻补角对顶角对顶角相等垂线:垂直垂线垂足垂线特点点到直线的距离同位角、内错角、同旁内角:同位角内错角同旁内角平行线:平行平行公理平行公理推论平移一、相交线:当两条直线相交时,会形成4个角。
1.邻补角:两个角共享一条边,其另一条边是彼此的反向延长线。
这种关系下的两个角被称为邻补角,例如∠1 和∠2.2.对顶角:两个角共享一个顶点,且一个角的两条边分别是另一个角的两条边的反向延长线。
这种关系下的两个角被称为对顶角,例如∠1 和∠3.3.对顶角相等。
二、垂线:1.垂直:当两条直线相交成直角时,这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,其中一条直线被称为另一条直线的垂线。
3.垂足:两条垂线的交点被称为垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度被称为点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角:当两条直线被第三条直线截断时,会形成8个角。
1.同位角:在两条直线的上方,且在直线EF的同侧,具有这种位置关系的两个角被称为同位角,例如∠1 和∠5.2.内错角:在两条直线之间,且在直线EF的两侧,具有这种位置关系的两个角被称为内错角,例如∠3 和∠5.3.同旁内角:在两条直线之间,且在直线EF的同侧,具有这种位置关系的两个角被称为同旁内角,例如∠3 和∠6.四、平行线:1.平行:当两条直线不相交时,它们互相平行。
这两条直线被称为平行线,例如 a∥b(在同一平面内,不相交的两条直线叫做平行线)。
2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:①平行于同一直线的两条直线互相平行。
②在同一平面内,垂直于同一直线的两条直线互相平行。
平移。
注:删除了一些明显格式错误的段落,进行了小幅度改写,以提高文章的可读性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章平面图形的认识(二)
一、平行线
1、同位角、内错角、同旁内角的定义
两条线(a,b)被第三条(c)直线所截,在截线的同旁,被截两直
线的同一方,把这种位置关系的角称为同位角(corresponding angles)
如图:∠1与∠8,∠2与∠7,∠3与∠6,∠4与∠5均为同位角。
两条线(a,b)被第三条(c)直线所截,两个角分别在截线的两侧,
且在两条被截直线之间,具有这样位置关系的一对角叫做内错角。
如图:
∠1与∠6,∠2与∠5均为同位角。
两条线(a,b)被第三条(c)直线所截,两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角(interior angles of thesame side)。
如图:∠1与∠5,∠2与∠6均为同位角。
2、平行线的性质
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
3、平行线的判定
(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
(4)平行于同一直线的两直线平行。
(5)垂直于同一直线的两直线平行。
ZU 型辅助线的添加
题型一、“U ”型中辅助线 请安题号把图重新编号 已知:如图,AB ∥CD ,求证:∠BED=360°-(∠B+∠D )。
证明:过点E 作EF ∥AB ,则∠B+∠1=180°( )。
∵AB ∥CD (已知), 又∵EF ∥AB (已作),
∴EF ∥CD ( )。
∴∠D+∠2=180°( )。
∴∠B+∠1+∠D+∠2=180°+180°( )。
又∵∠BED=∠1+∠2,
∴∠B+∠D+∠BED=360°( )。
∴∠BED==360°-(∠B+∠D )( )。
变式.已知:如图,AB ∥CD,求∠BAE +∠AEF +∠EFC +∠FCD 的度数.
A
B
C
E
F
第3题
题型二、“Z”型中辅助线
如图所示,AB∥ED,∠B=48°,∠D=42°, 证明:BC⊥CD。
(选择一种辅助线)变式1 已知:如图9,AB∥CD,∠ABF=∠DCE。
求证:∠BFE=∠FEC。
变式2已知:如图,AB∥CD,求证:∠BED=∠D-∠B。
“平行线间的折线问题”题型小结
1.原题的难点在于平行线间没有截线或截线不明显
2.添加辅助线的目的是构造截线或构造新的平行线
3.处理平行线间折线的问题,过所有折点作平行线是一种通法
4. 加截线(连结两点、延长线段相交)构造三角形,应用三角形内角和定理,也是一种“转化”的数学思想
1:如图,AB//CD//EF ,那么=∠+∠+∠CEF ACE BAC (A )︒180 (B )︒270 (C )︒360 (D )︒540
E F
2:如图,AB//CD ,那么AEC C A ∠∠∠与、有什么关系?
D
E
3.已知:AB//CD ,AEC C A ∠∠∠与、又有什么样的关系呢?
D
4. 再次改变点E 的位置试说当AB//CD 时,AEC C A ∠∠∠与、有什么关
E
5.已知:如图,AB//CD ,︒=∠120A ,︒=∠75AED 。
求D ∠
C
6、已知:如图(1),ACD EBA ∠=∠3,CD EB //,︒=∠28ACD ,求A ∠2
1
C
(1)
7,已知:图中EB//CD ,︒=∠1501,︒=∠1102,求BAC ∠的度数
E
A
B
8、已知:图中AB//ED ,21∠=∠,43∠=∠,BF 、DF 交于点F ,︒=∠44ABC , ︒=∠56CDE 。
求F ∠的度数
E
D
1、如果将题变为如下图:
AB//CD
B
E
D
此时A ∠、AEF ∠、EFC ∠和C ∠的关系又如何?你能找出其中的规律吗?
2、将题变为如下图:AB//CD
A B
E
F
D
C
此时A
∠、AEF
∠和D
∠的关系又如何?你能找出其中的规律吗?
∠、EFD
1、完成下列推理说明:
如图,已知AB∥DE,且有∠1=∠2,∠3=∠4,
∵AB∥DE(已知)
∴∠1=(__________________________)
∵∠1=∠2,∠3=∠4(已知)
∴∠2=(等量代换)
∴BC∥EF(___________________________)
2.如图,已知∠1+∠2=180°∠3=∠B,则∠EDG与∠DGB相等吗?下面是王冠同学的部分推导过程,请你帮他在括号内填上推导依据或内容。
解:∵∠1+∠2=180°(已知)
∠1+∠DFE =180°
∴∠2=
∴EF∥AB
()
∴∠3=
∵∠3=∠B(已知)
∴∠B=∠ADE ( )
∴DE∥BC()
∴∠EDG=∠DGB ( )
3、如图,已知1∠=∠B ,CD 是△ABC 的角平分线,求证:425∠=∠.请在下面
横线上填出推理的依据:
证明:
∵ 1∠=∠B ,(已知)
∴ DE ∥BC . ( ) ∴ 32∠=∠. ( ) ∵ CD 是△ABC 的角平分线,( ) ∴ 43∠=∠. ( ) ∴ 24∠=∠. ( ) ∵ 425∠+∠=∠,( ) ∴ 425∠=∠. ( )。