高斯小学奥数含答案二年级(下)第07讲 数列规律

合集下载

二年级奥数找规律题讲解习题及答案

二年级奥数找规律题讲解习题及答案

二年级奥数找规律题讲解、习题及答案二年级奥数找规律题讲解、习题及答案观察、搜集已知事实,从中发现具有规律性的线索,用以探索未知事件的奥秘,是人类智力活动的主要内容.数学上有很多材料可用以来模拟这种活动、培养学生这方面的能力.例1?观察数列的前面几项,找出规律,写出该数列的第100项来?12345,23451,34512,45123,…解:为了寻找规律,再多写出几项出来,并给以编号:仔细观察,可发现该数列的第6项同第1项,第7项同第2项,第8项同第3项,…也就是说该数列各项的出现具有周期性,他们是循环出现的,一个循环节包含5项.100÷5 20.可见第100项与第5项、第10项一样项数都能被5整除,即第100项是51234.例2?把写上1到100这100个号码的牌子,像下面那样依次分发给四个人,你知道第73号牌子会落到谁的手里?解:仔细观察,你会发现:分给小明的牌子号码是1,5,9,13,…,号码除以4余1;分给小英的牌子号码是2,6,10,14,…,号码除以4余2;分给小方的牌子号码是3,7,11,…,号码除以4余3;分给小军的牌子号码是4,8,12,…,号码除以4余0 整除 .因此,试用4除73看看余几?73÷4 18…余 1可见73号牌会落到小明的手里.这就是运用了如下的规律:用这种规律预测第几号牌子发给谁,是很容易的,请同学们自己再试一试.例3?四个小动物换位,开始小鼠、小猴、小兔和小猫分别坐在1、2、3、4号位子上如下图所示 .第一次它们上下两排换位,第二次左右换位,第三次又上下交换,第四次左右交换.这样一直交换下去,问十次换位后,小兔坐在第几号座位上?解:为了能找出变化规律,再接着写出几次换位情况,见下图.盯住小兔的位置进行观察:第一次换位后,它到了第1号位;第二次换位后,它到了第2号位;第三次换位后,它到了第4号位;第四次换位后,它到了第3号位;第五次换位后,它又到了第1号位;…可以发现,每经过四次换位后,小兔又回到了原来的位置,利用这个规律以及10÷4 2…余2,可知:第十次换位后,小兔的座位同第二次换位后的位置一样,即在第二号位.如果再仔细地把换位图连续起来研究研究,可以发现,随着一次次地交换,小兔的座位按顺时针旋转,小鼠的座位按逆时针旋转,小猴的座位按顺时针旋转,小猫的座位按逆时针旋转,按这个规律也可以预测任何小动物在交换几次后的座位.例4?从1开始,每隔两个数写出一个数,得到一列数,求这列数的第100个数是多少?1,4,7,10,13,…解:不难看出,这是一个等差数列,它的后一项都比相邻的前一项大3,即公差 3,还可以发现:第2项等于第1项加1个公差即4 1+1×3.第3项等于第1项加2个公差即7 1+2×3.第4项等于第1项加3个公差即10 1+3×3.第5项等于第1项加4个公差即13 1+4×3.…可见第n项等于第1项加 n-1 个公差,即按这个规律,可求出:第100项 1+ 100-1 ×3 1+99×3 298.例5?画图游戏先画第一代,一个△,再画第二代,在△下面画出两条线段,在一条线段的末端又画一个△,在另一条的末端画一个○;画第三代,在第二代的△下面又画出两条线段,一条末端画△,另一条末端画○;而在第二代的○的下面画一条线,线的末端再画一个△;…一直照此画下去见下图,问第十次的△和○共有多少个?解:按着画图规则继续画出几代,以便于观察,以期从中找出图形的生成规律,见下图.数一数,各代的图形包括△和○的个数列成下表:可以发现各代图形个数组成一个数列,这个数列的生成规律是,从第三项起每一项都是前面两项之和.按此规律接着把数列写下去,可得出第十代的△和○共有89个见下表:这就是著名的裴波那契数列.裴波那契是意大利的数学家,他生活在距今大约七百多年以前的时代.例6?如下图所示,5个大小不等的中心有孔的圆盘,按大的在下、小的在上的次序套在木桩上构成了一座圆盘塔.现在要把这座圆盘塔移到另一个木桩上.规定移动时要遵守一个条件,每搬一次只许拿一个圆盘而且任何时候大圆盘都不能压住小圆盘.假如还有第三个木桩可作临时存放圆盘之用.问把这5个圆盘全部移到另一个木桩上至少需要搬动多少次? 下图所示解:先从最简单情形试起.①当仅有一个圆盘时,显然只需搬动一次见下页图 .②当有两个圆盘时,只需搬动3次见下图 .③当有三个圆盘时,需要搬动7次见下页图 .总结,找规律:①当仅有一个圆盘时,只需搬1次.②当有两个圆盘,上面的小圆盘先要搬到临时桩上,等大圆盘搬到中间桩后,小圆盘还得再搬回来到大圆盘上.所以小的要搬两次,下面的大盘要搬1次.这样搬到两个圆盘需3次.③当有三个圆盘时,必须先要把上面的两个小的圆盘搬到临时桩上,见上图中的 1 ~ 3 .由前面可知,这需要搬动3次.然后把最下层的最大圆盘搬一次到中间桩上,见图 4 ,之后再把上面的两个搬到中间桩上,这又需搬3次,见图中 5 ~ 7 .所以共搬动2×3+1 7次.④推论,当有4个圆盘时,就需要先把上面的3个圆盘搬到临时桩上,需要7次,然后把下面的大圆盘搬到中间桩上 1次,之后再把临时桩上的3个圆盘搬到中间桩上,这又需要7次,所以共需搬动2×7+1 15次.⑤可见当有5个圆盘时,要把它按规定搬到中间桩上去共需要:2×15+1 31次.这样也可以写出一个一般的公式叫递推公式对于有更多圆盘的情况可由这个公式算出来.进一步进行考察,并联想到另一个数列:若把n个圆盘搬动的次数写成an,把两个表对照后,可得出有了这个公式后直接把圆盘数代入计算就行了,不必再像前一个公式那样进行递推了.1.先计算下面的前几个算式,找出规律,再继续往下写出一些算式:①1×9+2 ②9×9+712×9+3 98×9+6123×9+4 987×9+51234×9+5 9876×9+4……2.先计算下面的奇妙算式,找出规律,再继续写出一些算式:19+9×9118+98×91117+987×911116+9876×9111115+98765×9…3.先计算下面的前几个算式,找出规律,再继续写出一些算式:1×111×11111×1111111×111111111×11111…4.有一列数是2、9、8、2、…,从第三个数起,每一个数都是它前面的两个数相乘积的个位数字比如第三个数8就是2×9 18的个位数字 .问这一列数的第100个数是几?5.如果全体自然数按下表进行排列,那么数1000应在哪个字母下面?6.如果自然数如下图所示排成四列,问101在哪个字母下面?7.3×3的末位数字是9,3×3×3的末位数是7,3×3×3×3的末位数字是1.求35个3相乘的结果的末位数字是几?习题解答1解.①1×9+2 1112×9+3 111123×9+4 11111234×9+5 1111112345×9+6 111111123456×9+7 11111111234567×9+8 1111111112345678×9+9 111111111.②9×9+7 8898×9+6 888987×9+5 88889876×9+4 8888898765×9+3 888888987654×9+2 88888889876543×9+1 88888888.2解.19+9×9 100118+98×9 10001117+987×9 1000011116+9876×9 100000111115+98765×9 10000001111114+987654×9 1000000011111113+9876543×9 100000000111111112+98765432×9 10000000001111111111+987654321×9 1XXXXXXXXXX.3解.1×1 111×11 121111×111 123211111×1111 123432111111×11111 123454321111111×111111 1XXXXXXXXXX1111111×1111111 1XXXXXXXXXX2111111111×11111111 1XXXXXXXXXX4321111111111×111111111 1XXXXXXXXXX6543214.解:按数列的生成规律再多写出一些数来,再仔细观察,找出规律:2、9、8、2、6、2、2、4、8、2、6、2、2、4、8、2、6、2、2、4、…可见,除最前面的两个数2和9以外,8、2、6、2、2、4这六个数依次重复出现.因此,可利用这个规律,按下面的方法找出第100个数出来:100-2 98,98÷6 16…2.即第100个数与这六个数的第2个数相同,即第100个数是2.5.解:不难发现,每个字母下面的数除以7的余数都是相同的.如第1列的三个数1、8和15,除以7时的余数都是1;第2列的三个数2、9和16,除以7时的余数都是2;第3列的三个数3、10和17,除以7的余数都是3;….利用这个规律,可求出第1000个自然数在哪个字母下面:1000÷7 142 (6)所以1000在字母F的下面.6.解:可以这样找出排列的规律性:全体自然数依次循环排列在A、B、C、D、D、C、B、A八个字母的下面,即依上题解题方法:101÷8 12…5.可知101与5均排在同一字母下面,即在D的下面.7.解:从简单情况做起,列表找规律:仔细观察可发现,乘积的末位数字的出现有周期性的规律:看相乘的3的个数除以4的余数,余1时,积的末位数字是3,余2时,积的末位数字是9,余3时,积的末位数字是7,整除时,积的末位数字是1,35÷4 8 (3)所以这个积的末位数字是7.矿泉水中锶偏硅酸等矿物质对身体有那些好处。

