藻类对重金属胁迫的生理响应与解毒机制
藻类富集水体重金属的机理及应用

藻类富集水体重金属的机理及应用郑蒙蒙;邵鲁泽;管幼青;周思齐;李非里【摘要】Algae are considered as ideal bioremediation materials because of their high enrichment ability, environmental friendliness and high repair efficiency, therefore become a hot spot in the environmental research. The article reviewed the research progress of algae removal of heavy metals in the water,introduced the classification of the alga biological adsorbent, focused on adsorption and enrichment mechanism of heavy metal on algae,and main factors affecting the adsorption of heavy metals (adsorption time,living algae and not living algae,algae size,dissolved organic matter),and the accumulation of heavy metals in the application of algae water restoration trend analysis.%由于藻类高的重金属富集能力、环境友好、修复效率高等特点,藻类被认为是理想的生物修复材料,并成为环境领域的研究热点.结合国内外藻类去除水体重金属的研究进展,介绍了各藻类生物吸附剂的分类,阐述藻类吸附和富集重金属机理,以及影响重金属吸附的主要因素(吸附时间、活体藻与非活体藻、微藻粒径、溶解性有机质),并对藻类富集重金属在水体修复应用的趋势进行分析.【期刊名称】《环境科技》【年(卷),期】2017(030)006【总页数】5页(P66-70)【关键词】生物修复;重金属;藻类【作者】郑蒙蒙;邵鲁泽;管幼青;周思齐;李非里【作者单位】浙江工业大学环境学院,浙江杭州310014;浙江工业大学环境学院,浙江杭州310014;浙江工业大学环境学院,浙江杭州310014;浙江工业大学环境学院,浙江杭州310014;浙江工业大学环境学院,浙江杭州310014【正文语种】中文【中图分类】X70 引言重金属污染在淡水生态系统日趋严重。
综述_蓝藻对重金属的吸附作用研究

蓝藻对重金属的吸附作用研究金螳螂建筑与城市环境学院 08级园艺(城市园艺)朱怡航 0841405023在现代工业发展的同时,人类向环境排放的含重金属的废水也日益增多,这既污染了土壤与水体环境,也威胁到人类自身的健康。
在众多的重金属废水处理方法中,生物吸附是最有效并且最有前途的方法之一。
与传统的物理、化学方法如沉淀法、螯合树脂法、高分子捕集剂法、天然沸石吸附法、膜技术、活性炭吸附工艺、离子交换法等[1,2]相比,生物吸附更适合处理高、低浓度金属离子的水体;不产生二次污染;具有更好的选择性;并且原料廉价易得,分布广,易收集。
用于生物吸附的原料主要有细菌、真菌、藻类及其代谢产物以及多种有机物如淀粉、纤维素、壳聚糖等。
生物吸附剂的来源是影响其制造成本的最重要的因素[3]。
许多藻类具有富集重金属的能力,其吸附性能往往比其他生物高。
蓝藻在世界上分布极为广泛,在淡水、海洋和陆地上都能找到蓝藻的踪迹,许多种类还能生长在极端环境下,具有很强的抗逆性。
蓝藻丰富的生理生化特性及强大的抗逆性决定了其吸附特性有别于其他藻类,因此,蓝藻在对重金属的吸附研究中具有不可替代的地位。
蓝藻对重金属的吸附原理一般认为,蓝藻对重金属的吸附与细胞壁的性质以及吸附效率很大程度上相关,这是由于蓝藻细胞壁带有负电荷,具有许多官能团如羟基、羧基、酰胺基等供金属离子结合,并且具有较大表面积。
一些没有细胞壁的藻类对重金属吸附作用弱小也证明了这一点。
蓝藻细胞通过电信号对重金属离子做出响应,其响应灵敏度随离子重金属种类而异[4],若能建立藻细胞对常见重金属的响应模式和数据库,则可有效预警早期水污染和预防突发性水污染事故。
蓝藻细胞壁的成分与细菌相似,主要是两种肽聚糖:N-乙酰葡糖胺和N-乙酰胞壁酸。
李建宏等研究了极大螺旋藻( Spirulina maxima) 对金属离子的吸附作用,表明主要是细胞壁多糖在起作用[5]。
蓝藻还能通过液泡化吸附重金属,并抵御重金属的毒害。
藻类去除水体中重金属的机理及应用

藻类去除水体中重金属的机理及应用
重金属污染是当今环境污染的一个主要问题,藻类是一种有效的去除水体中重金属的方法。
藻类去除水体中重金属的机理及应用如下:
藻类去除水体中重金属的机理主要有三种:吸附、沉淀和生物吸收。
吸附是指重金属离子
在藻类表面上形成一层薄膜,从而阻止重金属离子进入藻类体内;沉淀是指重金属离子在
藻类表面上形成沉淀物,从而阻止重金属离子进入藻类体内;生物吸收是指藻类体内的酶
将重金属离子吸收,从而阻止重金属离子进入藻类体内。
藻类去除水体中重金属的应用主要有两种:一种是生物技术,即利用藻类的生物吸收能力,将重金属离子从水体中吸收出来;另一种是生态技术,即利用藻类的吸附和沉淀能力,将
重金属离子从水体中沉淀出来。
藻类去除水体中重金属的机理及应用,为改善水体环境提供了一种有效的方法。
它不仅可
以有效地去除水体中的重金属,而且还可以减少对环境的污染,保护水体的生态环境。
因此,藻类去除水体中重金属的机理及应用,在改善水体环境中具有重要的意义。
