振动理论习题答案汇总
《振动力学》习题集(含答案)【精选】精心总结

令 引起的静变形为 ,则有:
,即
令 + 引起的静变形为 ,同理有:
得:
则系统的自由振动可表示为:
其中系统的固有频率为:
注意到 与 方向相反,得系统的自由振动为:
1.9质量为m、长为l的均质杆和弹簧k及阻尼器c构成振动系统,如图E1.9所示。以杆偏角 为广义坐标,建立系统的动力学方程,给出存在自由振动的条件。若在弹簧原长处立即释手,问杆的最大振幅是多少?发生在何时?最大角速度是多少?发生在何时?是否在过静平衡位置时?
解:
(1)保持水平位置:
(2)微幅转动:
故:
2.10求图T 2-10所示系统的固有频率,刚性杆的质量忽略不计。
图T 2-10答案图T 2-10
解:
m的位置:
, ,
,
,
2.11图T 2-11所示是一个倒置的摆。摆球质量为m,刚杆质量可忽略,每个弹簧的刚度为 。
(1)求倒摆作微幅振动时的固有频率;
(2)摆球质量m为0.9 kg时,测得频率 为1.5 Hz,m为1.8 kg时,测得频率为0.75 Hz,问摆球质量为多少千克时恰使系统处于不稳定平衡状态?
图E1.2
解:
如图,令 为柱体的转角,则系统的动能和势能分别为:
利用 和 可得:
1.3转动惯量为J的圆盘由三段抗扭刚度分别为 , 和 的轴约束,如图E1.3所示。求系统的固有频率。
图E1.3
解:
系统的动能为:
和 相当于串联,则有:
以上两式联立可得:
系统的势能为:
利用 和 可得:
1.4在图E1.4所示的系统中,已知 ,横杆质量不计。求固有频率。
图E1.4答案图E1.4
解:
对m进行受力分析可得:
振动考试题(带答案)

振动考试试卷一、选择题:(30分)在正确的答案后面打对号。
1、以下那些因素会引发轴承使用寿命达不到设计要求?(1)润滑不良(2)不对中(3)过载(4)转动惯量不平衡(5)轴承座松动(6)转速过低2、最简单的周期振动称为:(1)简谐振动(2)阻尼震动(3)共振3、振动三要素包括:振幅、()和()(1)时间(2)频率(3)相位4、简谐振动公式:F=kx,k反映了系统的:(1)刚度(2)挠度(3)硬度5、振动问题都可以简化为一个含有基本参数m()、c(阻尼)、k(刚度)的系统模型。
(1)m(质量)(2)T(惯量)(3)F(外力)6、以下三种振动传感器哪一种响应最快?(1)位移型(2)速度型(3)加速度型7、两种分析振动的基本频谱是时域谱和()(1)质量谱(2)频域谱(3)色谱8、不平衡震动的特点是:(1)通常水平方向的振幅大于垂直方向的幅值、振幅随转速增加而增加、振动主要发生在1倍频(2)通常垂直方向的振幅大于水平方向的幅值、振幅随转速增加而增加、振动主要发生在1倍频(3)通常水平方向的振幅大于垂直方向的幅值、振幅随转速增加而减少、振动主要发生在1倍频9、不平衡分为:静不平衡、()、动不平衡(1)奇不平衡(2)偶不平衡(3)简谐不平衡10、不对中类型:平行不对中,(),综合不对中。
(1)角度不对中(2)垂直不对中(3)距离不对中二、问答题(20分)提高转速能否区分不对中和不平衡振动?为什么?答:能,区分不对中和不平衡的一个方法是提高机器的转速。
如果是不平衡,振幅的增加会与速度的平方成正比;反之,不对中引起的振动却不会随速度发生变化。
三、频域谱分析题(30分)1、判断以下频域谱,哪个是转子不平衡、哪个是轴弯曲、哪个是轴承座松动?频谱1判断为(转子不平衡)频谱2判断为(轴弯曲)频谱3判断为(轴承座松动)四、时域谱分析题(20分)以下时域谱中,哪个是轴承外滚道损伤?哪个是内滚道损伤?判断为(外滚道损伤)判断为(内滚道损伤)。
振动习题答案

振动习题答案振动习题答案振动是物体在固定轴线附近做往复运动的现象。
它在我们的日常生活中随处可见,比如钟摆的摆动、弹簧的振动等等。
振动习题是学习振动理论的重要一环,通过解答习题可以加深对振动原理的理解和应用。
下面是一些常见的振动习题及其答案,希望对大家的学习有所帮助。
1. 一个质点沿直线做简谐振动,振幅为2cm,周期为4s,求该质点的速度和加速度。
解答:简谐振动的速度和加速度与位置的关系可以通过振动的位移方程得到。
位移方程为:x = A * sin(ωt + φ),其中A为振幅,ω为角频率,t为时间,φ为初相位。
根据周期和角频率的关系,可知ω = 2π / T,其中T为周期。
根据题目中的数据,振幅A = 2cm,周期T = 4s。
代入上述公式可得ω = 2π /4 = π / 2。
因此,位移方程可写为:x = 2 * sin(π/2 * t + φ)。
速度v = dx / dt,加速度a = dv / dt。
对位移方程求一次导数得到速度和加速度的表达式:v = d(2 * sin(π/2 * t + φ)) / dt = 2 * (π/2) * cos(π/2 * t + φ) = π * cos(π/2 * t + φ),a = d(π * cos(π/2 * t + φ)) / dt = - (π/2)^2 * sin(π/2 * t + φ) = - (π^2 / 4) *sin(π/2 * t + φ)。
2. 一个弹簧的振动周期为2s,振幅为5cm,求该弹簧的角频率和振动频率。
解答:角频率ω = 2π / T,振动频率f = 1 / T,其中T为周期。
根据题目中的数据,周期T = 2s。