高斯小学奥数含答案二年级(下)第04讲有趣的搭配

高斯小学奥数含答案二年级(下)第04讲有趣的搭配

第四讲有趣的搭配前续知识点: 二年级第一讲;XX 模块第X 讲 后续知识点: X 年级第X 讲;XX 模块第X 讲Fj- 我也要试试不同的效果1我要试试将这块石头放到其它神水中效果是什么样的. ..萱萱..哇!真的好神奇啊!本讲我们将探索简单事物组合、排列的规律,培养有顺序地、全面地思考问题的意识•来看看最简单的搭衣服吧.上下装搭配的每种穿法需要两步来确定,一步是上装的选择,一步是下装的选择,一件上装搭配一件下装就是一种穿法.例题1小熊要穿衣服,它共有3件不同的上衣和4条不同的裤子.那么,小熊共有多少种不同的穿法?【提示】红色上衣可以和哪几条裤子搭配成一身衣服呢?用笔连一连.练习1淘淘去餐厅点餐,看到菜单上写着:饮料有:可乐、橙汁;点心有:玉米、汉堡、薯条.如果饮料和点心只能各选一种,搭配成一份套餐,一共有多少种不同的搭配方法?搭配食物和搭配衣服一样,一步选择饮料,一步选择点心,这样才能完成一个组合.我们用同样的方法解决选择路线的问题.思考一下,有没有先后顺序.例题2小狗要去小猪家,必须经过小兔家,它一共有多少种不同的走法?练习2丫丫从家到学校有3条路,从学校到少年宫有2条路,丫丫从家要到少年宫,中途必须经过学 校,一共有多少种不同的走法?前面的例题中,衣服,食物,路线,我们在选择顺序时,每一步之间都没有重合的部分.比 如,搭配衣服,一步上衣一步裤子,这两者没有重叠的部分•这是比较简单的情况.有的时候情况要复杂一些.比如说单打比赛的时候,甲乙两方.我们依然可以先选甲方人 选,再选择乙方人选.但是每个人都可以成为甲方或者乙方,这就有了重叠了,那该怎么办呢?【提示】从小狗家去小兔家,共有多少种不同的走法呢?从小兔家到小猪家呢?例题3小明、小平、小丽、小花四个小朋友进行乒乓球单打比赛,要求每两个同学比赛一场,这次比赛一共要进行多少场?【提示】每人都要进行3 场比赛吗?练习3白雪公主和7 个小矮人在一起玩,每两个人都要握一次手,一共握了多少次手?排列组合就是有顺序的思考问题,找出规律.接下来,我们一起用学到的方法解决问题吧!想想看,还有没有其它的方法?例题4体育课上,老师让小华去体育室拿 3 个球.体育室中有一个足球、一个篮球、一个排球和一个橄榄球.请问,小华共有多少种不同的拿法?【提示】当选好3 个球之后,体育室中还剩余几个球?练习4跳跳的家里共有A、B、C、D、E这5盏吊灯.妈妈让跳跳关掉其中的4盏,请问,跳跳共有多少种不同的关灯方法?例题5有一些游客去海边游玩,海边共停靠着7 艘不同的快艇.如果这些游客要从中选出 5 艘快艇去游玩,那么共有多少种不同的选法?【提示】先把这7艘快艇编上序号吧!从7艘中选出5艘,那么会剩下几艘呢?例题6如图所示,在一个圆圈上有6 个点,以这些点为端点,一共可以画出几条线段?【提示】从任意一个点出发,与其它5个点分别相连画出5条线段,共6个点,5X 6= 30(条)•是不是一共可以画出30 条线段?作业1. 明天是妈妈的生日,东东打算为妈妈选一束花和一个蛋糕, 他看中了的蛋糕•请问:他共有几种不同的选法?2. 平平逛动物园,从猴子山到老虎洞有 2条路,从老虎洞到熊猫竹林有到熊猫竹林,中途必须经过老虎洞,一共有几种不同的走法?课堂内外动手试一试用■ 多少种不同的涂法?涂涂看!共有 3束不同的花和3个不同2条路.平平从猴子山要 的每层花瓣涂上不同的颜色,3.天天、东东、灵灵3个人,每两个人握一次手,她们三个共要握几次手?4.朵朵准备了6 首歌曲参加圣诞晚会,如果要从中选出5 首歌曲参加晚会,朵朵一共有几种不同的选法?5.森林里的小动物们盖了5间漂亮的小房子,猪妈妈要从中选出3 间房子留给自己的孩子.猪妈妈共有几种不同的选法?第四讲有趣的搭配1. 例题1答案:12详解:方法一:首先可以先选择上衣,共有3种不同的选择•选择每一件上衣,就有4条裤子与其搭配,可以说3件上衣分别都有4种方法与其搭配,所以共有4 4 4 3 4 12 (种)•方法二:每条裤子都有3件上衣与其搭配,所以共有3 3 3 3 4 3 12 (种)•2. 例题2答案:12详解:从小狗家去小猪家,必须经过小兔家,那么从小狗家去小兔家共有3条不同的路线,如果选定其中的一条路线,再从小兔家去小猪家,又有4种不同的路线,可以在从小狗家去小兔家的3条不同的路线上分别标上4,那么总共有4 4 4 3 4 12 (种)•3. 例题3答案:6详解:先定出小明和其他三人比赛,共有3场,小平已经和小明比过,那么小平还要和剩余两人比赛,共有2场比赛•那么剩下的小丽再和小花比赛一场即可,所以共有 3 2 16 (场)比赛.还可以用大炮发射法:3场2场1场0场4. 例题4答案:4详解:从4个球中任选3个,可以----- 枚举,共有4种:足球、篮球、排球,足球、篮球、橄榄球,足球、排球、橄榄球,篮球、排球、橄榄球•也可以用排除法:因为从4个球中任选3个,相当于从4个球中排除一个,排除一个就有一种拿法, 所以有4种不同的拿法.足球篮球排球橄榄球V V V XV V X VV X V VX V V V5. 例题5答案:21详解:假设这7艘快艇是A 、B 、C 、D 、E 、F 、G ,要选出5艘,就相当于排除其中的 2 艘.可以有AB 、AC 、AD 、 AE 、AF 、AG, BC 、BD 、BE 、BF 、BG, CD 、CE 、CF 、CG , DE 、DF 、DG , EF 、EG 、FG ,共有 6 5 4 3 2 121(种)•9. 练习3答案:28简答:先定岀白雪公主和 7个小矮人握手,共握 7次,其他人都依次减少 1次,所以这 8个人共握 7 6 5 4 3 2 1 28 (次).10. 练习4答案:5简答:从A 、B 、C 、D 、E 、这5盏吊灯中关掉4盏,就相当于排除其中的1盏.方法有A 、B 、C 、D 、E ,共5 种,所以一共有5种不同的选法.11. 作业 1答案: 9 6. 例题6答案:15详解:假设这 6个点是A 、B 、C 、 线段;再以B 为端点,则可以看到他点相连得岀的线段数量依次减少 D 、E 、F ,以A 为端点,则可以看到 A 与B 、C 、D 、E 、F 相连可以画出5条 B 与C 、D 、E 、F 相连可以画岀4条线段;依次画下去,可以知道每个点与其 1条,所以共有5 4 3 2 1 15 (条)线段.7. 练习1答案:6简答:首先可以先选择饮料,共有 别都有3种方法与其搭配,所以共有 2种不同的选择.选择每种饮料,就有 3种点心与其搭配,可以说 2种饮料分 336 (种).8. 练习2答案:6简答:从家去少年宫,必须经过学校, 校去少年宫,又有2种不同的路线, 那么从家去学校共有 那么总共有 2 2 3条不同的路线,如果选定其中的一条路线,再从学 236 (种).简答:选定每一束花都分别有3种搭配蛋糕的方法,所以一共有3 3 3 9 (种)不同的选法•也可以先画图,用△代表花,用O代表蛋糕,然后用连线法数出共有9种不同的选法.12. 作业2答案:4简答:从猴子山到老虎洞有 2 条路,选定一条路之后又可以有 2 条路到熊猫竹林,所以一共有 2 2 4(种)不同的走法•也可以先画图,数出共有4种不同的走法.13. 作业3答案:3简答:天天分别和东东、灵灵握手一共要握2次,之后,东东只需和灵灵握1次,所以一共有2 1 3 (次)•也可以用连线法做.14. 作业4答案:6简答:从6首歌曲中选出5首,可以利用排除法:只要排除1首,就会留出5首•比如这6首歌的编号分别是A、B、C、D、E、F,那么可以有这些排除方法:A、B、C、D、E、F,共6种,所以一共有6种不同的选法.15. 作业5答案:10简答:从5间房子中选出3间房,利用排除法,可以排除2间,就会留出3间•比如这5间房的编号分别是A、B、C、D、E,那么可以有这些排除方法:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10种,所以猪妈妈共有10种不同的选法.。