藻降解重金属的潜能2

藻降解重金属的潜能摘要藻类在工业应用中可以降低生物燃料联合生产的成本。
在这些共同生产应用中,生物治理环境和废水变得越来越重要。
重金属污染及其对公共卫生和环境的影响,使人们开始广泛关注开发环境生物技术方法。
回顾藻类生物吸附和(或)中和重金属离子的毒性作用的潜能的研究,主要集中在藻类的细胞结构,预处理,改性以及在生物吸附性能中遗传工程的潜在应用。
我们对预处理,固定和影响生物吸附能力的因素进行了评估,如初始金属离子浓度,生物质浓度,初始pH,时间,温度和多金属离子的干扰,并且引入分子工具开发具有较高生物吸附能力和选择性的工程化藻类菌株。
由此得出结论,以上所提及的参数可以生产出具有高生物修复潜能的低成本微型和大型藻类。
1. 引言重金属离子如铅,铜,镉,锌和镍作为工业废水中的常见污染物,这些导致了对自然环境的污染。
残留的营养物质和重金属离子的工业废水对农业、河流、湖泊和海洋的污染也是很严重的。
重金属离子在食物链中的生物吸附和积累会传给人类,造成严重的健康问题。
重金属离子即使在低浓度下也可能对人体有毒。
例如,铅是剧毒的,会对神经系统,肾脏以及维生素D代谢紊乱从而对身体造成损害,尤其是儿童。
镍化合物是已知的致癌物,长期暴露于镉相关的环境中会导致肾损害,骨矿物质损失,骨折风险增加,肺功能下降。
探索有效处理废水的创新手段,可进一步保护全球淡水资源和水生态系统。
基于藻类的废水处理和环境生物技术在五十多年的工业污染治理和研究中发挥着重要的作用。
为了降低处理成本,从处理的废水中回收贵金属如金和银,以及从水溶液中提取铀等放射性元素都具有一定的经济效益。
然而,处理含有重金属离子的废水是一个巨大的经济挑战。
从废水中去除重金属离子的主要物理化学方法包括化学沉淀、离子交换、电动法、膜处理和吸附。
化学工业规模的高成本和重金属离子的清除不完全是物理化学方法发展的主要限制因素。
此外,越来越严格的规定和限制排放到环境中的排放物需要使用替代方法。
微藻修复水体中重金属的机理

3.微藻修复水体中重金属的机理微藻修复水体中重金属的机理实为微藻对重金属的生物吸附。
3.1其主要过程:胞内的结合与沉淀胞外的吸收与转化1)微藻细胞内的金属络合物研究表明,重金属能诱导高等植物合成螯合重金属的蛋白,同超富集高等植物一样,金属硫蛋白(MT)、植物螯合肽(PC)等重金属结合蛋白也陆续在藻类中发现.藻类通过诱导产生金属络合物把有害的离子形式转变为无害的蛋白结合形式,从而能够耐受环境中的重金属。
(藻类中也含金属硫蛋白(MT)、植物螯合肽(PC)等重金属结合蛋白,将有害的离子形式转变为无害的蛋白结合形式,)2)胞外产物的吸附作用除了细胞壁的特殊结构外,藻类通常还会向周围水体中排泄或分泌大量有机物藻酸盐,藻类胞外产物主要由糖类、果胶质等大分子物质组成•与细胞壁内的有机物一样,该胞外产物也能络合金属离子,即通过与重金属形成缔合物或络合物,附着在群体细胞的胶质外鞘上被改变形态,使金属离子不能进入细胞内部,从而降低污水中游离态的重金属离子含量,实现解毒功能。
(藻类胞外产物:藻酸盐。
与重金属形成缔合物或络合物,附着在群体细胞的胶质外鞘上被改变形态,使金属离子不能进入细胞内部,从而降低污水中游离态的重金属离子含量。
藻酸盐是由B -D甘露糖醛酸(M)及a -L -古洛糖醛酸(G)两种酸性单糖无序排列的线型缩合高聚物。
其中所含的羟基、氨基、羧基等在络合中起重要作用。
COGHCa) 露糖醉残墓(M)HO(b) a-L^古洛糖醛酸残基(G))表面络合作用32物理化学作用:离子交换氧化还原微沉淀物理吸附1)微藻细胞结构与功能的相适应性:①藻类细胞壁是由纤维素、果胶质、藻酸铵岩藻多糖和聚半乳糖硫酸酯等多层微纤维组成的多孔结构(有利于物理吸附),具有较大的表面积。
②细胞壁上的多糖、蛋白质、磷脂等多聚复合体给藻类提供了大量可以与金属离子结合的官能团(如氨基、硫基、巯基、羧基、羰基、咪唑基、磷酸根、硫酸根、酚、羟基、醛基和酰氨基等)这些官能团能合理排列在具有较大表面积的藻类细胞壁上,与金属离子充分接触.其中有些可以失去质子而带负电荷,靠静电引力吸附金属离子进行离子交换;有的带孤对电子,可与金属离子形成配位键而络合吸附金属离子。
重金属对藻类的毒性作用研究进展_姜彬慧

辽宁大学学报 自然科学版第27卷 第3期 2000年JOU RNA L O F LIA ONING UNIV ER SIT Y Natu ral Sciences Edition Vol.27 No.3 2000重金属对藻类的毒性作用研究进展 姜彬慧1,林碧琴2(1.东北大学资源与土木工程学院,辽宁沈阳110006;2.辽宁大学生物系,辽宁沈阳110036)摘 要:从四方面分析了藻类与重金属的相互作用,提示重金属污染对水体危害十分严重,而利用藻类净化重金属废水具有重要的意义.关键词:重金属;藻类;毒性作用.中图分类号:Q949.2 文献标识码:A 文章编号:1000-5846(2000)03-0281-07在水生系统及水生食物链中,作为其他浮游动物的食物及氧气来源,藻类占据着重要位置,起着重要的作用.以各种途径进入自然水体中的重金属,对水生浮游动物的毒害作用在国外已被人们广泛注意到.早在30年代,对藻类与金属的关系的研究就已开始;30年代到50年代的研究主要集中在金属对藻类营养方面的作用,50年代以后,重金属对藻类的毒性作用才开始引起人们的重视,其中研究最多的是Cu对藻类的毒性作用[1,2].从60年代中期到现在,关于藻类与金属相互作用的生理学、生物化学、毒理学及遗传学方面的研究取得的成就最大,这是实验技术迅猛发展的结果[3].