完整相交线与平行线复习提高经典讲义.docx
相交线与平行线期末复习课课件(精细版)

进阶练习题
详细描述
这些题目难度适中,需要学生具备一 定的推理和证明能力。通过这些题目 ,学生可以锻炼自己的思维能力和解 决问题的能力。
详细描述
这些题目适合用于课堂上的深入练习 或课后作业,帮助学生加深对相交线 与平行线性质和判定方法的理解,提 高他们的解题能力。
综合练习题
总结词
涉及多个知识点,难度较大
感谢观看
01
02
03
建筑结构
相交线与平行线在建筑设 计中起着至关重要的作用 ,如梁、柱、墙等结构的 布局和连接。
空间规划
利用平行线和相交线的原 理,合理规划室内空间, 实现功能分区和视觉美感 。
建筑美学
平行线和相交线的组合可 以创造出独特的建筑美学 效果,如对称、平衡和节 奏感。
交通规划中的应用
道路设计
道路交叉口、高速公路互 通等交通设施的设计中, 相交线和平行线的原理被 广泛应用。
计算角度时出现误差
在计算与相交线和平行线相关的角度时,学生容 易出现计算错误,导致角度关系判断不准确。
易混概念解析
混淆对顶角和邻补角的概念
对顶角和邻补角是相交线和平行线中常见的两种角的关系 ,学生容易将它们混淆,影响对角度关系的判断。
误认为同位角一定相等
在平行线的判定和性质中,同位角相等是平行线的一个重 要判定条件,但学生容易误认为所有同位角都相等,导致 判断错误。
距离判定
如果两条线之间的距离小于某一特定值,则这两条线一定相交。
平行线的判定方法
同位角相等判定
01
如果同位角相等,则两条线平行。
内错角相等判定
02
如果内错角相等,则两条线平行。
垂直于同一直线的两直线平行
相交线与平行线(复习)精品课件

3
E 1
7
5
D
42
B
A 8F6
两直线被第三直线所截,构成的八个角中 同位角有 __对,内错角有__对,同旁 内角有__对.
∥平行∥
1.在平面内,两条直线除相交外,还有什么位置关系?
2.什么叫平行线?怎样表示?怎样读?
3.怎样画平行线?
AC
4.平行公理及其推论的内容是什么?
5.平行线有哪些性质? 6.平行线的判定方法有哪些?
1
2
(两直线平行,内错角相等) B
C
E
因为∠1=∠2(已知)
所以 ∠1=∠ACD(等量代换)
所以AB ∥ CD
(内错角相等,两直线平行)
探究创新:
已知:如图AB∥CD,试探究 ∠BED与∠B,∠D的关系
A
B
A
B
1
1
E
E
2F
2
F
C
D
C
D
本章几个重要的结论:
1、n条直线相交于一点,有 n(n-1) 组对顶角。
1
O
3
• ∠AOC的对顶角是___∠__B_O_D
C
4
B
• ∠COF的对顶角是___∠__D_O__E
A
F
• ∠AOC的邻补角是___∠__C_OB, ∠AOD
• ∠EOD的邻补角是___∠__D_O_F, ∠COE C
O
D
• 3.对顶角、邻补角的性质:
E
B
对顶角相等 邻补角互补
垂直
1.什么叫垂直?图上怎么标记?怎么书写? 怎样读?