高斯小学奥数含答案二年级(下)第09讲 加减法巧算二

高斯小学奥数含答案二年级(下)第09讲 加减法巧算二

第九讲加减法巧算二前续知识点:二年级第一讲;XX模块第X讲后续知识点:X年级第X讲;XX模块第X讲把里面的人物换成相应红字标明的人物.咦,发生什么事了? 不知道什么时候门关上了,要想出去,必须在30秒的时间内做出下面这道题.小朋友们,你们有办法在30秒内做出这道题吗? 阿呆阿瓜阿瓜 阿呆在进行加减法计算时,“先计算括号里的部分,再从左往右依次计算”是基本的运算法则.但除此之外,还有许多运算技巧,熟练掌握各种运算技巧可以使你计算的更快更准.“凑整法”是最常用的巧算方法,就是在计算时优先计算可以得到整十、整百、整千的部分,从而达到巧算的目的.要想凑出整十,两个数的末尾相加应该得0,这样的情况除了00+外,还有19+,28+,37+,46+,55+.同学们在做题时要注意观察各加数的个位,看能不能找到合适的凑法.除了加法可以凑整之外,减法同样可以凑整,个位相同的两个数相减后便能得到整十的数.在进行加减法混合运算时,经常会遇到能够巧算的数不在一起的情况,这时候就需要通过调整运算顺序,把能巧算的放在一起先算.但需要注意的是,在调整的过程中,每个数都必须带着自己前面的符号一起移动,这种调整可以形象地称作“带符号搬家”.如果搬家的是算式中的第一个数,前面没有符号,在这个数之前添上一个加号即可.除了“带符号搬家”可以调整运算顺序外,“脱括号”与“添括号”也是改变运算顺序的常用方法.加减法算式中,“添括号”要遵循下面的规则:括号前面是加号,添上括号不变号;括号前面是减号,添上括号变符号.例如:57623857(6238)57100157++=++=+= 60171360(1713)603030--=-+=-= 例题1用简便方法计算:(1)37559241-- (2)168139129-+【提示】找出可以凑成整十、整百的数.练习1用简便方法计算:(1)1958911-- (2)36714585-+例题2用简便方法计算:(1)1623879++(2)157432921+--(3)421521754825----【提示】找可以凑整的“好朋友”,添加括号,让“好朋友”先计算.练习2用简便方法计算:36427664266+--前面学习了“添括号”的巧算方法,其实“脱括号”也是一个重要的技巧,“脱括号”与“添括号”类似,“脱括号”要遵循下面的规则: 括号前面是加号,脱去括号不变号;括号前面是减号,脱去括号变符号.例题3 用简便方法计算: (1)121(4521)-+ (2)176(1576)+-【提示】先去括号,再凑整. 练习3简便方法计算:(1)138(3849)-- (2)234(3485)-+例题4用简便方法计算:+-+-(1)145(5578)(1422)----(2)162(62135)(3519)-+--++(3)273(15018)(17376)(12418)【提示】先去括号,找到能凑整的数再进行计算.练习4用简便方法计算:----(1)123(2345)(4567)--+-(2)437(20086)(6356)接下来看一个与数位有关的计算.这样的计算如果硬算就显得特别麻烦,开动脑筋想一想有没有巧妙方法呢?例题5用简便方法计算:++-246462624888【提示】仔细观察,前面三个数都是由哪几个数字组成的?例题6如下图所示,除第一行外,每个圆圈中的数都等于它上面两个圆圈中的数的和,请计算最下面的圆圈中应填的数.【提示】最下面的圆圈中填的数就是最上面所有圆圈中的数的和.课堂内外神奇的读心术假如有人能迅速说出一个三位数减法算式结果里的十位数字,你会不会感到很惊讶呢?下面我们就来看看这种神奇的减法.①你在心中想一个三位数(不要说出来),它的个位数、十位数、百位数均不同,如:563.②你把刚才想的三位数倒过来变成另外一个数(记在心里,不要说不出),即365.③你把步骤①和步骤②中的两个数相减,得出结果.注意要用大数减小数,即:-=.这个结果只需让你自己记得.563365198④现在,有人可以马上说出十位数字是9.你发现什么奥秘了吗?举个例子试着算算看!作业1. 用简便方法计算.(1)3658424-+ (2)2235941--2. 用简便方法计算.(1)4276141039+-+(2)2963742745842-+--3. 用简便方法计算.(1)154(4354)+-(2)189(8998)--4. 用简便方法计算.(1)216(1379)(8799)+-++--+-(2)122(5778)(57125)5.用简便方法计算.714147471555++-第九讲加减法巧算二1. 例题1答案:(1)75;(2)158详解:根据加减法的凑整特征,带符号搬家,把能凑整的放在一起算,再在适当的位置添上括号进行计算.括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号,加减互变.(1)37559241375(59241)37530075--=-+=-= (2) 168139129168(139129)16810158-+=--=-=2. 例题2答案:(1)240;(2)150;(3)131 详解:根据加减法的凑整特征,带符号搬家,把能凑整的放在一起算,再在适当的位置添上括号进行计算.括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号,加减互变.(1)162387939(16238)(7939)20040240++-=++-=+= (2)157432921(15743)(2921)20050150+--=+-+=-=(3)431521754825431(5248)(17525)431100200131----=-+-+=--=3. 例题3答案:(1)55;(2)115详解:加减法算式中,“脱括号”要遵循下面的规则:括号前面是加号,脱去括号不变号;括号前面是减号,脱去括号变符号.(1)121(4521)121452112121451004555-+=--=--=-= (2)176(1576)1761576176761510015115+-=+-=-+=+=4. 例题4答案:(1)114;(2)219;(3)150详解:加减法算式中,“脱括号”要遵循下面的规则:括号前面是加号,脱去括号不变号;括号前面是减号,脱去括号变符号.(1)145(5578)(1422)14555781422(14555)(7822)1420010014114+-+-=+-+-=+-++=-+= (2)162(62135)(3519)162621353519(16262)(13535)1910010019219----=-+-+=-+-+=++=(3)273(15018)(17376)(12418)273150181737612418(273173)(1818)(76124)1501000200150150-+--++=---+++=---++-=-+-=5. 例题5答案:444详解:方法一:位值原理.不难发现在246、462、624中“2、4、6”都出现在每个数中,并且在这三个数的个、十、百位上都出现一次,那么像这样的算式,就可以运用“位值原理”可以把246写成200406++;把462可以写成200602++;把624可以写成600204++.246462624888222444666888444++-=++-=方法二:列竖式.从个位算起,从开始算减法的地方标出“-”,记得上面的数都是需要算加法的.注意在计算的时候,如果一个数位上出现进位则需标出进位,如果有退位记得标退位.6. 例题6答案:4000详解:7424658732913968535258(742258)(465535)(87913)(32968)10001000100010004000+++++++=+++++++=+++=7. 练习1答案:(1)95;(2)307简答:百 十 个 2 4 64 6 26 2 4 -8 8 84 4 4(1)1958911195(8911)19510095--=-+=-= (2)36714585367(14585)36760307-+=--=-=8. 练习2答案:310简答: 36427664266(36464)(276266)30010310+--=-+-=+=9. 练习3答案:(1)149;(2)115简答:去括号,再凑整.去括号时,注意括号前面是加号,直接去括号;括号前面是减号,去括号时要变号,加减互变.(1)138(3849)138384910049149--=-+=+= (2)234(3485)234348520085115-+=--=-=10. 练习4答案:(1)167;(2)330 简答:去括号,再凑整.去括号时,注意括号前面是加号,直接去括号;括号前面是减号,去括号时要变号,加减互变.(1)123(2345)(4567)12323454567100067167----=-+-+=++= (2)437(20086)(6356)437200866356(43763)200(8656)50020030330--+-=-++-=+-+-=-+=11. 作业1答案:(1)305;(2)123 简答:根据加减法的凑整特征,带符号搬家,把能凑整的放在一起算,再在适当的位置添上括号进行计算.括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号,加减互变.(1)3658424365(8424)36560305-+=--=-= (2)2235941223(5941)223100123--=-+=-=12. 作业2答案:(1)117;(2)96简答:根据加减法的凑整特征,带符号搬家,把能凑整的放在一起算,再在适当的位置添上括号进行计算.括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号,加减互变.(1)4276141039(427410)(6139)17100117+-+=-++=+= (2)2963742745842296(374274)(5842)29610010096-+--=---+=--=13. 作业3答案:(1)143;(2)198 简答:去括号,再凑整.去括号时,注意括号前面是加号,直接去括号;括号前面是减号,去括号时要变号,加减互变.(1)154(4354)154435410043143+-=+-=+= (2)189(8998)189899810098198--=-+=+=14. 作业4答案:(1)336;(2)75 简答:去括号,再凑整.去括号时,注意括号前面是加号,直接去括号;括号前面是减号,去括号时要变号,加减互变.(1)216(1379)(8799)21613798799216(1387)(9979)21610020336+-++=+-++=+++-=++= (2)122(5778)(57125)122577857125(12278)12520012575--+-=-++-=+-=-=15. 作业5答案:777简答:用位值原理的方法.不难发现在714、147、471中“1、4、7”都出现在每个数中,并且在这三个数的个、十、百位上都出现一次,那么像这样的算式,就可以运用“位值原理”可以把714写成700104++;把147可以写成100407++;把471可以写成400701++.714147471555111444777555777++-=++-=。