代入上述公式可得角频率ω = 2π / 2 = π,振动频率f = 1 / 2 = 0.5Hz。
3. 一个质点的振动方程为x = 3sin(2πt + π/4),求该质点的振幅、周期、角频率、初相位、速度和加速度。
振动理论课后答案

解:
模态函数的一般形式为:
题设边界条件为:
,
边界条件可化作:
,
导出C2= 0及频率方程:
,其中
解:
,
不计质量的梁上有三个集中质量,如图所示。用邓克利法计算横向振动的基频。
图
解:
当系统中三个集中质量分别单独存在时:
, ,
在图所示系统中,已知m和k。用瑞利法计算系统的基频。
图
解:
近似选取假设模态为:
系统的质量阵和刚度阵分别为:
,
由瑞利商公式:
在图所示系统中,已知k和J。用传递矩阵法计算系统的固有频率和模态。
解:
设该简谐振动的方程为 ; 二式平方和为
将数据代入上式:
;
联立求解得
A=10.69cm; 1/s;T= s
当 时, 取最大,即:
得:
答:振动周期为;振幅为10.69cm;最大速度为22.63m/s。
1-3一个机器内某零件的振动规律为 ,x的单位是cm, 1/s。这个振动是否为简谐振动试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。
求图T 2-7中系统的固有频率,悬臂梁端点的刚度分别是 及 ,悬臂梁的质量忽略不计。
图T 2-7答案图T 2-7
解:
和 为串联,等效刚度为: 。(因为总变形为求和)
和 为并联(因为 的变形等于 的变形),则:
和 为串联(因为总变形为求和),故:
故:
由一对带偏心质量的等速反向旋转齿轮构成的振动机械安装在弹簧和阻尼器构成的支承上,如图所示。当齿轮转动角速度为 时,偏心质量惯性力在垂直方向大小为 。已知偏心重W=N,偏心距e=15.0cm,支承弹簧总刚度系数k=N/cm,测得垂直方向共振振幅 ,远离共振时垂直振幅趋近常值 。求支承阻尼器的阻尼比及在 运行时机器的垂直振幅。
大学机械振动考试题目及答案

大学机械振动考试题目及答案一、选择题(每题2分,共10分)1. 在简谐振动中,振幅与振动的能量关系是()。
A. 无关B. 成正比C. 成反比D. 振幅越大,能量越小答案:B2. 下列哪个不是机械振动系统的自由度?()。
A. 转动B. 平动C. 振动D. 形变答案:C3. 一个单自由度系统在受到初始条件激励后,其振动形式是()。
A. 简谐振动B. 阻尼振动C. 受迫振动D. 自由振动答案:D4. 在阻尼振动中,如果阻尼系数增加,振动的振幅将()。
A. 增加B. 不变C. 减小D. 先增加后减小答案:C5. 对于一个二自由度振动系统,其振动模态数量是()。
A. 1B. 2C. 3D. 4答案:B二、填空题(每题2分,共10分)6. 一个物体做自由振动时,其频率称为______。
答案:固有频率7. 当外力的频率与系统的固有频率相等时,系统发生的振动称为______。
答案:共振8. 阻尼力与速度成正比的阻尼称为______阻尼。
答案:线性9. 振动系统的动态响应可以通过______分析法求解。
答案:傅里叶10. 在转子动力学中,临界转速是指转子发生______振动的转速。
答案:自激三、简答题(每题5分,共20分)11. 简述什么是简谐振动,并说明其运动方程的形式。
答案:简谐振动是一种周期性的振动,其加速度与位移成正比,且方向相反。
在数学上,简谐振动的运动方程可以表示为:x(t) = A * cos(ωt + φ)其中,A 是振幅,ω 是角频率,t 是时间,φ 是初相位。
12. 解释什么是阻尼振动,并说明其特点。
答案:阻尼振动是指在振动系统中存在能量耗散,导致振幅随时间逐渐减小的振动。
其特点包括振幅逐渐衰减,振动频率可能会随着振幅的减小而发生变化,且阻尼力通常与振动速度成正比。
13. 描述什么是受迫振动,并给出其稳态响应的条件。
答案:受迫振动是指系统在周期性外力作用下的振动。
当外力的频率接近系统的固有频率时,系统将发生共振,此时振幅会显著增大。
振动力学习题集含答案

解:
利用动量矩定理得:
,
,
,
,
面积为S、质量为m的薄板连接于弹簧下端,在粘性流体中振动,如图所示。作用于薄板的阻尼力为 ,2S为薄板总面积,v为速度。若测得薄板无阻尼自由振动的周期为 ,在粘性流体中自由振动的周期为 。求系数 。
图
解:
平面在液体中上下振动时:
,
,
图所示系统中,已知m,c, , , 和 。求系统动力学方程和稳态响应。
(2)
若取下面为平衡位置,求解如下:
,
图T 2-17所示的系统中,四个弹簧均未受力,k1=k2=k3=k4=k,试问:
(1)若将支承缓慢撤去,质量块将下落多少距离?
(2)若将支承突然撤去,质量块又将下落多少距离?
图T 2-17
解:
(1) ,
(2) ,
如图T 2-19所示,质量为m2的均质圆盘在水平面上可作无滑动的滚动,鼓轮绕轴的转动惯量为I,忽略绳子的弹性、质量及各轴承间的摩擦力,求此系统的固有频率。
因此有:
图所示阶梯杆系统中已知m,ρ,S,E和k。求纵向振动的频率方程。
图
解:
模态函数的一般形式为:
题设边界条件为:
,
边界条件可化作:
,
导出C2= 0及频率方程:
,其中
长为l、密度为ρ、抗扭刚度为GIp的的等直圆轴一端有转动惯量为J的圆盘,另一端连接抗扭刚度为k的弹簧,如图所示。求系统扭振的频率方程。