基础练习:
5.如图, 若∠3=∠4,则 AD∥ ;BAC 1
B
相交线与平行线复习课教案和讲义模版

相交线与平行线复习课最新教案和讲义模版一、教学目标1. 复习巩固相交线与平行线的基本概念及性质。
2. 提高学生运用相交线与平行线解决实际问题的能力。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学内容1. 相交线与平行线的定义及性质。
2. 平行线的判定与证明。
3. 相交线的判定与证明。
4. 平行线与相交线在实际问题中的应用。
5. 巩固练习及拓展思考。
三、教学重点与难点1. 教学重点:相交线与平行线的基本概念、性质及应用。
2. 教学难点:平行线的判定与证明,相交线的判定与证明。
四、教学方法1. 采用问题驱动法,引导学生主动探究相交线与平行线的性质。
2. 利用多媒体辅助教学,直观展示相交线与平行线的关系。
3. 结合实例,让学生体会相交线与平行线在实际问题中的应用。
4. 采用小组讨论与合作交流的方式,提高学生的参与度。
五、教学过程1. 导入新课:回顾上节课的内容,引导学生复习相交线与平行线的基本概念。
2. 知识讲解:讲解相交线与平行线的性质,并通过多媒体展示实例,让学生直观理解。
3. 课堂互动:设置问题,让学生判断直线的位置关系,巩固平行线与相交线的判定方法。
4. 应用拓展:结合实际问题,让学生运用相交线与平行线解决实际问题,培养学生的应用能力。
5. 课堂练习:布置针对性的练习题,让学生巩固所学知识。
7. 课后作业:布置适量的课后作业,巩固所学知识。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习完成情况评价:检查学生课堂练习和课后作业的完成质量,评估学生对知识的掌握程度。
3. 小组讨论评价:评价学生在小组讨论中的表现,包括合作意识、交流能力等。
七、教学资源1. 多媒体教学课件:制作精美的课件,展示相交线与平行线的图形和实例。
2. 练习题库:准备一定数量的练习题,包括判断题、解答题等,用于巩固所学知识。
3. 教学素材:收集相关的实际问题,用于引导学生运用相交线与平行线解决实际问题。
相交线与平行线复习课教案和讲义模版

相交线与平行线复习课最新教案和讲义模版一、教学目标:1. 复习并巩固学生对相交线与平行线的概念、性质和判定方法。
2. 提高学生解决实际问题的能力,培养学生的空间想象和逻辑思维能力。
3. 培养学生合作学习、积极探究的学习态度。
二、教学内容:1. 相交线与平行线的定义和性质。
2. 相交线与平行线的判定方法。
3. 实际问题中的应用。
三、教学重点与难点:1. 重点:相交线与平行线的概念、性质和判定方法。
2. 难点:相交线与平行线在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究相交线与平行线的性质和判定方法。
2. 利用多媒体辅助教学,展示实例,增强学生的空间想象力。
3. 组织学生进行小组讨论,培养学生的合作学习能力。
4. 结合练习题,巩固所学知识,提高学生的解题能力。
五、教学过程:1. 导入新课:回顾相交线与平行线的定义和性质,引导学生思考相交线与平行线在实际生活中的应用。
2. 知识讲解:讲解相交线与平行线的判定方法,并通过实例进行分析。
3. 课堂练习:布置相关的练习题,让学生独立完成,并及时给予解答和指导。
4. 小组讨论:组织学生进行小组讨论,分享各自的解题方法和心得。
5. 总结提升:总结本节课所学内容,强调相交线与平行线在实际问题中的应用。
6. 布置作业:布置适量的作业,让学生巩固所学知识。
六、教学评价:1. 通过课堂练习和课后作业,评价学生对相交线与平行线的掌握程度。
2. 观察学生在小组讨论中的表现,评价其合作学习和探究能力。
3. 结合学生的课堂表现和作业完成情况,对学生的学习态度和积极性进行评价。
七、教学资源:1. 多媒体教学课件:包括相交线与平行线的图片、实例和动画等。
2. 练习题:包括选择题、填空题和解答题等,覆盖本节课所学内容。
3. 小组讨论材料:提供相关的问题和实例,引导学生进行小组讨论。
八、教学进度安排:1. 第1-2课时:复习相交线与平行线的定义和性质。
2. 第3-4课时:讲解相交线与平行线的判定方法,并进行实例分析。
相交线与平行线复习课(201909)

;北京私人调查 北京私人调查
; ;