高斯小学奥数含答案二年级(下)第06讲-扫雷游戏

高斯小学奥数含答案二年级(下)第06讲-扫雷游戏

第六讲扫雷游戏前续知识点:二年级第一讲;XX 模块第X 讲 后续知识点:X 年级第X 讲;XX 模块第X 讲把里面的人物换成相应红字标明的人物.小朋友们玩过扫雷游戏吗?这一讲我们会一起学习扫雷游戏的玩法.首先,我我一定要学好扫雷!!!阿呆阿呆阿呆阿呆阿呆阿呆随便画个小人儿要想从此过,先破地雷阵!们一起熟悉一下游戏规则吧!例题1根据侦察兵报告的信息,回答下面的问题.请回答:在9号周围的是哪些? 在11号周围的是哪些? 在16号周围的是哪些?既在6号周围又在12号周围的是哪些?【提示】在某个方框周围就是与这个方框共边共点的方框,即与这个方框有接触的方框.练习1大淘在花园里布置了地雷,小美蛙、奇奇猫和壮壮鼠去扫雷.博士给了他们一张地图,如图所示,让他们认识一下.和7号相邻的是2号、3号、4号、6号、8号、10号、11号、12号.和3号相邻的是2号、4号、6号、7号、8号.和1号相邻的是2号、5号、6号.1 2 3 4 5 678910 11 1213 14 15 16小美蛙:在F区周围的是A、B、G、K、L;奇奇猫:在H区周围的是哪些?壮壮鼠:在M区周围的是哪些?“G”周围一圈的8个字母,分别是“A,B,C,F ,H,K ,L ,M”,它们与“G”都有接触的部分(即与“G”共边共点的方框).因此,“K”周围只有“F,G,L”3个字母.扫雷游戏中,有些方块是雷,有些方块是数,这些数表示它周围的部分有几颗雷.例题2观察雷区,然后填数.【提示】根据题意发现,方框中的数代表的是这个方框周围的地雷数量.练习2观察雷区,在空格里填数.雷区1雷区1中的“2”表示在“2”周围的8个格子里有2个格子里有地雷;雷区2中的“3”表示在“3”周围的5个格子中有3个格子里有地雷.那么你会填雷区3吗?试一试.23雷区2雷区3A B C D EF G H I JK L M N O在已知雷区分布时,我们可以找出与每个空格相邻的格子中地雷的总个数,然后在这个空格中填上这个数.当我们知道雷区中的数时,我们可以找出与这个数所在格子相邻的格子中有多少颗地雷,然后可以判断哪些格子中有地雷,哪些格子中没有地雷.我们一起试试吧!悄悄告诉你,要先标出你确定的地方哦。