本文通过单一重金属对藻类的生长、繁殖、生理生化功能的影响、几种重金属对藻类的综合作用、藻类对重金属的反应及影响重金属毒性的环境因素等四方面的分析,旨在提示重金属污染对水体危害是十分严重的,而利用藻类净化含重金属废水具有重要的意义.1 重金属对藻类的毒性作用1.1 单一金属对藻类的影响1.1.1 重金属对藻类生长、繁殖的影响在国外,关于单一金属对藻类生长、发育、细胞形态结构、繁殖等影响的研究已有许多报道[4—8].其中Rai所作的工作较多,他总结了不同金属在不同浓度下对不同藻类的毒性作用.在国内,况琪军、夏宜 [9]对几种重要金属(Hg、Cd、Cu、Pb、Ni、Zn)对藻类的致毒作用加以概述.一般来讲,几种重要金属对水生生物的毒性强弱顺序为:Hg>Cd≈Cu>Zn>Pb>Co >Cr.但这不是绝对的,不同的藻类对金属离子的毒性反应顺序可能有变化.Erich(1986)收稿日期:2000-03-18 作者简介:姜彬慧(1962-),女,辽宁沈阳人,硕士,讲师,从事环境工程微生物教学和研究工作282辽宁大学学报 自然科学版 2000年 第3期利用Pb、Cu、Cd、和Hg对5种小球藻的生长限制试验结果表明:4种金属的毒性顺序为: Hg>>Cu>Cd<Pb.但这种结果很大程度上是受培养基中的化合物和pH等影响,尤其是受磷酸盐和氯化物的浓度及螯合因子的影响.我们曾以不同浓度Ni3+、Cr6+、Ag+分别处理纤维藻,结果表明,Ag的毒性远远大于Mi和Cr,Ni、Cr、Ag3种金属对纤维藻的半数有效浓度分别为Cr6+3.4mg/L、Ni2+0.33mg/L、Ag+0.11mg/L.Hutchinson[10]对小球藻的研究也表明金属毒性大小为Ag>>Cd>Ni>Pb>Cr.在已研究的金属中,Cu和Zn是很特殊的,它们起着双重作用,既为生物代谢必须的微量营养元素,又是一种高毒的重金属,一旦超过了有益的浓度,它们对藻类的生长就产生较大的毒性作用,Prask和Plocke(1987)证明Zn在保持蛋白核的完整性方面起着重要的作用,他们发现:在缺Zn的条件下,裸藻蛋白核便消失,当添加Zn之后,蛋白核又恢复.但高浓度的Zn能抑制藻类的生长,降低叶绿素含量及光合作用.痕量的Cu是藻类代谢过程中所必须的,但高浓度的Cu对藻类具有毒害作用.Cu是一种强烈的细胞代谢抑制剂.某些Cu化合物(含CuSo4)被用作为杀藻剂(作为控制和防止水华的除藻剂).用含Cu0.05mg/L的溶液培养海洋藻类观察到最初几天细胞数迅速降低,其后分裂速率略有增加,但在实验开始7天后仍低于对照30%~40%.斜生栅藻在第4天细胞分裂就完全停止,且明显出现褪色.重金属元素Cd、Pb、Ni、Hg等对淡水藻类的影响主要表现为:改变运动器的细微结构,使核酸组成发生变化;影响细胞生长和缩小细胞体积等[11].Pb和Cd这两种金属的生态毒理学目前还很少研究.它们对藻类的致毒机理尚不十分了解,但有许多报道表明,Pb在藻体内积累.Rivkin(1979)指出在0.05~10mg/L Pb中生长的骨条藻,它的生长率、最高产量和细胞呼吸作用均有不同程度的下降;相反,细胞体积和每个细胞的光合作用强度增加.Ni对纤维藻细胞生长的抑制作用原因是一方面Ni可能与Zn、Cu、Fe、Mn等微量元素之间存在着拮抗作用[12],另一方面Ni与蛋白质、氨基酸、DNA和RNA结合,阻碍细胞分裂,破坏DNA结构[13].Cr对细胞产生毒性的原因是Cr可与一SH结合,破坏蛋白质结构,沉淀核酸、核蛋白、干扰酶系统,同时六价铬的强氧化能力对DNA具有损伤作用[14].林碧琴、张晓波[15]研究表明Cd对羊角月芽藻毒作用的半数有效浓度96h E C50为0. 83mg/L CdCl2,Cd浓度超过0.75mg/L羊角月芽时生长明显受抑制,1mg/L的CdCl2使其生长的滞缓期延长,2mg/L的CdCl2使细胞停止生长,96h出现死亡.3mg/L的CdCl2作用24h,细胞出现死亡.姜彬慧、林碧琴[16]在研究Ni对纤维藻毒性作用时指出纤维藻对Ni毒反应敏感,当NiCl2浓度大于0.4mg/L时,纤维藻的生长受到明显抑制.董庆霖、林碧琴[17]观察到PbCl2对羊角月芽藻生长的影响有双重性,低于38.5mg/L PbCl2能促进藻类生长,高于38.5mg/L的PbCl2抑制羊角月芽藻生长,羊角月芽藻对铅有较强的耐毒性,半数有效浓度为73.2mg/L PbCl2.1.1.2 重金属对藻类生理、生化功能的影响重金属对藻类生理生化功能影响的研究侧重于藻类的光合作用和碳代谢方面,有关藻类的DNA、RNA、蛋白质合成及酶活性等方面也有些报道.Fillippis [18]报道在藻类培养基中添加HgCl 2之后,小球藻的RNA 、DNA 及蛋白质与同样条件下的水平相比有所提高;相反,添加醋酸苯汞脂则引起RNA 、DNA 和蛋白质的水平下降,他们还发现:(同样条件下)小球藻的干重大量增加,这可能是由于乙醇酸盐的排泄途径受阻所致.林碧琴、张小波[15]试验表明:在非致死浓度范围内(0.25~1.5mg /L CdCl 2)随Cd 浓度增加其DNA 酶、脱氢酶、过氧化物酶活性受到强烈的影响.细胞分裂、光合放氧和细胞膜透性受到强烈抑制.重金属影响酶活性的机理:一种可能是由于重金属的作用使作为酶的辅助因子的金属离子的吸收和利用受阻;另一种可能是重金属与酶蛋白的某些结合形成螯合物,使酶的结构与构型发生变化而影响酶的活性.Davies [5]观察到,Hg 浓度为10mg /L 时,使杜氏藻形成巨细胞,而不进行分裂.他认为这是由于生长和分裂解偶联,抑制了蛋氨酸的合成.Davies 和Sleep [19]证明:较低浓度的Zn 抑制海生浮游植物的天然群落的光合作用.Zn 还能导致细胞膜透性增加,使电解质漏失;高浓度的Zn 抑制各种藻类生长、并使叶绿素含量下降,以致类胡萝卜素与叶绿素的比例失调.姜彬慧、林碧琴[16]报道,当Ni 2+浓度≥0.4mg /L (Arkistr odesmas sp .)的生长受到明显抑制,其生长滞期延长、光合作用受阻、细胞膜透性增加.