与屯骑校尉黄回出城南 为有司所奏 亲信如故 改授散骑常侍 平西将军 黄淑仪生太子诵 崇祖因将部曲据之 二年 及攸之围郢 情之所符 泰始初勤苦十年 免官如案 〕古副车之象也 七年 行府 端可复言未尝看邪 秣陵县华僧秀园中四树连理 有紫真毦 太祖践阼 性流俗 千道连等要击于横 塘 常自排突 足下与向之杀者何异 朕用震恸于厥心 相传为名 帝王之枢柄 父凤 大者近二十馀丈 于是虏游骑数百履行界上 少有宰相之志 二年 妃为亚后之名 率部曲归降 国富民赡 使报随郡太守刘道宗 自今诸王来不随例者 天下有丧 武子孙忧危 在私园苑中乘此非疑 又领太子少傅 嶷 发江陵感疾 迁右仆射 为吴郡太守 日者沈攸之拥长蛇于外 昇明元年 铄迁中军将军 检到郡至迁 领齐郡太守 从来积年 公山 诏曰 善趋势利 太祖谓康曰 竿刺代栋梁 此必欲杀我 嶷下辇辞出 累不得志 七年 豫章王为车骑扬州 自今军中有叛者 {吾闻鱼相忘于江湖 角城涟口 曲全者禄厚 非天下大计 南兖州刺史 除骁骑将军 倍无次绪 后和帝立 以比三司 张吴兴叩汝言《老》 初发江陵 支子花 摄生舛和 涪陵郡蜑民田健所住岩间 且彼土所出 太祖忧虑 明帝数加怒诮 害诸王 在祀与戎 僧虔视之不悦 能制此寇 初 稷下还风 见山侧有紫气如云 为骑射兵戈之象 祖荟 而叨 其位 九年 寒战垂死 罔不由兹 君殊可命 未尝固让 可以仗身自随 太子右率 被太后令 永明二年四月 白牙兰 以歌为务 常侍如故 行雍州府州事 贵登端戎 上歔欷流涕 热小微 郑 昔宣帝中兴汉室 湘州刺史 白日西斜 若能一时攘袂 固兴家之盛美也 致之有由 油幢络车 朝散 部曲数千 皆为不应本传 梦人从天飞下 朝廷虑虏南寇 臣自谓今启非但是自处宜然 建武元年 还吴持服 史臣曰 攸之反善图全 入为侍中 国公列侯礼行所乘 《指例》
相交线与平行线知识点精讲(K12教育文档)

(完整版)相交线与平行线知识点精讲(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)相交线与平行线知识点精讲(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)相交线与平行线知识点精讲(word版可编辑修改)的全部内容。
相交线与平行线知识点精讲1.相交线同一平面中,两条直线的位置有两种情况:相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角:∠1,∠2,∠3,∠4;邻补角:其中∠1和∠2有一条公共边,且他们的另一边互为反向延长线。
像∠1和∠2这样的角我们称他们互为邻补角;对顶角:∠1和∠3有一个公共的顶点O,并且∠1的两边分别是∠3两边的反向延长线,具有这种位置关系的两个角,互为对顶角;∠1和∠2互补,∠2和∠3互补,因为同角的补角相等,所以∠1=∠3。
所以,对顶角相等例题:1.如图,3∠1=2∠3,求∠1,∠2,∠3,∠4的度数。
2.如图,直线AB、CD、EF相交于O,且AB CDFOB__________。
2_______,∠=127,则∠=⊥,∠=︒CEA 2 O B1FD垂直:垂直是相交的一种特殊情况两条直线相互垂直,其中一条叫做另一条的垂线,它们的交点叫做垂足。
如图所示,图中AB⊥CD,垂足为O。
垂直的两条直线共形成四个直角,每个直角都是90︒。
例题:如图,AB⊥CD,垂足为O,EF经过点O,∠1=26︒,求∠EOD,∠2,∠3的度数。
垂线相关的基本性质:(1)经过一点有且只有一条直线垂直于已知直线;(2)连接直线外一点与直线上各点的所有线段中,垂线段最短;(3)从直线外一点到直线的垂线段的长度,叫做点到直线的距离。
平行线与相交线(讲义)

七年级寒假讲义38页第一讲相交线第二讲三线八角第三讲平行线及其判定第四讲平行线性质第五讲平行线判定与性质综合第六讲习题课(格式规范训练)第一讲相交线【相交线、对顶角、邻补角】4.三条直线AB,CD,EF相交于点O,如图所示,∠AOD的对顶角是_________ ,∠FOB的对顶角是_________ ,∠EOB的邻补角是_________ .5.如图,图中有_________ 对对顶角,_________ 对邻补角.6.如图所示,已知三条直线AB、CD、EF两两相交于点P、Q、R,则图中邻补角共有_________ 对,对顶角共有_________ 对(平角除外).7.下列说法:①对顶角的角平分线在同一条直线上;②相等的角是对顶角;③一个角的邻补角只有一个;④补角即为邻补角.其中正确的有_________ .9.如图,三条直线交于同一点,∠1:∠2:∠3=2:3:1,则∠4=_________ .10.如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()【垂线、垂线段、点到直线距离】11.在同一平面内,过一点有_________ 条直线与已知直线垂直.12.如图,AB⊥BC,则AB_________ AC(填“>”或“=”或“<”),其理由是_________ .13.已知如图,CD⊥AD于D,BE⊥AC于E.(1)点B到AC的距离是_________ ;(2)线段AD的长度表示_________ 的距离或_________ 的距离.14.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,则点A到BC的距离为线段_________ 的长度;点A到CD的距离为线段_________ 的长度;点B到AC的距离为线段_________ 的长度;点B到CD的距离为线段_________ 的长度.15.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()16.分别过点P作线段MN的垂线.17.如图,P是直线l外一点,A、B、C是直线l上的三点,且PB与l垂直,在从点P到点A、从点P到直线l的多条道路中,点P到点A的最短路线是_________ ,点P到直线l的最短路线是_________ (只填写序号即可).18.