《振动力学》习题集(含答案)
质量为m的质点由长度为l、质量为m1的均质细杆约束在铅锤平面内作微幅摆动,如图所示。求系统的固有频率。
图
解:
系统的动能为:
其中I为杆关于铰点的转动惯量:
大学物理第九章振动学基础习题答案

第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。
解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。
(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。
解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。
(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。
现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。
(1)证明此质点的运动是谐振动;(2)计算其振动周期。
解:以球心为原点建立坐标轴Ox 。
质点距球心x 时所受力为324433x mF G G mx x πρπρ=-=-令43k G m πρ=,则有F kx =-,即质点做谐振动。
(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T s 。
当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x ×10-2m 处,向负方向运动;(4)物体在x =-×10-2 m 处,向正方向运动。
求以上各种情况的振动方程。
解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭(3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭(4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。
振动理论课后题部分汇总

第一章2-1 一单层房屋结构可简化为题2-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。
求该房屋作水平方向振动时的固有频率。
解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。
等效弹簧系数为k 则 mg k δ=其中δ为两根杆的静形变量,由材料力学易知δ=324mgh EJ =则 k =324EJ h设静平衡位置水平向右为正方向,则有"m x kx =-所以固有频率3n 24mh EJ p =2-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题2-2图所示。
试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角θ 2aθ=h α2F =mg由动量矩定理: ah a mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12cossin ≈≈θαα h l ga p ha mg ml n 22222304121==⋅+θθθF sin α2θαFhmgθFg h a l ga h l p T n 3π23π2π222=== 2-3 求题2-3图中系统的固有频率,悬臂梁端点的刚度分别是1k 和3k ,悬臂梁的质量忽略不计。
解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。
k 1ˊ与k 3并联,设总刚度为k 2ˊ。
k 2ˊ与k 4串联,设总刚度为k 。
即为21211k k k k k +=',212132k k kk k k ++=',4241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++=)(42412132314214324212k k k k k k k k k k m k k k k k k k k k p ++++++=2-4求题2-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《振动力学》——习题第二章 单自由度系统的自由振动2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。
试求2W 下降的最大距离和两物体碰撞后的运动规律。
解:222221v gW h W =,gh v 22=动量守恒:122122v gW W v g W +=,gh W W W v 221212+=平衡位置:11kx W =,kW x 11=1221kx W W =+,kW W x 2112+=故:kW x x x 21120=-= ()2121W W kgg W W k n +=+=ω故:tv t x txt x x n nn n nn ωωωωωωsin cos sin cos 12000+-=+-=xx 0x 1x 12平衡位置2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。