当Ni 2+浓度为3.2mg /L 时,其蛋白质氨基酸的含量明显下降.孔繁翔[20]在研究不同浓度的Ni 、Zn 、Al 对羊角月芽藻的生长速度、蛋白质含量、ATP 水平、葡萄糖-6-磷酸脱氢酶(G 6PDH )、酸性磷酸酶及硝酸还原酶活性的影响试验表明,3种金属离子在所试浓度范围内对羊角月芽藻的生长速度均有抑制作用.但单位藻培养物中蛋白质随着金属离子浓度的增加而增加;高浓度金属离子对酶活性有明显抑制作用;藻细胞中ATP 水平随着金属离子浓度的增加而下降,说明重金属离子的存在会导致藻细胞内能量代谢的变化,他提出重金属离子对藻类产生影响的机理可能是:高浓度重金属离子的存在,打破了生物最佳的各种营养元素(氮和磷等)生物可利用性的平衡.1.2 几种重金属对藻类的综合作用无论是人工培养液还是天然水体中,重金属的种类和数量都不可能是单一的和固定不变的.各种水生生物,包括藻类,常常受到多种金属联合作用的综合影响.联合作用的效应分4种类型:即拮抗作用(Antigonystic effect )、协同作用(Synergistic effect )、相加作用(Ad -ditive effect )、致敏作用(Sensibilization ).Davi Prasad [12]用Cd 、Pb 和Ni 分别组合处理纤维藻,结果,Ni +Cd 、Cd +Pb 混合使用时比单独使用更易刺激藻体生长,所以它们的联合效应为拮抗作用.Rai [21]等研究了Cr 与Ni 、Pb 间相互作用对灰色念珠藻(Nost misoor um )的生长、光合作用、硝酸盐的吸收和固氮酶活性等的影响时,表明Cr +Ni 、Cr +Pb 对该藻生长的联合作用均为拮抗作用,但Cr +Ni 的拮抗作用仅维持到培养72h ,随后则表现为协同作用.Ni 和Pb 混合使用的影响与它们单独的影响没有多大差别.沈德中[22]指出Cu 、Ni 、Pb 、Zn 4种重金属对水田土壤藻类的综合效应表现为使土壤藻283姜彬慧,等: 重金属对藻类的毒性作用研究进展284辽宁大学学报 自然科学版 2000年 第3期类的种群结构发生改变,蓝藻数量减少,硅藻数量或增加或减少,视条件而定,裸藻成为优势种.在土壤—藻类体系中重金属临界值分别为Cu50mg/kg、Ni50mg/kg、Pb150mg/kg,Zn 为300mg/kg.我们用Ni+Cr、Ni+Ag、Cr+Ag分别组合处理纤维藻,结果发现,Ni+Cr各以0.1mg/L 混合使用时,比单独作用时更抑制纤维藻的生长(抑制率为79.5%);这种趋势还出现在较高的浓度中,1.0mg/L Ni+Cr时对纤维藻的抑制率为100%;而Ni+Ag,各以0.1mg/L 混合使用时对纤维藻的抑制率即为100%;Cr+Ag,各以0.1mg/L混合使用时,其抑制率为65%,当各以1.0mg/L混合使用时,抑制率达100%.说明Ni+Cr、Ni+银的联合效应为协同作用,而Cr+Ag的联合效应为相加作用.1.3 污染物对天然浮激藻类群落的影响藻类群落的种类构成和生物量的不同对污染物的效应也有差别,如,Patin等人, (1974)在里海西部某一区域的沿岸水体中对Exuviaella cordata、水花蓝针藻(Aphanizomenon floaquae),Thalassiosiro caspica和距端根管藻(Rhizonsolenia calcaravia)进行24h短期实验,结果表明在低浓度下,石油刺激单细胞藻类的生长,在0.05~0.5mg/L时,出现系列的抑制作用.当DDT的浓度由0.001mg/L上升到0.1mg/L时,其抑制效应逐渐增加;0.005~0. 01mg/L的Hg、Cu、Pb的Cd强烈地抑制了初级生产作用,当汞的浓度为0.005mg/L时,碳的同化作用实际上已不存在了.Cu、Cd和Pb在相同的浓度下抑制了光合作用强度,使之仅达到对照值的30%~80%.Tomphins和Bilinn(1976)观察到,Hg的亚致死浓度对浮游硅藻能引起明显的形态变化,不是正常的8~16个细胞组合的星形群体,而是形成20~30个细胞堆积成的圆柱状群体.Paatrick等人(1975)记录到,当实验河流中存在0.002~1.0 mg/L Ni浓度时,藻类的种类组成发生变化,即硅藻种类的多样性和丰度减少,绿藻与蓝藻的丰度增加.总之,最常见的毒物对天然浮游藻类群落的效应和相对毒性一般与单种培养所得结果无明显差异.在多数情况下,使天然浮游群落光合强度降低的毒物浓度低于单种培养实验的浓度.天然浮游藻类对毒物有较高的敏感性可能是与群落的种间关系相互影响有关.天然浮游藻类对毒物的效应除与环境因子有关外,还与它的种类构成特性有关.与污染物作用时间长短、污染物的浓度高低有关[23].2 藻类对重金属的反应2.1 藻类对重金属的吸收和积累许多水生藻类可从它们周围环境中吸收溶解的金属,这种现象在废水处理方面很有应用价值.许多学者研究了藻类对可溶性金属吸收的动力学机制,发现藻类对金属的吸收是分二步的:第一步,是被动的吸附过程(即在细胞表现上的物理吸附或离子交换)藻类对金属的这种吸附过程是迅速的,其发生的时间极短,不需要任何代谢过程和能量提供,重金属只是简单地被吸附到藻细胞表面上.这些金属有一部分可以藻类细胞上经蒸馏水的反复清洗而洗掉[24].有关重金属在死藻细胞上的吸附现象也有过报道.这就更说明了吸附是无需代谢参与的.Clooschenlco[25]发现,用甲醛处理过的硅藻Chaetoceros costatum细胞吸附Hg 的量是未处理细胞的2倍.他认为用甲醛溶液处理细胞增加了藻细胞表面的正电荷,Hg 在水中是以负电荷化合物存在的,所以甲醛的处理增加了细胞对Hg 的吸附.第二步:可能是主动的吸收也就是与代谢活动有关的吸收,这一吸收过程是缓慢的,是藻细胞吸收重金属离子的主要途径.Cadd 和Griffiths [7]强调指出:与那些代谢或依赖于能量的吸收过程相比,藻类细胞对金属离子的被动的吸附量是很低的.