切屑的类型及控制.

合集下载

切削过程

切削过程

机械制造技术切削过程切削过程切削过程是刀具从工件表面上切除多余材料,从切屑形成开始到已加工表面形成为止的完整过程。

一、切屑的形成过程在刀具的作用下,切削层金属经过一个复杂的过程变成切屑。

在这一过程中,切削层的形态发生了变化。

产生这一变化的根本原因是切削层金属在刀具的作用下产生老变形,这就是切削过程中的变形。

伴随切削过程的变形,出现一系列的物理现象,如切削力、切削热、切削温度、刀具磨损、积屑瘤等。

切削过程的变形是研究切削过程的基础。

图1 塑性金属材料的剪切破坏 削过程三个变形区图1所示模型说明了切削过程的变形。

塑性金属材料在刀具的作用下,沿与作用力成45o 的方向产生剪切滑移变形,当变形达到一定极限值时,就会沿着变形方向产生剪切滑移破坏。

若刀具连续运动,虚线以上的材料就会在刀具的作用下与下方材料分离。

金属切削过程与上述过程基本相似。

如图2所示,在刀具的作用下,切削层金属经过复杂的变形后与工件基体材料分离形成了切屑。

这一过程中产生的变形可以划分为三个区域,即三个变形区,它们是位于切削刃前OAM之间的第I变形区、靠近前刀面的第II变形区和位于后刀面附近的第III变形区。

图2 切削过程三个变形区(1) 第一(Ⅰ)变形区切削层金属从开始塑性变形到剪切滑移基本完成的过程区,也就是图3所示OA与OM之间的区域就是第一(Ⅰ)变形区。

图3 金属切削过程的三个变形区金属材料在OA线以左发生弹性变形。

在OA线上,材料的剪应力达到屈服强度τs,开始塑性变形,产生滑移,OA称为始滑移线。

随着刀具的连续移动,原来处于滑移线上的金属不断向刀具靠拢,应力和变形也逐渐增大,达到OM线时,应力和变形达到最大值。

超过OM线,切削层金属将沿前刀面流出,形成切屑,完成切离。

OM线称为终滑移线。

OA线和OM线之间的区域是塑性变形区域。

第一变形区是金属切削变形过程中最大的变形区,在这个区域内,金属将产生大量的切削热,并消耗大部分功率。

此区域较窄,宽度仅0.02~0.2mm。

第三章切削与磨削原理

第三章切削与磨削原理

第三章切削与磨削原理3.1 切屑的形成过程学习目标:本节主要讨论金属材料的切削过程,并对硬脆非金属材料的切削过程进行简单介绍。

学习本节必须研究切屑形成过程的物理本质及其变形规律,熟悉不同切屑类型以及切屑控制方法。

3.1.1 切屑的形成过程切屑的形成工件上切屑层的金属材料,在刀具前刀面的推挤作用下发生了塑性变形,最后沿某一面剪切滑移形成了切屑。

切屑形成的过程切屑形成的过程实质是切削层受到前刀面的挤压后产生的以滑移为主的塑性变形过程。

切屑形成过程动态演示被切金属的受力变形分析由图3-2塑性金属(紧靠刀尖前面的被切金属层及切屑)的切屑根部金相照片可知,刀尖前面的金属晶粒变成为沿某一方向倾斜的纤维状结构,发生了极大的剪切变形,且剪切区内的剪切线与自由表面的交角约为45°(符合塑性力学理论)。

一般这一变形区的宽度仅为0.02~0.2mm。

切削速度愈高,宽度愈小。

因此可以将变形区视为一个剪切平面,称为剪切面,剪切面与切削速度夹角以φ表示,称为剪切角。

如图3-3所示。

金属除在剪切区发生显著变形外,还形成3个变形区,如图3-4所示。

图3-4说明:一般将剪切区称为第一变形区,其位置如图中Ⅰ所示,靠前刀面处称为第二变形区,如图中的Ⅱ。

由图3-2可看出,在已加工表面处也发生了显著的变形,方格已纤维化,这是已加工表面受到切削刃和后刀面的挤压和摩擦造成的。

这一部分一般称为第三变形区,如图中的Ⅲ。

3.1.2 切屑变形程度的表示方法剪应变ε切削过程中金属的塑性变形主要集中于第一变形区,且主要形式是剪切滑移,因而其变形量可用剪应变ε来表示,如图3-5所示。

..........(3-1)根据图中所示的几何关系,可导出剪应变ε和剪切角φ的关系:.......................(3-2)按此式计算,剪切角愈小,剪切变形量愈大,即切屑变形愈大。