试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角θ2aθ=h α2F =mg由动量矩定理:ah a mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12cossin ≈≈θααh l ga p ha mg ml n 22222304121==⋅+θθ g h a l ga h l p T n 3π23π2π222===2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。
试求其摆动的固有频率。
图2-3 图2-42-4 如图2-4 所示,一质量m连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率:(1)振动过程中杆被约束保持水平位置;(2)杆可以在铅垂平面内微幅转动;(3)比较上述两种情况中哪种的固有频率较高,并说明理由。
图T 2-9 答案图T 2-9解:(1)保持水平位置:m kk n 21+=ω(2)微幅转动:mglllF2112+=mgl1l2xx2xx'mglll2121+=k2k1ml1l2()()()()()()()()()mgk k l l k l k l mgk k l l k l l k l l l k l mg k k l l k l k l l l l k l l mg l mgk l l l k l l l l l l k l l mg l l l l x x k F x x x 2122122212121221221121212221212211211121212122211211121221112111 ++=+-++=+-⋅+++=⎥⎦⎤⎢⎣⎡+-++++=+-+='+=故:()22212121221k l k l k k l l k e++=mk en =ω 2-5 试求图2-5所示系统中均质刚性杆AB 在A 点的等效质量。
已知杆的质量为m ,A端弹簧的刚度为k 。
并问铰链支座C 放在何处时使系统的固有频率最高?图2-5 图2-62-6 在图2-6所示的系统中,四个弹簧均未受力。
已知m =50kg ,19800N m k =,234900N m k k ==,419600N m k =。
试问:(1)若将支撑缓慢撤去,质量块将下落多少距离? (2)若将支撑突然撤去,质量块又将下落多少距离?{2.17} 图T 2-17所示的系统中,四个弹簧均未受力,k 1= k 2= k 3= k 4= k ,试问: (1)若将支承缓慢撤去,质量块将下落多少距离? (2)若将支承突然撤去,质量块又将下落多少距离?图 T 2-17解:kk k k k k k k k k k k k k k k 213224123412312342312311233223=+==+==+=(1)01234x k mg =,kmgx 20=(2)()t x t x n ωcos 0=,kmgx x 420max == 2-7 图2-7所示系统,质量为m 2的均质圆盘在水平面上作无滑动的滚动,鼓轮绕轴的转动惯量为I ,忽略绳子的弹性、质量及各轴承间的摩擦力。
试求此系统的固有频率。
图2-7解:系统动能为:k 1k 2k 3k 4m222221222222221212321 2121212121x m x m R I m r x r m x m R x I x m T e =⎪⎪⎭⎫ ⎝⎛++=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+=系统动能为:2222211222112221 21 2121x k x R R k k x R R k x k V e =⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+=根据:max max V T =,max max x xn ω= 2221222112223m R I m R R k k n +++=ω 2-8 如图2-8所示的系统中,钢杆质量不计,建立系统的运动微分方程,并求临界阻尼系数及阻尼固有频率。
图2-8解:0=⋅+⋅+⋅b b k a a c l l m θθθ 0222=++θθθkb ca ml mkl b ml kb n ==22ω n ml ca ξω222=,kmmlb ca ml ca n 22222==ωξ 42222222422421411a c b kml mlk m b l m a c m k l b n d -=⋅-=-=ξωω 由mk ablc 221=⇒=γξ 2-9 图2-9所示的系统中,m =1kg ,k =224N/m ,c =48N.s/m ,l 1=l =0.49m ,l 2=l /2,l 3=l /4,不计钢杆质量。
试求系统的无阻尼固有频率n ω及阻尼ζ。
图2-9{2.26} 图T 2-26所示的系统中,m = 1 kg ,k = 144 N / m ,c = 48 N •s / m ,l 1 = l = 0.49 m ,l 2 = 0.5 l , l 3 = 0.25 l ,不计刚杆质量,求无阻尼固有频率n ω及阻尼ζ。