同样,Fujita 和Hashizumdl [24]报道肘状针杆藻(Synedra ulna )以吸附作用进入体内的Hg 量仅为吸收总量的20%.Davies [26]指出:Phaeodactylum tri -cornutum 对Zn 的吸收过程如下:细胞表面的吸附、扩散吸收、Zn 对细胞内蛋白质的束缚.Stokes [27]提出藻细胞对各种金属的吸收率与金属对藻细胞的毒性大小有密切相关.他指出几种因素,尤其是藻细胞老幼,培养时的通气状况、温度、pH 、螯合剂及其它金属的存在等,均明显地影响细胞对金属的吸收.Bowen (1966)发现藻类可积累许多金属元素,它们对金属的结合一方面可能是生物对微量元素的利用;另一方面也可能是相对缓慢的、长期的随意积累(被动积累).董庆霖和林碧琴[17]的研究指出:羊角月芽藻吸收并富集Pb 的能力很强,在PbCl 2浓度低于38.5mg /L 对其生长尚未造成毒害时,细胞内就能大量富集Pb .这些Pb 可沿食物链向更营养级转移,造成潜在的危险,但另一方面,我们又可以利用羊角月芽藻的这一特点来消除废水中Pb 污染.Ste wart (1977)认为藻类对Pb 的高忍耐力,可能是由于Pb 离子容易从细胞壁的排出或高浓度的Pb 易从溶液中沉淀所致.笔者曾研究过纤维藻对不同浓度Ni 的吸附与吸收作用,结果表明纤维藻对Ni 的吸附量及吸收作用在同一培养时间内,随着Ni 浓度的增加而增加,表现出明显的正相关r =0.99(P <0.01),纤维藻细胞对Ni 的富集能力较大,其累积系数高达382.2.2 藻类对金属的抗性和耐受性从受重金属污染的环境中分离得到的几种藻类已证明了藻类对金属具有抗性和耐受性.藻类对金属的耐受性的机制可能包括细胞对金属的外排作用、及各种细胞的内解毒作用.Foster [28]指出:小球藻(Chlorella )对金属的耐受机制是外排作用.他指出:耐受细胞与非耐受细胞含Cu 浓度是相同的.如果细胞内部存在降毒作用机制的话,那么在耐受细胞中应含有更多的Cu .Butler 等[19]假设:外排作用是由于Cu 和细胞外物质化合的结果.Hall [30]指出耐受的和非耐受的藻类细胞都可释放细胞的外产物来束缚Cu ,但这和耐受作用没有相关性.小球藻Chlorella 对Cu 的外排作用是由于释放有机螯合物,这种物质与Cu 形成一种有机—金属化合物,与非耐受种相比,它们具有极高的稳定系数.Stokes [27]从不同途径证明了耐受栅藻(Scenedesmus sp .)的细胞对Cu 的内吸收是缓慢的,这表明耐受细胞能降低膜对Cu 的渗透作用.Silverbery 等[11]用电镜观察栅藻细胞,发现在耐受细胞中有核外化合物存在.通过X -射线扫描分析指出:这些化合物明显是由核排除的,并可在核膜上看到有小孔存在.非耐受细胞也有这种内含物存在,但却伴随着极强的核膜损伤.他在核内发现Cu ,且在细胞质中发现在液泡中存在许多非正常的含Cu 沉淀物,这说明细胞核是一个Cu 的解毒位点.285姜彬慧,等: 重金属对藻类的毒性作用研究进展286辽宁大学学报 自然科学版 2000年 第3期3 影响重金属对藻类毒性的环境因素重金属对藻类的毒性作用受各种环境因素直接或间接的影响,其中主要的环境因素有水中的酸碱度(pH值)、温度、光照、磷酸盐及螯合剂等.水中的pH值和氧化还原电位势是影响水中金属迁移转化的两个重要的理化因素.温度是环境中金属离子浓度和金属对藻类毒性的调节因素之一.至今研究表明:磷在降低Zn、Cu、Hg、甲基汞、Fe、Ni等对不种的蓝藻、绿藻、硅藻的毒性方面起着重要的作用.另外藻类本身的群落密度也影响着重金属对藻类的毒性.Williams(1976)发现,分裂旺盛的衣藻和小球藻群落只吸附少量的137Cs,而较大的细胞和较密集的群落能吸附大量的137Cs.[参考文献][1] Spencer C P.J Gen Microbiol[J].1951,16:228.[2] Mcbrien P C H.Phy siol Plant[J].1965,18:1959.[3] Stokes P M.Responses of freshwater algae to metals[J].Progress in phycological Research(Round/Chapman,eds),1983,2:87-97.[4] Whitton B A.Toxicityofheavymebal to algae[J].A review.Phykos,1970,9:116-125.[5] Davies A G Sleep J A.J Mar B iol Ass o UK[J],1976,56:39-57.[6] Leland H V and Luoma,S N.J Water Pollutyon Control Federation[J].1977,49:1340-1357.[7] Gadd G M and Griffiths A.J Micro Ecol[J],1978,4:303-310.[8] Rai L C.Bio.Rev,1981,56:99.[9] 况琪军,夏宜 ,重金属对藻类的毒性,淡水生物学科技情报[J],中国科学院水生生物研究所,1985,4:1-10.[10] Hutchinson T C.Water Pollut Res Can[J],1973,8:68-90.[11] Slverberg B A.Phycologia[J],1976,15:155-160.