变形系数Λh由于切削时金属的塑性变形,使切下的切屑厚度h ch通常要大于切削层厚度h D,而切屑长度l ch却小于切削长度l c,如图3-6所示。

金属切削过程的基本规律

金属切削过程的基本规律

金属切削过程的基本规律金属切削过程中的变形一、切屑的形成过程1.变形区的划分切削层金属形成切屑的过程就是在刀具的作用下发生变形的过程。

图2-10是在直角自由切削工件条件下观察绘制得到的金属切削滑移线和流线示意图。

流线表明被切削金属中的某一点在切削过程中流动的轨迹。

切削过程中,切削层金属的变形大致可划分为三个区域:(1)第一变形区从OA线开始发生塑性变形,到OM线金属晶粒的剪切滑移基本完成。

OA线和OM线之间的区域(图中Ⅰ区)称为第一变形区。

(2)第二变形区切屑沿前刀面排出时进一步受到前刀面的挤压和摩擦,使靠近前刀面处的金属纤维化,基本上和前刀面平行。

这一区域(图中Ⅱ区)称为第二变形区。

(3)第三变形区已加工表面受到切削刃钝圆部分和后刀面的挤压和摩擦,造成表层金属纤维化与加工硬化。

这一区(图中Ⅲ区)称为第三变形区。

在第一变形区内,变形的主要特征就是沿滑移线的剪切变形,以及随之产生的加工硬化。

OA称作始滑移线,OM称作终滑移线。

当金属沿滑移线发生剪切变形时,晶粒会伸长。

晶粒伸长的方向与滑移方向(即剪切面方向)是不重合的,它们成一夹角ψ。

在一般切削速度范围内,第一变形区的宽度仅为0.02-0.2mm,所以可以用一剪切面来表示(图2-12)。

剪切面与切削速度方向的夹角称作剪切角,以υ表示。

2.切屑的受力分析在直角自由切削的情况下,作用在切屑上的力有:前刀面上的法向力Fn 和摩擦力Ff;剪切面上的正压力Fns和剪切力Fs;这两对力的合力互相平衡,如图2-14所示。

如用测力仪直接测得作用在刀具上的切削分力F c和F p,在忽略被切材料对刀具后刀面作用力的条件下,即可求得前刀面对切屑作用的摩擦角β,进而可近似求得前刀面与切屑间的摩擦系数μ。

二、切削变形程度切削变形程度有三种不同的表示方法,分述如下。

1.变形系数在切削过程中,刀具切下的切屑厚度h ch通常都大于工件切削层厚度h D,而切屑长度l ch却小于切削层长度l c。

第二章第1节-金属切削过程及切屑类型分析

第二章第1节-金属切削过程及切屑类型分析

lfi
lfo
切屑与前刀面的摩擦
第一节 金属切削过程及切屑类型
积屑瘤
在切削速度不高而又能形成连续切屑的情况下,加工一般钢
料或其它塑性材料时,常常在前刀面处粘着一块剖面呈三角
状的硬块,称为积屑瘤。
它的硬度很高,通常是
工件材料的2—3倍,在
切屑
处于比较稳定的状态时,
能够代替刀刃进行切削。
积屑瘤
刀具
积屑瘤
切屑的种类
名称
带状切屑
切屑类型及形成条件
挤裂切屑
单元切屑
崩碎切屑
简图
形态 变形
形成 条件
影响
带状,底面光滑 ,背面呈毛茸状
剪切滑移尚未达 到断裂程度
加工塑性材料, 切削速度较高, 进给量较小, 刀具前角较大
切削过程平稳, 表面粗糙度小, 妨碍切削工作, 应设法断屑
节状,底面光滑有裂 纹,背面呈锯齿状
变形程度表示方法
变形系数
切削层经塑性变形后,厚度增加,长度缩小,宽度基本 不变。可用其表示切削层的变形程度。
◆ 厚度变形系数
h
hch hD
◆ 长度变形系数
L
LD Lch
Lch LD
切屑与切削层尺寸
第一节 金属切削过程及切屑类型
根据体积不变原理,则
h
lc lch
hch hDOMຫໍສະໝຸດ sin(90 OM sin
第二章 金属切削基本理论及应用
第一节 金属切削过程及切屑类型
金属切削过程是指在刀具和切削力的作用下形成切屑的过 程,在这一过程中,始终存在着刀具切削工件和工件材料抵抗切 削的矛盾,产生许多物理现象,如切削力、切削热、积屑瘤、刀 具磨损和加工硬化等。