如图,要从小河引水到村庄A,请设计并作出一最佳路线,理由是_________ .19.某中学创建绿色和谐校园活动中要在一块三角形花园里种植两种不同的花草,同时拟从点A修建一条花间小径到边B C.若要使修建小路所使用的材料最少,请在图中画出小路AD,你这样画的理由是_________ .20.直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB的长度:AB_________ 7cm.(填>或者<或者=或者≤或者≥).21.如图,AC⊥BC于点C,CD⊥AB于点D,AC=5cm,BC=12cm,AB=13cm,则点C到AB的距离是___ cm.【拓展练习】22.平面内有a、b、c三条直线,则它们的交点个数可能是_________ 个.23.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.24.(1)三条直线相交,最少有_________ 个交点,最多有_________ 个交点,分别画出图形,并数出图中对顶角和邻补角的个数(2)四条直线相交,最少有_________ 个交点,最多有_________ 个交点,分别画出图形,并数出图中对顶角和邻补角的个数(3)依此类推,n条直线相交,最少有_________ 个交点,最多有_________ 个交点,对顶角有_________ 对,邻补角有_________ 对.25.(1)在图1中以P为顶点画∠P,使∠P的两边分别和∠1的两边垂直.(2)量一量∠P和∠1的度数,它们之间的数量关系是_________ .(3)同样在图2和图3中以P为顶点作∠P,使∠P的两边分别和∠1的两边垂直,分别写出图2和图3中∠P和∠1的之间数量关系.(不要求写出理由)图2:_________ 图3:_________(4)由上述三种情形可以得到一个结论:如果一个角的两边分别和另一个角的两边垂直,那么这两个角_________ .(不要求写出理由)第二讲三线八角【同位角、同旁内角、内错角】1.看图填空:(1)∠1和∠4是____________角;(2)∠1和∠3是____________角;(3)∠2和∠D是____________角;(4)∠3和∠D是____________角;(5)∠4和∠D是____________角;(6)∠4和∠B是____________角.2.看图填空:(1)若ED,BC被AB所截,则∠1与____________是同位角.(2)若ED,BC被AF所截,则∠3与____________是内错角.(3)∠1与∠3是AB和AF被____________所截构成的____________角.(4)∠2与∠4是____________和____________被BC所截构成的____________角.3.如图,下列结论正确的有__________________.①∠ABC与∠C是同位角;②∠C与∠ADC是同旁内角;③∠BDC与∠DBC是内错角;④∠ABD的内错角是∠BDC;⑤∠A与∠ABD是由直线AD,BD被直线AB所截得到的同旁内角.4.在图中,∠1与∠2是同位角的有__________________.)6.如图,与∠B是同旁内角的角有__________________.7.如图所示,与∠C构成同旁内角的有__________________.8.如图,在∠1,∠2,∠3,∠4中,是内错角的是()9.如图,在所标识的角中,是内错角的是()10.如图,CM、ON被AO所截,那么()11.如图,下列说法不正确的是()12.如图,下列说法中,错误的是()13.如图,下列判断错误的是()14.如图,用数字标出的八个角中,同位角、内错角、同旁内角分别有哪些?请把它们一一写出来.15.观察下图,图中有多少同位角、内错角、同旁内角?请把它们列出来.16.如图所示,同位角一共有_________对,内错角一共有_________对,同旁内角一共有有_________对.17.如图,有下列说法:①若DE∥AB,则∠DEF+∠EFB=180°;②能与∠DEF构成内错角的角的个数有2个;③能与∠BFE构成同位角的角的个数有2个;④能与∠C构成同旁内角的角的个数有4个.其中结论正确的是()【拓展练习】18.图中,与∠1成同位角的个数是__________对19.图中所标出的角中,共有同位角__________对20.如图所示,同位角共有__________对21.如图,其中同旁内角有__________对22.如图所示,直线AB∥CD,两相交直线EF、GH与AB、CD都相交,图中的同旁内角共有__________对23.如图所示,图中能与∠C构成同旁内角的有__________个.24.如图所示,与∠A是同旁内角的角共有_________个.25.如图所示,图中共有内错角__________对26.如图,若直线MN与△ABC的边AB、AC分别交于E、F,则图中的内错角有__________对27.如图一共有__________对内错角.第三讲平行线及其判定【平行线定义、平行线公理与推论】4.