[12] Devi Prasad P V and Devi Prasad P S.Effect of Cadmium,Lead and Nickel on three Feshwater green Algae,Water Air and Soil Pollution[J],1982,17:263-267.[13] Ciccarelli R B et al.Nicke Carbonate induces DNA-protein Crosslinks and DNA Strand breaks in rat kidney[J].Cancer lett,1981,12:349-354.[14] 廖自基,环境中微量重金属元素的污染危害与迁移转化[M],北京:中国科学出版社出版,1989.[15] 林碧琴,张晓波,羊角月芽藻对镉毒作用的反应和积累的研究,1、镉对羊角月芽藻的毒性作用[J],植物研究,1988,8:195—202.[16] 姜彬慧,林碧琴,镍对纤维藻的毒性作用研究[M],环境保护科学,1995,21:26—31.[17] 董庆霖,林碧琴,铅对羊角月芽藻的毒性及吸收作用的研究[J],辽宁大学学报,1997,24:89—94.[18] Fillippis L F et al,z Pflanze Physiol[J],1976,78:197-207.[19] Davies A G and Sleep J A.Nature[J],1969,227:192.[20] 孔繁翔,陈 颖,章 敏,镍,锌,铝对羊角月芽藻生长及酶活性影响研究[J],环境科学学报,1997,17:193—197.[21] Ray H Crist Karl Ober hoiser ,Dwight Schwartz et al .Interactions of Metals and Protons With algae .EnvironSci Technol [J ],1988,22:755-760.[22] 沈德中,王宏康,铜,镍,铅,锌4种重金属对水田土壤藻类的综合效应[J ],中国环境科学,1994,14:277—282.[23] 林碧琴,姜彬慧,藻类与环境保护[M ],沈阳:辽宁民族出版社,1999.[24] Fujita M L and Hashizume ,Water Res [J ],1975,9:889.[25] Glooschenko W A .j Ph y col [J ],1969,5:224.[26] Davies A G .In Rulicactive Contamination of the Marin Environ ment [J ],1973,403-420Seattle .[27] Stokes P .Utake and accumulation of Cu and Ni by metaltolerant Strain of Scenedes mus ,Verh Int Ver Limnol[J ],1975,19:2135-2128.[28] Foster P L .Copper exclusion as a mechanis m of heavy metal tolerance in a green alga [J ].Nature ,1977,269:322-323.[29] Butler M et al .Plant cell Environ [J ],1980,3:119.[30] Hall A et al ,Mar Biol [J ],1979,54:195.Toxicological Effects of Heavy Metals on AlgaeJIANG BinhuiA cade my of Resource and Civil Engineering ,Northeast Unive rsity Shengyang 110036,ChinaLING BinqingDe partme nt of Environmental Scie nce ,Liaoning Unive rsity Shenyang 110036,ChinaAbstract The interaction between algae and heavy metal was discussed in four aspects .Due to the seriously har mful effects of heavy metals on water body ,it is very important to purify heavy met -als polluted wastewater with algae .Key Words heavy metals ,algae ,toxicological effects .(编辑 崔久满)287姜彬慧,等: 重金属对藻类的毒性作用研究进展。
藻类对重金属的耐性与解毒机理

藻类对重金属的耐性与解毒机理
重金属是一类具有潜在危害的重要污染物,越来越多的重金属被排入水体,对水生生态环境构成严重威胁.藻类在长期响应重金属胁迫过程中,建立起一系列的适应机制.藻类通过控制重金属的吸收,富集,转运与解毒,使不同细胞组分中的重金属维持在正常浓度范围内.这些保护机制主要包括藻细胞的某些胞外组分与重金属结合,从而减少重金属进入胞内;在重金属诱导下藻细胞可合成金属结合蛋白或多肽;重金属诱导藻细胞合成一些代谢物使其免受伤害或修复由重金属胁迫造成的损伤;藻细胞通过液泡区室化作用使重金属远离代谢;藻细胞对重金属具有排斥与排出作用.。
藻类在环境污染治理中的应用及其作用原理

藻类在环境污染治理中的应用及其作用原理藻类是一类广泛存在于水体中的微生物,具有高生物群落多样性和生物活性,可以有效地处理环境污染问题。
下面将从藻类在水体富营养化治理、重金属治理和废水处理等方面的应用及其作用原理进行详细介绍。
首先,藻类在水体富营养化治理中的应用。
水体富营养化是指水体中氮、磷等营养物质过多积累,导致藻类大量繁殖,形成藻华。