高斯小学奥数含答案二年级(下)第17讲 周期问题初步

高斯小学奥数含答案二年级(下)第17讲 周期问题初步

第十七讲 周期问题初步前续知识点:二年级第一讲;XX 模块第X 讲 后续知识点:X 年级第X 讲;XX 模块第X 讲把里面的人物换成相应红字标明的人物.我们一起去探险吧!!! 去哪里呢? 我知道有个地儿叫狄安娜神庙!! 小朋友们,你们能快速找出第100根柱子上的图案吗?谁能找到第100根柱子上的字母.那他就能得到无尽的财宝!!听说神庙里的每根柱子上都刻着字母.快跑去数啊!!!快快!!数……数,我数!原来每一列的柱子上刻的是一样的字母!萱萱卡莉娅墨莫墨莫萱萱卡莉娅 墨莫卡莉娅 萱萱 萱萱墨莫萱萱a b c d e f g 12 3 4 5 6 7 8 9 10 11 12 13 1415 16 17…… ……我们生活中有很多周期现象:潮起潮落、黑夜白天的交替、春夏秋冬的循环等等.一天24个小时就是一个周期,因为一天过后,我们会重新计时;一周七天是一个周期,因为一周过后,我们又会从周一开始……观察以下图片,你发现了什么?像这样的一些数、图像和事物,按照周而复始的规律循环出现,这种特殊的规律问题称为周期问题.例题1如图所示:10幅图按规律排成一排,其中前三幅图已经画出,请按照规律先画出第4幅图,再画出第10幅图.【提示】先找到小笑脸的旋转规律,它是按照顺时针还是逆时针旋转的?练习1如图所示:16幅图按规律排成一排,其中前三幅图已经画出,请按照规律先画出第4幅图,再画出第16幅图.第1幅 第2幅 第3幅 第4幅 ……第16幅……第1幅 第2幅 第3幅 第4幅 第10幅在解决周期问题时,关键在于找到周期的长度.只要找到周期的长度,再用总数除以周期长度,得到的商就是完整的周期的个数,余数就是除去完整周期的部分后剩下的个数.注意在有余数的除法中,余数要比除数小.例题2下面图形排列是有规律的,那么你知道第33个图形是什么?前33个图形中有几个“○”?【提示】找一找规律,发现4个图形为一个周期.练习2下面图形排列是有规律的,那么你知道前面24个图形中共有多少个“○”吗?例题3有一列数按这样的方式排列:2、3、4、2、3、4、2、3、4……那么第20个数是几呢?这20个数的和又是多少呢?【提示】几个数是一个周期?一个周期的和是多少?练习3有一列数按这样的方式排列:1、2、3、4、1、2、3、4、1、2、3、4……第18个数是几呢?这18个数的和又是多少呢?例题4…………图图肚子饿了,便对妈妈说:“我要吃红烧肉红烧肉红烧肉……”请问图图说的第29个字是什么?前29个字中有几个“红”?【提示】对于开头比较特殊的周期问题,我们可以先把特殊部分去掉.练习4有一列数按这样的方式排列:3、9、4、3、2、1、4、3、2、1……请问第39个数字是什么?前39个数字的和是多少?例题5如下表所示,表格中每行文字都是循环出现的:第一行是“猫和老鼠”4个汉字不断重复,第二行是“熊出没”3个汉字不断重复.那么第36列从上到下依次是哪两个汉字?【提示】多重周期问题,我们要分别去看它们的周期.例题6求2×2×……×2(2008个2相乘)+ 3×3×……×3(2009个3相乘)的个位数字.【提示】一个2相乘末尾是2,2×2的末尾是4,2×2×2的末尾是8……以此类推找规律.课堂内外生活中的周期生活中有许多的事物不断地周而复始.比如,地球365天左右绕太阳公转一周,同时每24小时自转一次;钟表每天嘀嗒嘀嗒地走个不停,时针每12小时转一周,分针每60分钟转一周,秒针每60秒转一周;人类一个星期接着一个星期地学习、工作;春夏秋冬年年复、春播秋种年年重、候鸟每年南迁北徙……这些都是周期现象.数学中也有这样的现象:任意选四个不同的数字,组成一个最大的数和一个最小的数,用大数减去小数.用所得结果的四位数重复上述过程,最多七步,必得6174.如:9963-3699=62646642-2466=4176 7641-1467=6174作业1. 如图所示,9幅图按规律排成一排,其中前三幅图已经画出,请按照规律先画出第4幅图,再画出第9幅图.2. 找出下面图形排列的规律,根据规律算出前面30个图形中共有几个○?3. 有一列数按这样的方式排列:2、4、6、8、2、4、6、8、2、4、6、8……那么第15个数是几?前15个数的和是几?4. 有一组有规律的文字:我有大头下雨不愁下雨不愁下雨不愁……那么第19个字是几?前19个字中有几个“雨”?5. 如下表所示:表格中每行的文字都是循环出现的:第一行是“天道酬勤”4个汉字不断重复,第二行是“革命尚未成功”6个汉字不断重复.那么第30列从上到下的两个汉字依次是什么?…………第1幅 第2幅 第3幅 第4幅 第9幅第十七讲 周期问题初步1.例题1答案:如图所示详解:通过前三幅图的规律,可知每幅图都是按照逆时针的旋转.先找规律,发现第5幅图和第1幅图是一样的,那么就是4幅图为一个周期.再看10幅图里有几个周期:10422÷=,所以第10幅图就是第3个周期的第2个,也就是第2幅图.2.例题294个图形为一个周期.先算出33个图形里有几个周期:33481÷=,商8表示33个图形里有8个周期,余1表示第9个周期的第1个图形,.一个周期里有一个,那么8个周期就是188⨯=,第9个周期还有一个图形,也是,所以应该是819+=(个).3.例题3 答案:3;59详解:数列以“2、3、4”三个数为一个周期,不断的重复出现.先要出20个数里有几个周期:20362÷=,所以第20个数是第7个周期里的第2个数,即“3”.再算出每个周期和是2349++=,20个数里有6个周期,即6个9,加上2与3,所以20个数的和是692359⨯++=. 4.例题4 答案:烧;9详解:本题是一个以“我要吃”为头的周期,如果去掉“我要吃”就是一个普通周期.以“红烧肉”三个字为一个周期,不断重复出现.先算出29个字里有几个周期:(293)382-÷=,所以第29个字是第9个周期的第2个字,即“烧”.一个周期里有一个“红”,29个字里有8个周期,加上“红”与“烧”.所以有1819⨯+=(个)“红”. 5.例题5 答案:鼠,没详解:第一行是以“猫和老鼠”四个数为一个周期,不断的重复出现.先要算出36个数里有几个周期:3649÷=,第4幅 第10幅所以第36个字是“鼠”.第二行是以“熊出没”三个数为一个周期,不断的重复出现.先要算出36个数里有几个周期:36312÷=,所以第36个字是“没”.那么第36列从上到下依次是:鼠、没. 6.例题6 答案:9详解:本题需要要先找规律. 第一步:222⨯⨯⨯(2008个2相乘)1个2个位为2;224⨯=,个位为4;2228⨯⨯=,个位为8;222216⨯⨯⨯=,个位为6;2222232⨯⨯⨯⨯=,个位为2;22222264⨯⨯⨯⨯⨯=,个位为4……我们发现这个算式的个位是有规律的,以“2、4、8、6”四个数为一个周期,重复出现的.先要算出2008个数里有几个周期:20084502÷=,所以第2008个数是“6”. 第二步:333⨯⨯⨯(2009个3相乘)一个3个位为3;339⨯=,个位为9;333⨯⨯的结果个位为7;3333⨯⨯⨯的结果个位为1;33333⨯⨯⨯⨯的结果个位为3;333333⨯⨯⨯⨯⨯的结果个位为9……,我们发现这个算式的个位是有规律的,以“3、9、7、1”四个数为一个周期,重复出现的.先要算出2009个数里有几个周期:200945021÷=,所以第2009个数是第503的周期里的第1个数,即“3”.那么2×2×……×2(2008个2相乘)333+⨯⨯⨯(2009个3相乘)的个位数字是639+=.7.练习1答案:如图所示简答:通过前三幅图的规律,可知每幅图都是按照顺时针的旋转.通过找规律,发现第5幅图和第1幅图是一样的,那么就是4个为一个周期.那么就要先看16图形里有几个周期:1644÷=,那么第16个这个周期的最后一个.8.练习2 答案:18简答:这道题的图形按照“”依次不断的重复出现,以4个图形为一个周期.先算出24个图形里有几个周期.2446÷=,商6表示24个图形里有6个周期.而一个周期里有3个,那么6个周期就是16318⨯=个.第4幅 第16幅9. 练习3 答案:2;43简答:数列以“1、2、3、4”四个数为一个周期,不断的重复出现.先要算出18个数里有几个周期:18442÷=,所以第18个数是第5个周期里的第2个数,即“2”.再算出每个周期和是123410+++=,18个数里有4个周期,即4个10,加上1与2,所以18个数的和是4101243⨯++=.10. 练习4答案:4;106简答:本题是一个以“3、9”为头的周期,如果去掉“3、9”就是一个普通周期.以“4、3、2、1”四个数为一个周期,不断重复出现.先算出39个数里有几个周期:(392)491-÷=,所以第39个数是第10个周期的第1个数,即“4”.再算出每个周期四个数的和是432110+++=,39个数里有9个10,加上4,还要加上开头的3和9,所以前39个数的和是910439106⨯+++=. 11. 作业1答案:如下图所示:简答:通过前三幅图的规律,可知每幅图中的“笑脸”自身是按照逆时针旋转,“爱心”自身是按照顺时针旋转,因此可以画出第4幅图.找规律发现4幅图为一个周期,因为9421÷=,所以第9幅图和第1幅图是相同的. 12. 作业2答案:18简答:经观察,图形排列规律是从第一个开始,5个图形为一个周期,则3056÷=(周),所以前面30个图形中共有6318⨯=(个)“○”. 13. 作业3答案:6;72简答:数列以“2、4、6、8”四个数为一个周期,不断的重复出现.先要算出15个数里有几个周期: 15433÷=,所以第15个数是第4个周期里的第3个数,即“6”.再算出每个周期和是246820+++=,15个数里有3个周期,即3个20,加上2、4和6,所以15个数的和是32024672⨯+++=.14. 作业4答案:不;3简答:本题是一个以“我、有、大、头”为头的周期,如果去掉“我、有、大、头”就是一个普通周期.以“下、雨、不、愁”四个字为一个周期,不断重复出现.先算出19个字里有几个周期:(194)433-÷=,所以第19个字是第4个周期的第3个字,即“不”.再根据每个周期中有1个“雨”,余下的3个字中有1个“雨”。