切屑控制-综述部分

切屑控制-综述部分
Your site here
切 屑 控 制 研 究 现 状
LOGO
2.5 专家系统与切屑形成动态仿真技术
切 屑 控 制 研 究 现 状
Your site here
LOGO
2.6 激光辅助切屑控制技术
切 屑 控 制 研 究 现 状
切屑会挂在主轴、刀片、夹具和测量装置上,使自 动测量和装卸设备无法正常使用 缠绕在刀具和工件上的长切屑会在工件上形成擦伤 ,并会缩短刀具寿命 长切屑不能像细小切屑那样有制 研 究 现 状
Your site here
LOGO
2.2 关于切屑卷曲的研究
切屑的上向卷曲
切 屑 控 制 研 究 现 状
切屑的三维卷曲 切屑产生二维卷曲(即上向卷曲和侧向卷曲)的同时 。还常常会产生第三个方向的卷曲。即产生三维卷 曲.第三向卷曲的转动速度同量,分别与上向卷曲 和侧向卷曲的转动角速度向量互相垂直。切屑的三 维卷曲的概念的提出是目前关于切屑卷曲研究的最 新成果。
切 屑 控 制 的 研 究 理 论 及 历 史
切屑的折断力学主要研究经过变形、卷曲和 空间运动的切屑是如何折断的。它包括切屑 碰到障碍物而被折断的机理和切屑被甩断的 机理。
Your site here
LOGO
1.5 切屑研究历史成果
------障碍型断屑器 ------障碍型断屑器
切 屑 控 制 的 研 究 理 论 及 历 史
名称 带状切屑 挤裂切屑 单元切屑 崩碎切屑
控 制 的
简图
研 究
形态
理 论
变形
带状,底面光滑, 节状,底面光滑有裂 背面呈毛茸状 纹,背面呈锯齿状 剪切滑移尚未达 到断裂程度 加工塑性材料, 切削速度较高, 进给量较小, 刀具前角较大 切削过程平稳, 表面粗糙度小, 妨碍切削工作, 应设法断屑

切屑的类型名词解释

切屑的类型名词解释

切屑的类型名词解释切削是一项重要的制造工艺,在制造行业中发挥着至关重要的作用。

而在切削过程中,切削机床产生的切屑则是不可忽视的副产品。

切屑是指在切削过程中由刀具将工件切削下来的薄片状或颗粒状废料。

切屑的类型由切削材料、刀具类型以及切削参数等因素决定,并且对切削的效率、加工质量等方面有着直接的影响。

下面将对切屑的类型进行详细解释。

1. 离型式切屑离型式切屑是指在切削过程中,切屑从刀具与工件的接触区域中迅速脱离,并沿着刀具的刃部形成直线状的切削废料。

这种类型的切屑多见于切削硬脆材料,如玻璃、陶瓷等。

由于材料的脆性导致切屑迅速断裂,形成直线型的切削废料,常常在切削过程中容易造成切削力的突然增大,需要特殊的刀具设计和切削参数调整。

2. 螺旋式切屑螺旋式切屑是指切削过程中切屑呈螺旋状缠绕在刀具上。

这种类型的切削废料多见于连续切削过程,如车削和铣削等。

螺旋状的切削废料形成原因是切削时工件与刀具之间的切削速度不一致,导致切削废料沿着刀具的边缘形成螺旋状的切屑,通常用于连续切削过程,有助于除去切削区域的热量,减少切削过程中的摩擦和磨损。