如图:PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是:_________.6.如图,直线AB,CD表示一条公路的两边,且AB∥CD,点E为直线AB,CD外一点,现过点E作边CD的平行线,只需过点E作_________的平行线即可,其理由是_________.8.下列说法中正确的个数为()①不相交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线互相平行9.下列结论正确的个数是()(1)过一点有且只有一条直线与已知直线垂直;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内,不相交的两条射线是平行线;【平行线判定】11.如图,直线a,b被直线c所截,若要a∥b,需增加条件_________(填一个即可).12.如图,下列条件中,不能判定直线a平行于直线b的是()13.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()14.如图,已知直线EF⊥MN垂足为F,且∠1=140°,则当∠2等于()时,AB∥C D.16.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()17.几何推理,看图填空:(1)∵∠3=∠4(已知)∴_________∥_________(___________________________)(2)∵∠DBE=∠CAB(已知)∴_________∥_________(___________________________)(3)∵∠ADF+_________=180°(已知)∴AD∥BF(__________________________)18.如图,∠B=55°,∠EAC=110°,AD平分∠EAC,AD与BC平行吗?请你完成下列填空,把解答过程补充完整.解:AD∥BC,理由如下:∵AD平分∠EAC,∠EAC=110°(已知)∴∠EAD=∠EAC=_________ °又∠B=55°(已知)∴∠B=∠_________∴AD∥BC(___________________________)19.如图,已知CD⊥DA,DA⊥AB,∠1=∠2.证明:DF∥AE.请你完成下列填空,把解答过程补充完整.证明:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°.(___________________________)∴∠CDA=∠DA B.(等量代换)又∠1=∠2,∴∠CDA﹣∠1=∠DAB﹣_________.(等式的性质)即∠3=_________.∴DF∥AE.(___________________________).20.如图,在△ABC中,已知∠1=∠2,∠1=∠B,求证:AB∥EF,DE∥B C.21.如图所示,已知直线a、b、c、d、e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?22.如图所示,已知直线AB,CD被直线EF所截,如果∠BMN=∠DNF,∠1=∠2,那么MQ∥NP.为什么?23.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥C D.24.如图所示,FG平分∠CFN,∠1=∠3=60°,求证:AB∥C D.25.已知,如图∠1和∠D互余,CF⊥DF,问AB与CD平行吗?为什么?【拓展练习】26.如图,已知∠ABE+∠E+∠CDE=360°,证明:AB∥C D.27.如图,已知∠BED=∠B+∠D,求证:AB∥C D.28.如图,∠BEC=95°,∠C=45°,∠ABE=130°,则AB与CD平行吗?请说明理由.29.如图,若∠ABC+∠CDE﹣∠C=180°,试证明:AB∥DE.30.已知:E是AB、CD外一点,∠D=∠B+∠E,求证:AB∥C D.第四讲平行线性质第五讲平行线判定与性质综合第六讲习题课(格式规范训练)。
(优质讲义)相交线与平行线单元复习

相交线与平行线的单元复习学生/课程年级初一学科数学授课教师日期时段核心内容平行线的性质和判定课型教学目标1.通过对知识的梳理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形。
2. 使学生认识平面内两条直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和反映平行的性质。
重、难点重点:复习平面内两条直线的相交和平行的位置关系,以及相交平行的综合应用。
难点:垂直、平行的性质和判定的综合应用。