高斯小学奥数四年级上册含答案第08讲_数列规律计算

高斯小学奥数四年级上册含答案第08讲_数列规律计算

第八讲数列规律计算【漫画修改】原图中从小高出发的是等差数列:1,2,3,4,5,….现改为双重数列:1,1,2,1,3,1,4,1,5,1,6,1,7,1,….我们以前学习过找规律以及等差数列,本讲内容就是以这两块知识为基础,并通过找规律、应用等差数列和周期性解决问题.本讲所学的很多数列的规律可要比等差数列复杂得多.例如:1,1,1,2,1,3,1,4,…这样的数列,我们就要把奇数项和偶数项分开来看,或者是两项两项地看.又如:1,2,3,2,3,4,3,4,5,4,5,6,…奇数项和偶数项的规律不是特别明显,两项两项地看也没有好的发现,但三项三项地看就很容易发现规律了.对于规律较复杂的数列,我们不能拿别的数列规律生搬硬套,要具体问题具体分析.首先让我们来寻找以下数列的规律.找规律(1)40,2,37,4,34,6,31,8,________,________,25,12;(2)1,2,2,4,3,8,4,16,5,________,________,64,7.观察数列的规律:10,1,10,2,10,3,10,4,10,5,10,6, (50)请回答以下问题:(1)这个数列中有多少项是10?(2)这个数列中所有项的总和是多少?「分析」这是一个双重数列,试着拆开看看,这两重分别是什么数列呢?根据哪一重求项数呢?练习1观察数列的规律:1,4,2,4,3,4,4,4,5,4,6,4,…,30,4.请回答以下问题:(1)这个数列中有多少项是4?(2)这个数列中所有项的总和是多少?例题2观察数列的规律:1,2,2,4,3,6,1,8,2,10,3,12,1,14,2,16,3,18, (50)请回答以下问题:(1)这个数列中有多少项是2?(2)这个数列所有项的总和是多少?「分析」这是一个双重数列,拆开看看,这两重分别是什么数列呢?根据哪一重求项数呢?练习2观察数列的规律:1,30,3,28,1,26,3,24,1,22,3,20,1,18,3,16,1,14,…,2.请回答以下问题:(1)这个数列中有多少项是3?(2)这个数列所有项的总和是多少?观察数列的规律:1,2,2,4,3,6,4,8,5,10,6,12,7,14,8,16,9,18, (19)请回答以下问题:(1)这个数列共有多少项?(2)这个数列所有项的总和是多少?「分析」这是一个双重数列,试着拆开看看,这两重分别是什么数列呢?根据哪一重求项数呢?最后一个数19是属于哪一重的呢?练习3观察数列的规律:40,1,38,2,36,3,34,4,32,5,30,6,28,7,26,8,24,9,…,2.请回答以下问题:(1)这个数列共有多少项?(2)这个数列所有项的总和是多少?例题4观察数组(1,2,3),(2,3,4),(3,4,5),…的规律.求:(1)第10组中三个数的和;(2)前10组中所有数的和.「分析」解决数组问题,我们可以把数组竖着对齐写,观察一下,每列分别有什么规律呢?练习4观察数组(1,2,3),(2,3,4),(3,4,5),…的规律.求:(1)第15组中三个数的和;(2)前20组中所有数的和.解决多重数列问题,首先要把原数列拆成几个简单数列进行分析,而分析过程中,最关键的一步就是要判断清楚原多重数列的最后一项到底是属于哪一重的,进而才能确定两重的项数是否相等.例题5观察数列的规律:2,3,4,6,6,9,8,12,10,15,12,18,14,21,16,24,18,27,…,60.请问:这个数列一共可能有多少项?「分析」这是一个几重数列?试着拆开看看,这两重分别是一个什么数列呢?最后一个60到底是属于哪一重的呢?例题6一列由两个数组成的数组:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4),(5,1),….请问:(1)第70组内的两个数之和是多少?(2)前55组中“5”这个数.出现了多少次?「分析」(1,□)有1组,(2,□)有2组,(3,□)有3组,(4,□)有4组,……,发现这个数组的规律了吗?第70组的第一个数是几呢?你能根据等差数列的和估算出来吗?课堂内外斐波那契数列斐波那契数列,又叫兔子数列,用文字来描述,就是由0和1开始,之后的每一个数都是由前面两个数相加.如下:0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,…(一)兔子数列在西方,最先研究这个数列的人是比萨的列奥纳多(又名斐波那契),他描述兔子生长的数目时用上了这个数列,如下为兔子繁殖的规律:①第一个月有一对刚诞生的兔子②第二个月他们可以生育③每月每对可生育的兔子会诞生下一对新兔子④兔子永不死去⑤每个月兔子对数为:1,2,3,5,8,13,…(二)神奇的自然现象百合花的花瓣是3枚,梅花是5枚,而苹果、梨、杏等蔷薇科植物花瓣也都是5枚,飞燕草是8枚,瓜叶菊是13枚,向日葵有的是21枚,有的是34枚,雏菊有的是34枚、55枚或89枚.这些花瓣数正好就是“斐波那契数”.作业1.已知一个数列:1,30,1,27,1,24,1,…,1,6,1,3.请问:(1)这个数列共有多少项?(2)这个数列中所有数的和是多少?2.1,2,2,4,3,6,1,8,2,10,3,12,…,42.观察上面数列的规律,请问:(1)这个数列中有多少个1?(2)这个数列中所有数的总和是多少?3.2,3,4,6,6,9,8,12,10,15,…,33.观察上面数列的规律,请问:(1)这个数列共有多少项?(2)这个数列中所有数的和是多少?4.观察数列:(1,2,3),(2,3,4),(3,4,5),….三个数为一组,请问:10第一次出现在第几组?该组的三个数之和是多少?5.观察数列的规律:1,3,1,7,1,11,1,15,1,19,1,23,…,39.观察上面数列的规律,请问:(1)数列中有多少个1?(2)数列中所有数的总和是多少?第八讲数列规律计算1.例题1答案:51项;1775详解:(1)奇数项是由常数10组成的,偶数项是从1开始连续的自然数.偶数项有50项,所以奇数项也有50项,那么在奇数项中有50个10,在偶数项中还有1个,所以有51项是10;(2)奇数项的和是5010500⨯=,偶数项的和是()+⨯÷=,所以所有项的总和是1505021275+=.500127517752.例题2答案:9项;699(1)奇数项是由1、2、3组成的周期数列,偶数项是从2开始连续的偶数.偶数项有50225详解:÷=项,所以奇数项也有25项,25381÷=L L,那么在奇数项有8个完整周期还多余1个数,每个周期中有1个2,多出来的1项是1,所以奇数项一共有8个2,在偶数项中还有1个,所以有9项是2;(2)奇数项的和是()250252650+⨯÷=,所⨯+++=,偶数项的和是()8123149以所有项的总和是49650699+=.3.例题3答案:37项;532详解:(1)奇数项是由从1开始连续的自然数组成,偶数项是从2开始连续的偶数.最后一项是奇数项,奇数项有19项,偶数项有18项.共有37项;(2)奇数项之和是()+⨯÷=;119192190偶数项的最后一项是18236⨯=,所以偶数项之和是()+⨯÷=,所有项的总和是236182342+=.1903425324.例题4答案:33;195详解:(1)观察数组的规律,可以知道数组里面三个数都是连续的自然数,而且每组的第一个数组成了从1开始连续的自然数,所以第10组三个数是(10,11,12),三个数的和是11333⨯=;(2)第1组三个数的和是23⨯,第2组三个数的和是33⨯,依次类推,前10组所有数的和是()L.323411195⨯++++=5.例题5答案:59项或40项详解:奇数项是从2开始连续的偶数组成,偶数项是从3开始公差为3的等差数列组成.60可能是奇数项也可能是偶数项.当60是奇数项的时候,奇数项有60230÷=项,所以偶数项有29项,共有59项;当60是偶数项的时候,偶数项有60320÷=项,所以奇数项也有20项,共有40项.6.例题6答案:16;11次详解:(1)观察数组的规律,第一个数是1的有1组,第一个数是2的有2组,第一个数是3的有3组,因为12341166L组,所以从第67组开始,每组的第一个数是12,第67 +++++=组是(12,1),依此类推第70组是(12,4),两个数的和是12416L+=;(2)因为1231055++++=组,所以第55组恰好是(10,10),第一个数是5的有5组,即(5,1),(5,2),(5,3),(5,4),(5,5).第二个数是5的只能是(5,5),(6,5),(7,5),(8,5),(9,5),(10,5),出现了6次,所以“5”这个数出现了11次.7.练习1答案:31;585详解:(1)偶数项是由常数4组成的,奇数项是从1开始连续的自然数.奇数项有30项,所以偶数项也有30项,那么在偶数项中有30个4,在奇数项中还有1个,所以有31项是4;(2)偶数项的和是304120⨯=,奇数项的和是()+⨯÷=,所以所有项的总和是130302465+=.1204655858.练习2答案:7项;269详解:(1)奇数项是由1、3组成的周期数列,偶数项是30~2连续的偶数.偶数项有30215÷=项,所以奇数项也有15项,15271÷=L L,那么在奇数项有7个周期还多余1个数,每个周期中有1个3,多出来的1项是1,所以奇数项一共有7个3,在偶数项中没有3,所以共有7项是3;(2)奇数项的和是()713129230152240+⨯÷=,所以所有项⨯++=,偶数项的和是()的总和是29240269+=.9.练习3答案:39项;610简答:(1)偶数项是由从1开始连续的自然数组成,奇数项是40~2连续的偶数.最后一项是奇数项,奇数项有40220÷=项,偶数项有19项,共有39项;(2)奇数项之和是()+⨯÷=;240202420偶数项的最后一项是19,所以偶数项之和是()+⨯÷=,所有项的总和是119192190+=.42019061010.练习4答案:48;690简答:(1)观察数组的规律,可以知道数组里面三个数都是连续的自然数,而且每组的第一个数组成了从1开始连续的自然数,所以第15组三个数是(15,16,17),三个数的和是16348⨯=;(2)第1组三个数的和是23⨯,第2组三个数的和是33⨯,依次类推,前20组所有数的和是()L.⨯++++=32342169011.作业1答案:20;175简答:(1)奇数项都是1,偶数项是公差为3的等差数列,偶数项有10项,整个数列有20项;(2)奇数项之和为10,偶数项之和为()303102165+⨯÷=,所有数之和为175.12. 作业2答案:7;504简答:(1)偶数项是2,4,6,…,42,有21项;奇数项也有21项,是1,2,3这三个数为一个周期的循环数列,21个数包含7个完整周期.偶数项中没有1,奇数项中有7个1,因此一共有7个1;(2)偶数项总和为24642462++++=L ,奇数项总和为()123742++⨯=,所有数之和为504.13. 作业3答案:22;330简答:(1)偶数项是3,6,9,…,33,有11项;奇数项也有11项,整个数列有22项;(2)奇数项是2,4,6,8,…共11项,所以第11项是22,所以奇数项之和是()222112132+⨯÷=,所有偶数项之和是()333112198+⨯÷=,所有数之和为330.14. 作业4答案:8;27简答:先看第一个问题,每组第1个数分别为1,2,3,…,第8组的三个数为(8,9,10),第9组的三个数为(9,10,11),10第一次出现在第8组.再看第二个问题,第8组三个数之和为27.15. 作业5答案:10;220简答:(1)奇数项都是1,偶数项是公差为4的等差数列,偶数项是3,7,11,15,…,39,共有()3934110-÷+=项,所以奇数项也有10项,所以共有10个1;(2)奇数项之和是10,偶数项之和是()339102210+⨯÷=,所有数之和是220.。