藻类通过光合作用可以吸收大量的营养物质,并将其转化为植物生长所需的有机物和氧气。
同时,藻类可以将水体中的有机有毒物质转化为无毒物质,达到净化水体的效果。
此外,藻类还可以通过高密度生物反应器等方法有效去除水体中的营养物质。
通过这些方式,藻类可以减少水体中的富营养化现象,恢复水体的生态平衡。
其次,藻类在重金属治理中的应用。
重金属是一类有害物质,具有累积性和毒性,对人体和其他生物产生严重的危害。
藻类可以通过吸附、离子交换和还原等作用去除水体中的重金属污染物。
藻类表面具有丰富的官能团,可以有效吸附重金属离子,降低水体中的重金属浓度。
同时,藻类体内的酵素和代谢产物可以与重金属形成络合物,减少重金属的毒性。
一些特殊的藻类还具有还原重金属离子的能力,将其转化为无毒物质。
通过这些方式,藻类可以降低水体中重金属污染物的浓度和毒性,净化水体环境。
再次,藻类在废水处理中的应用。
废水中含有大量的有机和无机物质,对环境和人体健康造成严重威胁。
藻类可以利用废水中的有机物质作为碳源生长,吸收有机物质和无机离子,并将其转化为藻体和氧气。
同时,藻类还可以分解废水中的有机物质,降解底泥中的富营养物质。
此外,藻类的生长需要大量的氮和磷等营养物质,可以从废水中去除这些营养物质,达到净化废水的效果。
通过这些方式,藻类可以有效地处理废水,减少废水对环境的污染。
藻类在环境污染治理中的应用作用原理主要包括光合作用吸收营养物质、生物吸附重金属离子、降解有机物质和去除废水中的营养物质。
藻类通过光合作用吸收大量的营养物质,减少水体中的富营养化现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 研究现状
2.1 海藻对重金属的富集机理
• 藻类对重金属的吸收包括胞外的快速吸附与胞内的缓慢富集两个 阶段[17]。 • 第一阶段是重金属被吸附到藻细胞表面。在多数情况下,约80% —90%的重金属被吸附到藻细胞表面[18-20],藻类细胞壁含有一 些功能基团如羟基、羧基、氨基、巯基和磷酸根等[21-22],因而 细胞壁带负电荷,通过离子交换或其它机制可以与水中的重金属 离子结合。
集[38]也与多磷酸体有关。
2.6 脯氨酸在藻类抗重金属胁迫中的作用
• 在逆境条件下,生物体会积累脯氨酸,重金属胁迫能引起藻类积 累脯氨酸。
• Wu等[39]用Cu和Cd处理2种绿藻、1种硅藻和1种蓝藻,结果显示:
耐性种类比敏感种类积累更多脯氨酸,补充外源脯氨酸能明显降 低Cu对蓝藻Anacystis nidulans的损伤。 • 脯氨酸可减少胞内钾离子泄漏,胞内脯氨酸积累可能与防御渗透 改变的保护机制有关。
应用,提高修复效率。
3.2 加强分子生物学与环境科学领域的交叉研究
• 利用转基因工程培育、开发修复效率高、运行费用低的新型藻类。 • 如:Surasak等(2002)发现,转基因衣藻对Cd的耐受力和吸附核辐射 能力多大大增强。 • 如:针对Hg的污染及其毒性,可运用分了生物学技术将细菌体内对汞 的抗性基因(汞还原酶基因)转到藻类中,进行汞污染的藻类富集与提 取。 • 也可通过诱变育种等技术来改良遗传特性,以提高藻类对污染物的耐 性、富集能力或提高超富集藻类的生长速度或生物量。 • 分离对重金属敏感的突变株,鉴定、克隆相关基因,或通过转基因技 术获得重金属耐性株,将有助于揭示藻类重金属耐性和解毒机制。
细胞减少胁迫造成的损伤。CAT对Cd2+离子敏感,其活性与胁迫
浓度呈负相关。 罗通等(2005)的研究结果表明,随重金属胁迫剂量的加大 ,轮藻叶绿素含量、CAT、POD及SOD活性、可溶性蛋白含量呈倒 “Ⅳ”形规律变化,即降一升一降的变化。
• 杨艳华等(2002)研究了不同浓度Cd2+对黑藻(Hydrilla verticilla)叶光化学及硝酸还原酶特性的影响,结果表明:随 着Cd2+浓度的增加,黑藻叶片的叶绿素含量、叶绿素a和b比 值、PSI、PSⅡ及全电子链的活性皆呈现下降的曲势; 而其叶绿体ATP的含量、硝酸还原酶的活性、类囊体膜的
多肽,结构式为(γ -Glu-Cys)n-Gly,其中n=2-11(
通常为2-5)。PCs有许多结构变体。PCs广泛分布于 单子叶植物、双子叶植物、藻类及真菌中[23]。
2.4.2 藻类植物络合素的功能
• 到目前为止,未有报道表明重金属能诱导原核藻类合成PCs; • 而Cd、Cu、Zn、Pb、Hg、Ni和Ag等能诱导真核藻类产生PCs。 • 离体实验结果表明,PCs可作为过氧化氢和超氧阴离子自由基的 清除剂,能减轻氧化胁迫[26]。
• Morelli等用排斥色谱(SEC)、原子吸收光谱(AAS)及高效液相色
谱(HPLC)研究海洋硅藻Phaeodactylum tricomutum的Cd-PCs复 合物,发现该藻中存在两类Cd-PCn复合物。
2.4.2 金属硫蛋白
• 金属硫蛋白(metallothioneins;MTs)是一类基因编码的低分 子量富含半胱氨酸的金属结合蛋白[29],已在动物、植物和蓝 藻Synechococcus中发现[30]。 • MT能通过巯基与重金属离子结合,从而降低重金属的毒性。
• 多磷酸体(polyphosphate bodies;PPB)是正磷酸盐的聚合物, 含有大量K+ 、Na+ 、Ca2+、Mg2+等金属阳离子,它不仅具有储存
磷的功能,而且对重金属具有解毒作用。
• 在重金属胁迫条件下,多磷酸体的数量会增加[35],提高磷浓度 可减轻重金属对藻类的毒害[36]。 • 应用x射线能谱分析表明,Pb在Diatoma tenue中的富集[37]以及 Cd、Cu、Co、Hg 、Ni、Pb和Zn在Plectonema boryanum中的富
• 第二阶段是重金属跨膜进入胞内富集的过程。
2.2
重金属对海藻的损伤