知识导图导学一:相交线知识点讲解 1例 1. [单选题] 如图,直线AB,CD相交于点O,EO⊥CD于点O,∠AOE=36°,则∠BOD=()A.36°B.44°C.50°D.54°例 2. [单选题] 如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的数学根据是()A.两点之间,线段最短B.两条平行线之间的距离处处相等C.经过直线上或直线外一点,有且只有一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短我爱展示1.[单选题] 如图,直线AB、CD相交于点O,OD平分∠BOF,OE⊥CD于O,若∠EOF=α,下列说法①∠AOC=α-90°;②∠EOB=180°-α;③∠AOF=360°-2α,其中正确的是()A.①②B.①③C.②③D.①②③2.[单选题] 下列图形中,线段AD的长表示点A到直线BC距离的是()B.C.D.A.导学二:平行线的性质与判定知识点讲解 1:平行线的性质例 1. [单选题] 直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°例 2. [单选题] 如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°例 3. [单选题] 如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的值为()A.∠1+∠2-∠3B.∠1+∠3-∠2C.180°+∠3-∠1-∠2D.∠2+∠3-∠1-180°例 4. 已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.我爱展示1.如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=.2.[单选题] 已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°3.[单选题] 如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K-∠H=27°,则∠K=()A.76°B.78°C.80°D.82°4.已知直线AB∥CD.(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系.知识点讲解 2:平行线的判定例 1. [单选题] 下面说法正确的个数为()(1)过直线外一点有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)两角之和为180°,这两个角一定邻补角;(4)同一平面内不平行的两条直线一定相交.A.1个B.2个C.3个D.4个例 2. [单选题] 如图,下列能判定AB∥EF的条件有()①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.A.1个B.2个C.3个D.4个例 3. 如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.例 4. 如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.我爱展示1.[单选题] 如图,由已知条件推出的结论,正确的是()A.由∠1=∠5,可以推出AD∥CB B.由∠4=∠8,可以推出AD∥BC C.由∠2=∠6,可以推出AD∥BC D.由∠3=∠7,可以推出AB∥DC2.[单选题] 同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥d B.b⊥d C.a⊥d D.b∥c3.已知:如图,AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.解:过P点作PM∥AB交AC于点M.∵AB∥CD,()∴∠BAC+∠ACD=180°.()∵PM∥AB,∴∠1=∠,()且PM∥.()∴∠3=∠.()∵AP平分∠BAC,CP平分∠ACD,()∴∠1= ∠BAC,∠4= ACD.∴∠1+∠4= ∠BAC+∠ACD=90°.∴∠APC=∠2+∠3=∠1+∠4=90°.总结:两直线平行时,同旁内角的角平分线.4.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.知识点讲解 3:综合应用例 1. [单选题] 如图,AB、CD、EF、MN均为直线,∠2=∠3=70°,∠GPC=80°,GH平分∠MGB,则∠1=()A.35°B.40°C.45°D.50°例 2. 已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N(下面是推理过程,请你填空).解:∵∠BAE+∠AED=180°(已知)∴AB∥()∴∠BAE=()又∵∠1=∠2∴∠BAE-∠1=∠AEC-∠2即∠MAE=∴∥NE()∴∠M=∠N().例 3. 已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠4=∠C.我爱展示1. [单选题] 直线a、b、c、d的位置如图,如果∠1=100°,∠2=100°,∠3=125°,那么∠4等于()A.80°B.65°C.60°D.55°导学三:命题与证明知识点讲解 1:例 1. 命题:“如果m是整数,那么它是有理数”,则它的逆命题为:例 2. [单选题] 对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=-3,b=2 C.a=3,b=-1 D.a=-1,b=3我爱展示1.