高斯小学奥数含答案二年级(下)第08讲 一笔画

高斯小学奥数含答案二年级(下)第08讲 一笔画

第八讲一笔画前续知识点:二年级第一讲;XX模块第X讲后续知识点:X年级第X讲;XX模块第X讲把里面的人物换成相应红字标明的人物.这里是小区平面图,我从哪个入口进去,才能一次不重复地走遍小区的所有小路,尽快地把口罩送给每个朋友呢?由于空气污染严重,哥哥让我给朋友们去送口罩,以防大家得病。

墨莫墨莫一笔画,是指从连通图的一点出发,笔不离纸,每条线都只画一次,不能重复.一笔画能解决很多实际问题.那么什么样的图形能够一笔画成,什么样的图形不能一笔画成呢?试着画一画下面的图形吧!例题1观察下列图形,能一笔画成的打“√”,不能一笔画成的打“×”.()()()()()()【提示】动手画一画,你知道什么样的图形一定不能一笔画成吗?练习1观察下列图形,能一笔画成的打“√”,不能一笔画成的打“×”.()()()()()()()()我们画了这么多图形,不难发现,不连通的图形一定不能一笔画成,能一笔画成的图形必定是连通图.连通图,指的是如果一个图形中的任意两点都是连通的,那么这个图形就是连通图.一个图形可以一笔画成,除了必须是连通图,还有没有其它的规律和特点呢?我们一起找找吧!首先,我们先来认识下面的两个名词:从一点出发的线条数目是奇数,如1、3、5、7、……我们称它为奇点. 从一点出发的线条数目是偶数,如2、4、6、8、……我们称它为偶点.奇点、偶点的个数与一个图形能否一笔画成有什么关系呢?我们来看一看下面的题目吧!【例题2】下面的各个图形都是由点和线组成的.请你仔细观察后回答,各图中的交叉点分别有几个奇点?几个偶点?能否一笔画成?能的在“( )”里打“√”,不能的在“( )”里打“×”.【提示】从某一点发出奇数条线,这个点是奇点;从某一点发出偶数条线,这个点是偶点.【练习2】下面的各个图形都是由点和线组成的.请你仔细观察后回答,各图中的交叉点分别有几个奇点?几个偶点?能否一笔画成?能的在“( )”里打“√”,不能的在“( )”里打“×”.(1) (2) (3)(4) 奇点数: ( ) ( ) ( ) ( ) 偶点数: ( ) ( ) ( ) ( ) 能否一笔画成:( ) ( ) ( ) ( )奇点数: ( ) ( ) ( ) ( ) 偶点数: ( ) ( ) ( ) ( )能否一笔画成:( ) ( ) ( ) ( )(1) (2)(3) (4)通过对上题的观察,相信大家都发现了规律.有0个奇点的连通图能够一笔画成.画时可以以任一点为起点,最后一定能以这个点为终点画完此图. 有2个奇点的连通图能够一笔画成.画时必须以一个奇点为起点,另一个奇点为终点画完此图. 有2个以上奇点的连通图不能一笔画成.根据以上规律,我们可以通过奇点个数来正确判断哪些图形能一笔画成,哪些图形不能一笔画成.我们就用学到的知识来解决生活中的一笔画问题吧!例题3草地上有许多小路,丁丁和月月分别站在A 、B 两个路口.谁能够一次不重复地走遍所有小路?【提示】谁的出发点是奇点?练习3花园里有许多崎岖的小路,小乖要浇花,它想一次不重复地走完每条小路.该从哪个路口出发呢?AB CDE例题4小河中有4个小岛,小岛之间建有六座桥.淘淘能一次不重复地走遍所有的小桥吗?【提示】先把实际地图画成“点线图”,然后数数奇点的个数吧!练习4蘑菇园的小朋友们要去游乐场玩,他们可以从6个入口进出游乐场.他们从哪个入口出发,才能一次不重复地走遍游乐场内的所有小路?我们已经可以正确判断哪些图形可以一笔画成,哪些不能一笔画成.如果不能一笔画成,可不可以通过增添或删除一些线的方法,让它变成可以一笔画成的图形呢?例题5AB C D EFG下面的“蝴蝶”能一笔画成吗?如果不能,按照如下要求把它改成能一笔画成的图形.(1)在图1中,去掉一条线;(2)在图2中,添加一条线.图1图2【提示】在两个奇点之间去掉或添加线.例题6甲乙两个不同公司的快递员去送货,两人都要以同样的速度走遍所有的街道(阴影部分),甲从A点出发,乙从B点出发,最后都回到C点.如果都选择最短的线路,谁先回到C点?ABC【提示】先把实际道路图画成“点线图”,再判断各个交叉点中有哪些是奇点.课堂内外七桥问题德国有一个城市叫哥尼斯堡.城中有一条小河,河中有两个小岛,还有7座桥把这两个小岛和陆地连接起来,如下图所示.人们经常在这里游玩,他们在游玩的时候提出这样一个问题:能不能一次不重复地走遍所有的小桥呢?作业1. 观察下列图形,能一笔画成的打“√”,不能一笔画成的打“×”.2. 下面每幅图中的交叉点分别有几个奇点?能否一笔画成呢?能的在“( )”里打“√”,不能的在“( )”里打“×”.( ) ( ) ( )( ) ( ) ( )小岛 小岛3. 菲菲周末去郊外的公园玩,公园里有许多崎岖的小路.她想不重复地一次走完每条小路,可以从哪个路口出发?4. 小熊、灰鼠、小象和小猪要分别从东、南、西、北四个入口去果园采果子,谁能不重复地一次走遍所有小路?5. 下面的图形能一笔画成吗?如果不能,按照如下要求将其改成能一笔画成的图形.(1)在图1中去掉一条线;(2)在图2中添加一条线.图1图2北CD E F G HBA 奇点数: ( ) ( ) ( ) ( ) 能否一笔画:( ) ( ) ( ) ( )(1) (2) (3) (4)第八讲 一笔画1.例题1答案:×,√,√,×,×,√详解:第(1)个图形是非连通图,不能一笔画;其它都是连通图,依次尝试判断即可. 2.例题2答案:如图所示:详解:把交叉点是奇点的圈起来,如图所示:有0个奇点和2个奇点的连通图能够一笔画成;2个奇点以上的连通图不能一笔画成.