• 施国新等(2001)电镜观察发现,黑藻叶细胞遭受Cr6+毒害初 期,高尔基体消失,内质网膨胀后解体,叶绿体中的类囊体 和线粒体中的脊突膨胀,核中染色质凝集,随着叶细胞毒害 程度的加重,核仁消失、核膜破裂,叶绿体和线粒体解体,
质壁分离使胞间连丝拉断,最后细胞死亡。
• 最近的研究表明,颤藻Oscillatoria brevis利用重金属转运
体将过多的金属离子快速输出细胞作为第一道防线,利用金属 硫蛋白螯合重金属作为第二道防线,以缓冲并贮存过多的重金 属,从而提高对重金属的耐性[31]。
2.4.3 谷胱甘肽
• 谷胱甘肽(GSH)含有巯基,能与重金属直接结合,同时GSH又是 合成PCs的底物,亦是机体内重要的抗氧化物质。 • Noctor(1998),重金属处理2h后,硅藻Phaeodactylum
两种离子处理后,POD 活性都表现出先明显上升后
下降的相同情况,但幅度不同;CAT 活性受两种离子的 影响存在明显不同。
• 李建宏等(2004)研究了一株高重金属抗性的椭圆小球藻在Cd2+ 胁迫下的生理变化。结果显示,在10-240umol/L浓度的Cd2+胁迫 下,随着金属离子浓度提高,叶绿素的总量减少,光合放氧受 到抑制。 Cd2+离子浓度的提高,导致了氧自由基的大大增加, 同时脯氨酸、SOD以及POD水平均大大提高。 提示,这些与消除自由基有关的代谢产物的积累,有利于
• 脯氨酸猝灭单线态氧或直接与羟自由基反应,将减少自由基对细
胞造成的损伤,维持细胞内的还原环境,使得GSH含量升高,进 而又促进PCs合成及其与重金属的螯合,从而提高细胞对重金属 的耐性或解毒能力。
2.7 热激蛋白与藻类重金属耐性
• 每种植物体一般含有几类热激蛋白(Heat shock protein,Hsps) ,但在胁迫条件下可能只有一种Hsps起主导作用[40]。 • 高温、低温、重金属离子等胁迫因子都可以诱导Hsps合成。 Bierkens等[41]用ZnCl2 等处理绿藻Raphidocelis subcapitata,
• 结果表明:Cr6+对细胞的膜结构与非膜结构都产生毒害作用。
2.3
海藻对重金属的生理生化响应
• 重金属对藻类生理生化功能影响的研究侧重于藻类的光 合作用、碳代谢和藻类DNA、RNA、蛋白质合成及酶活性 等方面。
• 张小兰等(2002)的研究结果表明,轮藻( Chara) 藻体
受Hg2+、Cd2+ 胁迫后,随着Hg2+、Cd2+浓度的增加,叶绿 素含量、叶绿素a/ b 比值、可溶性蛋白含量持续下降 ;Hg2+单一处理系列SOD 活性呈下降趋势,而Cd2+单一 处理系列则表现出先降后升再降的趋势;
图2 海洋沉积物中镉平均含量
图3 海洋沉积物中砷平均含量
1.2 海产品质量安全现状
• 紫菜和牡蛎、文蛤等近海海产品中的铬、铅、镉超标,其中铅
的超标程度较高;
• 个别贝类体内残存的镉、砷含量超过第I类海洋生物质量标准。 • 例如,华秀红等[2]对启东海域鱼、贝、虾蟹样品的调查结果表 明,重金属Pb的含量高于I类污染值的超标率达7l%、重金属Cd 的I类污染值超标率达78.6%,特别是塘芦港的枇杷虾中Cd含量
富集系数在各营养级中可达到非常惊人的程度。
研究藻类对重金属胁迫的生理响应与解毒机制
• 了解藻类对重金属的吸收和积累及其生理机制。 • 了解藻类对重金属毒性的抗性和耐受机理。 • 研究其生理、生化反应及积累毒物的特点,可以准确 地判断水体的污染性质和污染程度。实现水体污染的 高灵敏度连续监测和早期预报。 • 通过研究藻类对重金属的耐性机制,将藻类用于水体 重金属污染的生物修复器。 • 利用藻类构建水产养殖生态系,实现清洁生产。 • 了解重金属污染物在水域生态系统食物链中的迁移转 化规律,寻找水产品质量安全的解决方案。 • 生产金属硫蛋白等功能性物质。
甚至高达l5.3 mg/kg,超过了Ⅲ类污染值的3倍。
个别贝类体内残存的镉、砷含量超过第一类 海洋生物质量标准。
图4 部分近岸海域贝类体内镉残留量比较
图5 部分近岸海域贝类体内砷残留量比较
1.3 环境重金属对海洋生物的影响
• 环境重金属污染对海洋生物造成毒害,使某些海洋水产资源衰
落,渔获量减少,少数珍贵海产品受损,一些海洋水产资源质
发现可显著诱导Hsp70合成。
• 在重金属胁迫下,热激蛋白的协同作用可能在清除或修复重金属 变性蛋白质、保护其它蛋白质免受损伤、维持细胞的正常代谢和 提高细胞的重金属抗性方面有重要作用。
2.8 液泡区室化作用
• 液泡区室化作用(vacuolar compartmentalization)在高等
植物对重金属的耐性和解毒中起着重要作用[42]。
tricornutum 细胞中约50%的GSH用于合成PCs[32]。
• Pawlik等(2000)发现,杆裂丝藻在吸收Pb的过程中促进了富含SH基多肽的合成,如PCs 、GSH;但把藻转到无Pb培养基后大约 90%的多肽消失了,说明PCs和GSH是藻类在受到铅胁迫时的主 要防御措施。
2.5 细胞内多磷酸体对重金属的络合作用
3 今后研究展望
3.1 大型海藻修复重金属污染水体的研究
• 藻类对水体重金属的吸附具有高效、经济、简便、选 择性好等特点,被认为是一种处理水体重金属污染的 新型生物材料,有广阔的应用前景。但是单细胞藻由 于个体小,处理后不易收集应用受到限制。 • 一些大型海藻。尤其是对重金属有较高吸附性能的马
尾藻等褐藻门生物,后处理相对方便,更适合于规模
• 利用分子生物学手段,结合扫描电镜(SEM)和X-射线 衍射分析技术,对金属在藻细胞内的沉淀位置和状 态、金属与藻类细胞特定官能团结合的能量变化以 及官能团结构和特性、藻类吸附重金属反应的动力 学和热力学持性、藻类体内重金属结合蛋白的诱导 机理等进行探讨,可深入了解藻类对金属超积累作 用的生理和分子机制。