ablb k θa c θl m θ图 T 2-26答案图 T 2-25解:受力如答案图T 2-26。
对O 点取力矩平衡,有:0223311=⋅+⋅+⋅l l k l l c l l m θθθ 0222321=++θθθkl cl ml 041161=++θθθk c m 36412=⋅=⇒mkn ω s rad n / 6=⇒ωnmcζω2161=25.02116=⋅=⇒nm c ωζ第三章 单自由度系统的强迫振动3-1 如图3-1所示弹簧质量系统中,两个弹簧的连接处有一激振力0()sin P t P t ω=。
试求质量块的振幅。
图3-1解:设弹簧1,2的伸长分别为x 1和x 2,则有,21x x x += (A ) 由图(1)和图(2)的受力分析,得到t P x k x k ωsin 02211+= (B )mOθ2l k θ⋅1l m θ ⋅3l c θ ⋅l 1m kcl 2l 322x k xm -= (C ) 联立解得,tP k k k x k k k k x m ωsin 02122121+++-=tP m k k k x m k k k k xωsin )()(02122121+=++所以)(2121k k m k k p n =,n = 0,得, 2102222222)(11)2()1(1)2()(nn p k P kH n p hB ωςλλωω-=+-=+-=图3-23-2 图3-2所示系统中,刚性杆AB 的质量忽略不计,B 端作用有激振力0()sin P t P t ω=,写出系统运动微分方程,并求下列情况中质量m 作上下振动的振幅值:(1)系统发生共振;(2)ω等于固有频率n ω的一半。
解:图(1)为系统的静平衡位置,以θ为系统的广义坐标,画受力如图(2)t lP l k l l c l I ωθθθsin 3)3(3)2(20+⋅⋅-⋅⋅⋅-=又 I =ml 2t P ml m k m c ωθθθsin 340=9++∴则⎪⎪⎩⎪⎪⎨⎧===ml p h m c n m k p n 023,429mgθBP 0sin ωtAX AY AF CF K22222222)2()()2()(ωωωωθθn p hllB B n p hB n n +-==+-=1)系统共振,即ω=n pkm cp m km c l ml p np hl B n 494)/3(200=⨯⨯==∴2)n P 21=ω3-3 建立图3-3所示系统的运动微分方程,并求出系统的固有频率n ω,阻尼比ζ以及稳态响应振幅。
图3-3解:以刚杆转角ϕ为广义坐标,由系统的动量矩定理ϕϕϕ 22)(4cl l x l k m l s ---=即t l ka m k m c ωϕϕϕsin 44=++mkc kp m k m c m k l ml p np p hl B n n 81641194944273)(4320222222+=+⎪⎭⎫⎝⎛⨯=+⎪⎭⎫ ⎝⎛=∴令,m k p n 4=,m c n 42=,n n mp c p n 8==ς,ml ka h 4=,n p ωλ=得到 2222)2()(ωωϕn p hB n +-=22222222)2()1(2)2()1(242ςλλωωϕ+-=+-⨯==a p p n p pl mlka l B B n n nn3-4 一机器质量为450kg ,支撑在弹簧隔振器上,弹簧静变形为0.5cm ,机器有一偏心重,产生偏心激振力20 2.254P g ω=,其中ω是激振频率,g 是重力加速度。
试求:(1)在机器转速为1200r/min 时传入地基的力;(2)机器的振幅。
解:设系统在平衡位置有位移x ,则0mx kx F +=即0F kx x m m +=又有st mg k δ= 则st mgk δ=(1)所以机器的振幅为2021F B k λλ=-(2)且n p ωλ=,40rad s ωπ=(3)又有2n st k gp m δ==(4)将(1)(2)(4)代入(2)得机器的振幅B =0.584 mm则传入地基的力为514.7T p kB N ==2-9一个粘性阻尼系统在激振力t F t F ωsin )(0=作用下的强迫振动力为⎪⎭⎫ ⎝⎛+=6πsin )(t B t x ω,已知6.190=F N ,B =5 cm ,π20=ωrad/s ,求最初1秒及1/4秒内,激振力作的功1W 及2W 。
0110101100140201400:()sin 19.6sin 20()cos()cos(20)66W =P(t)x(t)19.6sin 20cos(20)64.9(1cos80)15.39()()19.6sin 20c P t P wt tx t Bw wt t dtt t dtt dtJW P t x t dtt πππππππππππππ===+=+=⋅+=---=-===⋅⎰⎰⎰⎰⎰由已知可得同理可得:os(20)60.0395t dtJππ+=3-5 证明:粘滞阻尼利在一个振动周期内消耗的能量可表示为202222(1)(2)P E k πςλλςλ∆=-+ 证明()()()222222002222222cos()/21412TE c B t dt c B BF k F E c kωωϕπωπζλπωλξλλζλ∆=--=-=∆=-=-+-+⎰3-6 单自由度无阻尼系统受图3-6所示的外力作用,已知(0)(0)0x x ==。