3. 螺纹式切屑螺纹式切屑是指切削过程中形成的螺纹状切削废料。

这种类型的切削废料多见于铣削和钻削等工序。

螺纹状切削废料的形成原因是切削区域与刀具的角度不一致,导致切削废料具有螺旋状的外形。

螺纹式切屑在实际生产中常常需要注意切削参数的选择,以免切屑卡住或者切削废料堵塞刀具等问题。

4. 粉末状切屑粉末状切屑是指切削过程中形成的颗粒状细小切削废料。

这种类型的切削废料多见于高速切削和磨削等工艺。

由于切削速度较快或者切削力较小,导致切削废料不容易形成大块的废料,而呈现出颗粒状的细微切屑。

粉末状切屑对切削机床的清洁性要求较高,需要配备高效的排屑设备,以免切削废料堵塞设备或者影响切削质量。

总之,切削过程中产生的切屑类型多种多样,不同类型的切削废料对切削效率、加工表面质量等方面都有着直接的影响。

2[1].3金属切削过程

2[1].3金属切削过程

积屑瘤对切削过程的影响
有利因素:
包覆在切削刃附近的前面上,减少磨损, 包覆在切削刃附近的前面上,减少磨损,保护切削刃 增大刀具的实际工作前角, 增大刀具的实际工作前角,减小切削力 粗加工:增大切削厚度, 粗加工:增大切削厚度,提高了生产率
不利方面: 不利方面:
当积屑瘤突出与切削刃外端时,引起过切量,切削力 , 当积屑瘤突出与切削刃外端时,引起过切量,切削力↑, 影响零件尺寸精度 积屑瘤局部不稳定→切削力产生波动 切削力产生波动→引起振动 积屑瘤局部不稳定 切削力产生波动 引起振动 积屑瘤形状不规则→切削刃形状发生畸变 切削刃形状发生畸变→影响加工精度 积屑瘤形状不规则 切削刃形状发生畸变 影响加工精度 若积屑瘤被撕裂, 若积屑瘤被撕裂,一部分被切屑带走→加快刀具磨损 另一部分在已加工表面→形成毛刺→降低工件表面质量
刃前区:三个变形区汇集在切削刃附近, 刃前区:三个变形区汇集在切削刃附近,此处的应力集
中而复杂, 中而复杂,被切削层在此与工件本体材料分离
二、切屑的类型及控制
从变形观点出发,可将切屑归纳为四种形态: 从变形观点出发,可将切屑归纳为四种形态:
切脆性材料 不平稳,表面粗糙 不平稳 表面粗糙 应↑γ0↑v↓ac
不妨碍正常的加工 不影响操作者的安全 易于清理、存放、搬运
积屑瘤 在速度不高切削塑性 金属形成带状切屑的情况 下,滞流层金属粘接在前 刀面上, 刀面上,形成硬度很高的 硬块,称为积屑瘤 硬块,称为积屑瘤。 原因: 原因:切屑与前刀面间 的强烈摩擦力
积屑瘤对精加工是不利的,应避免它产生:降低工材塑性; 积屑瘤对精加工是不利的,应避免它产生:降低工材塑性; 合理选切削速度;增大前角;减小进给量; 合理选切削速度;增大前角;减小进给量;采用润滑液等