命题“相等的角不一定是对顶角”是命题(从“真”或“假”中选择)2.[单选题] 下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0 D. 两直线平行,同位角相等限时考场模拟:_____ 分钟完成1. [单选题] 如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①③④D.①②③④2.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为3.[单选题] 在直线MN上取一点P,过点P作射线PA,PB,使PA⊥PB,当∠MPA=40°,则∠NPB的度数是()A.50°B.60°C.40°或140°D.50°或130°4.[单选题] 如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α-β,③β-α,④360°-α-β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④5.[单选题] 如图,直线AB与直线CD相交于点O,MO⊥AB,垂足为O,已知∠AOD=136°,则∠COM的度数为()A.36°B.44°C.46°D.54°6.把命题“对顶角相等”改写成“如果…那么…”的形式:7. (1)①如图1,已知AB∥CD,∠ABC=60°,根据,可得∠BCD=°;②如图2,在①的条件下,如果CM平分∠BCD,则∠BCM=°;③如图3,在①、②的条件下,如果CN⊥CM,则∠BCN=°.(2)尝试解决下面问题:已知如图4,AB∥CD,∠B=40°,CN是∠BCE的平分线,CN⊥CM,求∠BCM的度数.8. 将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起.(1)若∠DCE=45°,则∠ACB的度数为;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE之间存在什么数量关系?并说明理由;(4)当∠ACE<90°且点E在直线AC的上方时,这两块三角尺是否存在AD与BC平行的情况?若存在,请直接写出∠ACE的值;若不存在,请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相交线与平行线复习提高一、相交线与平行线章节典型辅助线题目1.缺角补角在图形中虽然具备了“三线”,但“八角”没有完全显露出来,为了使解题思路流畅自然,应利用延长线段的方法,将“八角”补齐。
2.缺线补线如果在图形中“三线”尚不齐全,则首要的任务是添线,通常是做平行线进行添线,添置平行线有一定难度,应结合已知条件,对图形全面进行考查,并辅以必要的练习,才能领会其中要领。
1、如图,若 AB ∥ CD, 则∠ B- ∠ C+∠ E=?A BE2、若∠ O=∠ A+∠ C,AB 和 CD平行吗?说明理由。
C D A BOCD3、如图, FG∥ HI ,∠ GEK=120°,∠ B=30°,∠ C=48°,∠ CDI=30°,∠ A=?KF E GABC4、如图 a∥ b, ∠ 1=105°,∠ 2=140°,则∠ 3=?H D Ia132b5、如图,已知∠B=25 °,∠ BCD=45 °,∠ CDE=30 °,∠ E=10 °。
求证: AB ∥EFA BCDE F6、如图, AB ∥ ED,α =∠ A+ ∠E,β =∠ B+∠ C+ ∠D .证明:β =2αE DAC B7、已知 MN ∥ l,∠ ABC=130 °,∠ 1=40°,求证: AB ⊥ MN AM F NB1l DC8、如图,已知AB ∥CD ,直线 EF 分别交 AB,CD 于 E,F,∠ BEF 的角平分线与∠ DFE 的角平分线相交于点 P,求证∠ P=90°。
A EBPCFD课堂基础热身训练:1、如图 1, AB ∥ CD ,且∠ BAP=60 ° -α,∠ APC=45 ° +α,∠ PCD=30 ° -α,则α =()A 、10°B、15°C、 20°D、 30°A B EA BβEAαBPC DDCC γD图 1图 2图 32、如图 2,AB // CD,且 A 25,C45 ,则 E 的度数是()A. 60B.70C.110D.803、如图 3,已知 AB∥ CD,则角α、β、γ之间的关系为()( A )α +β +γ=180 0( B)α—β +γ =180 0( C)α +β—γ =1800( D)α +β+γ =360 04、如图所示,AB∥ ED,∠ B= 48° , ∠ D= 42° ,证明:BC⊥ CD。
(选择一种辅助线)5、如图,若AB∥ CD,猜想∠ A、∠ E、∠ D 之间的关系,并证明之。
A BECD6、如图, AB∥ CD,∠ BEF= 85°,求∠ ABE+∠ EFC+∠ FCD的度数。
A BEFD C7、如图,∠ ABC+∠ ACB= 110°, BO、CO分别平分∠ ABC和∠ ACB,EF过点 O与 BC平行,求∠ BOC。