切削过程

切削过程

图1-35 卷屑槽的卷屑机理
15
图1-36
卷屑槽的截面结构
16
图1-37 卷屑槽方向
图1-38 刃倾角对排屑方向的影响
17
图1-39
C形屑折断形式
18
图1-40 精车时的长螺卷屑
19
图1-41 发条状切屑碰到工件切削表面上折断
20
图1-42 C形切屑撞在工件上折断
21
图1-43 切屑碰在后刀面上折断
①脆性刀具材料破损 刀具破损前,刀具切削部分无明显的塑性变形,称为脆性破 损。硬质合金、陶瓷、立方氮化硼和金刚石刀具材料的硬度 高、脆性大常发生脆性破损,一般表现分为以下几种形式: 崩刃、 碎裂、 剥落、热裂。
②塑性刀具材料破损 由于高温高压的作用,刀具会因切削部分发生塑性流动而迅 速失效,称为塑性破损。形式:卷刃(塑性变形使刀具几何 角度)变化)、烧刃(刀具材料金相组织变化)。
22
1.2.3 切削力
(1)切削力的来源
图1-44 切削力的来源
23
(2)切削合力和分力
切削力分解为三个互相垂直的分力: 切削力Fcc——切削合力在主运动方向上的分力, 或称切向分力。 背向力Fp—— 切削合力在垂直于工作平面上的分力, 或称径向力。 进给力Ff—— 切削合力在进给方向上的分力, 或称轴向力。
6
(4)剪切滑移变形的度量 一般采用剪切角φ 、变形系数∧h和剪应变ε 三个参 数来衡量。
图1-22 金属切削层滑移过程示意图
7
变形系数定义为切屑厚度hch与切削层厚度hD之比, 或用切削层长度lc与切屑长度lch之比。
图1-23 变形系数Λ h的计算参数
8
剪应变也称相对滑移,ε =NP/MK 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

切屑的类型及控制
一切屑的类型及其分类
由于工件材料不同,切削过程中的变形程度也就不同,因而产生的切屑种类也就多种多样,如图示。

图中从左至右前三者为切削塑性材料的切屑,最后一种为切削脆性材料的切屑。

带状切屑挤裂切屑单元切屑崩碎切屑
切屑的类型
带状切屑
它的内表面光滑,外表面毛茸。

加工塑性金属材料,当切削厚度较小、切削速度较高、刀具前角较大时,一般常得到这类切屑。

它的切削过程平衡,切削力波动较小,已加工表面粗糙度较小。

挤裂切屑
这类切屑与带状切屑不同之处在外表面呈锯齿形,内表面有时有裂纹。

这种切屑大多在切削速度较低、切削厚度较大、刀具前角较小时产生。

单元切屑
如果在挤裂切屑的剪切面上,裂纹扩展到整个面上,则整个单元被切离,成为梯形的单元切屑,如图c所示。

以上三种切屑只有在加工塑性材料时才可能得到。

其中,带状切屑的切削过程最平稳,单元切屑的切削力波动最大。

在生产中最常见的是带状切屑,有时得到挤裂切屑,单元切屑则很少见。

假如改变挤裂切屑的条件,如进一步减小刀具前角,减低切削速度,或加大切削厚度,就可以得到单元切屑。

反之,则可以得到带状切屑。

这说明切屑的形态是可以随切削条件而转化的。

掌握了它的变化规律,就可以控制切屑的变形、形态和尺寸,以达到卷屑和断屑的目的。

崩碎切屑
这是属于脆性材料的切屑。

这种切屑的形状是不规则的,加工表面是凸凹不平的。

从切削过程来看,切屑在破裂前变形很小,和塑性材料的切屑形成机理也不同。

它的脆断主要是由于材料所受应力超过了它的抗拉极限。

加工脆硬材料,如高硅铸铁、白口铁等,特别是当切削厚度较大时常得到这种切屑。

由于它的切削过程很不平稳,容易破坏刀具,也有损于机床,已加工表面又粗糙,因此在生产中应力求避免。

其方法是减小切削厚度,使切屑成针状或片状;同时适当提高切削速度,以增加工件材料的塑性。

以上是四种典型的切屑,但加工现场获得的切屑,其形状是多种多样的。

在现代切削加工中,切削速度与金属切除率达到了很高的水平,切削条件很恶劣,常常产生大量“不可接受”的切屑。

所谓切屑控制(又称切屑处理,工厂中一般简称为“断屑”),是指在切削加工中采取适当的措施来控制切屑的卷曲、流出与折断,使形成“可接受”的良好屑形。

二切屑控制的措施
在实际加工中,应用最广的切屑控制方法就是在前刀面上磨制出断屑槽或使用压块式断屑器。

相关文档
最新文档