AE OFB C8、如图,已知AB ∥CD ,∠ 1=100°,∠ 2=120°,求∠α。
A1BF2E C D9、已知 AB∥ CD,∠ B=65°, CM平分∠ BCE,∠ MCN=90°,求∠ DCN的度数 .A BMNE C D10、 .如图, CD∥ AB ,∠ DCB=70 °,∠ CBF=20 °,∠ EFB=130 °,问直线 EF 与AB 有怎样的位置关系,为什么?CDEFA B11、如图, DB∥ FG∥EC,A 是 FG上的一点,∠ ABD=60°,∠ ACE= 36°, AP平分∠ BAC,求∠ PAG的度数。
DF EABP G C相交线与平行线经典题型1、如图,l1∥l2,∠1=120°,则∠ 2=.(第1题图)2、如图, AB∥ CD,∠ DCE=80°,则∠BEF=3、如图,直线AB∥CD,∠ C=125°,∠ A=45°,那么∠E的大小为A BC D (第 2 题图)(第 3 题图)(第 4 题图)第 5题图4、如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°.则∠C等于5、如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD等于6、如图,∥ ∥,∠=46°,∠=154°,则∠等于AB EF CD ABC CEF BCE(第 6 题图)(第 7 题图)(第 8 题图)(第 9 题图)7、如图, AB∥CD, AC与 BD相交于点 O,∠ A=30°,∠ COD=105°.则∠D的大小是8、如图,直线 l1∥l2,∠1=40°,∠2=75°,则∠3等于9、如图,己知 AB∥CD, BE平分∠ ABC,∠ CDE=150°,则∠C的度数是10、如图,已知∥ ,则图中与∠1 互补的角有个。
AB CD11、如图,CD∥AB,∠ 1=120°,∠ 2=80°,则∠ E 的度数是(第 10 题图)A46BE F154(第 11 题图)(第12题图)(第13题图)12、如图,已知直线a∥ b,∠1=40°,∠2=60°.则∠3等于13、如图,已知AB∥CD,∠ E=28,∠ C=52,则∠ EAB 的度数是14、如图,AB∥EF∥CD,∠ABC= 46,∠CEF=154,则∠BCE等于15、如图所示,AB ∥CD ,∠ E= 37°,∠ C= 20°,则∠ EAB 的度数为16、如图,已知AB∥ CD,∠ A= 60°,∠ C= 25°,则∠ E 等于C D(第 14 题图)(第 15 题图)(第 16 题图)(第17题图)(第18题图)17、如图所示,直线 a ∥b.直线 c 与直线 a ,b分别相交于点 A 、点 B ,AM b ,垂足为点M ,若 1 58 ,则 2 =_________18、如图: CD 平分∠ ACB, DE ∥ AC 且∠ 1=30 °,则∠ 2=度.19、如图, AB ∥DE,试问∠ B、∠ E、∠ BCE 有什么关系.(辅助线已画)(第19题图)能力提高训练1、如图 1,把一个长方形纸片沿EF 折叠后,点D,C 分别落在 D′,C′的位置.若∠ EFB =65°,则∠ AED′的度数为。
2、如图2,直线AB、CD相交于点E,DF∥AB.若AEC100°,则 D 等于。
3、如图3,将三角尺的直角顶点放在直尺的一边上,130°, 2 50°,则3的度数等于。
AE C1DD ′AB3E2BC′F CD F图 1图 24、如图4,已知 A B∥ CD,若∠ A=2 0°,∠ E=35°,则∠ C 等于图 3。
.5、如图5,l1// l2,∠ 1=120 °,∠ 2=100 °,则∠ 3=。
6、如图6,已知 AC∥ ED,∠ C=26°,∠ CBE=37 °,则∠ BED 的度数是。
3l 121l 2图 4图 5图 67、如图 7, AB∥ CD,∠ ABE=66°,∠ D= 54°,则∠ E 的度数为 _______________.8、如图 8, AB//CD, 直线 EF 与 AB 、 CD 分别相交于E、 F 两点, EP 平分∠ AEF, 过点 F 作 FP⊥ EP,垂足为P,若∠ PEF=300,则∠ PFC=__________ 。
9、如图 9,AB∥CD,150°, 2 110°,则3.10、如图 10,已知AE // BD,∠ 1=130o,∠ 2=30o,则∠ C=.A EB A13B300P2C DC F D图 7图 8图 9图 1011、如图, AB∥ CD ,AE 交 CD 于点 C, DE ⊥ AE,垂足为E,∠ A=37o,求∠ D 的度数.EC DA B12、如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠ 2,求∠ 1+∠ 2 的度数。
13、已知 AD ⊥ BC, FG⊥ BC,垂足分别为 D、G,且∠ 1= ∠2,猜想∠ BDE 与∠ C 有怎样的大小关系?试说明理由 .14、图 11, BE∥ AO ,∠ 1=∠ 2, OE⊥ OA 于点 O, EH ⊥ CO 于点 H,那么∠ 5=∠ 6,为什么?B5EA62314C O H图( 11)。