一个图形能否一笔画成与偶点数无关. 3.例题3 答案:月月详解:图中B 点和E 点是奇点,其它交叉点都是偶点.有2个奇点的图形,一笔画的特征是:从图形的一个奇点出发,回到另一个奇点.只有从奇点的路口出发,才能一次不重复地走遍所有小路.美羊羊站在B 点的路口上,所以能够一次不重复地走遍所有小路. 4.例题4 答案:不能详解:把图中的小岛看成点,把桥看成线,得到“点线图”,如图所示,有4个交叉点,这4个交叉点都是奇点,这个图形不能一笔画成.所以淘淘不能一次不重复地走遍所有的小桥.5.例题5答案:如图所示:(答案不唯一)奇点数: (0) (2) (2) (4) 偶点数: (4) (4) (5) (5) 能否一笔画成: (√) (√) (√) (×)详解:图中有4个奇点,不能一笔画成.去掉或添加一条线使得奇点个数减少,那么就在2个奇点之间去掉或添加线. 6.例题6 答案:甲详解:先把这个送货路线图画成“点线图”,如图所示,A 、C 是奇点.所以,甲从A 点出发回到C 点,可以一次不重复的走遍所有的街道;而乙要走遍所有的街道,其中必有重复.所以甲先回到C 点.7.练习1答案:√,√,√,×,×,√,√简答:第2个图形和第5个图形是非连通图,不能一笔画成;其它是连通图,依次尝试判断即可. 8.练习2答案:如图所示:简答:先把交叉点是奇点的圈起来,一一数出来,再判断能否一笔画成.(1) (2)(3)(4)奇点数: (0) (2) (2) (6) 偶点数: (3) (2) (3) (1) 能否一笔画成: (√) (√) (√) (×)9. 练习3答案:A 点或F 点简答:图中A 点和F 点是奇点,其它交叉点都是偶点.有2个奇点的图形,一笔画的特征是:从图形的一个奇点出发,回到另一个奇点.只有从奇点的路口出发,才能一次不重复地走遍所有小路.所以小乖应该从A 点或F 点出发.10. 练习4答案:C 或D简答:把图中的平面图画成“点线图”,如图所示,C 点和D 点是奇点,所以蘑菇园的小朋友们从C 或D 入口出发,才能一次不重复地走遍游乐场内的所有小路.11. 作业1 答案:×,×,√,×,√,√简答:第1个图形是非连通图,不能一笔画成;其它是连通图,依次尝试判断即可.12. 作业2答案:如图所示:简答:先把交叉点是奇点的圈起来,一一数出来,再判断能否一笔画成.13. 作业3答案:A 或B简答:观察图形可知,图中只有A 和B 两个奇点,其余的都是偶点.走时必须从一个奇点出发到另一个奇点结束,也就是从A 出发,从B 离开,或者从B 出发,从A 离开.14. 作业4答案:灰鼠和小熊简答:先根据果园的平面图画出点线图,如下图所示.观察下图中共有9个交叉点,其中7个点是偶点,只有两奇点数: (2) (4) (0) (4) 能否一笔画: (√) (×) (√) (×)(1) (2) (3) (4)E个点(北、西)是奇点,所以只有在北门和西门的小动物可以不重复地一次走遍所有的小路.15.作业5答案:不能简答:在任意两个奇点之间添一条线或去一条线,如下图所示,都可以改成能一笔画成的图形(答案不唯一).小猪(东)小象(南)。

高斯小学奥数含答案二年级(下)第01讲 统计

高斯小学奥数含答案二年级(下)第01讲 统计

第一讲 统计前续知识点:二年级第一讲;XX 模块第X 讲 后续知识点:X 年级第X 讲;XX 模块第X 讲明天我们去郊游,我帮大家准备饮料!可选的饮料有可乐、雪碧、奶茶、果汁,现在每人选一种自己喜欢的饮料告诉我吧!卡莉娅小高 萱萱 阿瓜阿呆墨莫墨莫卡莉娅阿瓜萱萱阿呆小高 小高 小高小高把里面的人物换成相应红字标明的人物.小山羊在卡莉娅的衣兜里,其余的人用灰色小人儿表示.例题1下面是某个风景区今年11月份和12月份天气情况统计表.请你将两个统计表合并成一个复式统计表,并回答问题.11月份天气情况统计表12月份天气情况统计表11、12月份天气情况统计表(2)11月份的阴天和雪天共()天,12月份的雪天比11月份的雪天少()天.(3)11月份有()天,12月份有()天,12月份比11月份多()天.【提示】先认识表格,了解某一行、某一列对应的方格是什么意义.练习1下面是二(1)班小朋友最喜欢的一种体育项目的情况,请你根据统计后的数据完成统计表,并回答问题.喜欢跑步的:男生10人,女生10人;喜欢游泳的:男生15人,女生10人;喜欢跳绳的:男生3人,女生17人;喜欢踢球的:男生8人,女生3人.跑步游泳跳绳踢球男生(人)女生(人)合计(人)(1)男生喜欢()的最多,喜欢()的最少.(2)女生喜欢()的最多,喜欢()的最少.(3)二(1)班喜欢游泳的一共有()人.例题2佳佳调查了二年级(1)、(2)、(3)班同学最喜欢的北京地区旅游景点.请你把表格填写完整,并回答问题.我知道二(2)班最喜欢长城的人数是二(1)班的一半,最喜欢故宫的人数是二(1)班的2倍;二(3)班最喜欢颐和园的人数是二(2)班的一半,最喜欢欢乐谷的人数比二(1)班少5人.故宫长城颐和园欢乐谷总计二(1)班(人) 6 10 5 15二(2)班(人)8 38二(3)班(人)7 9(1)二年级学生中,最喜欢故宫的共()人.(2)二年级学生中,最喜欢长城的人数比最喜欢颐和园的多()人.(3)二年级()班的学生,最喜欢欢乐谷的人数最多.(4)二年级()班的总人数最多.【提示】根据“二(2)班最喜欢长城的人数是二(1)班的一半”,你能知道二(2)班最喜欢长城的人数是多少吗?练习2学校准备为二年级合唱团的小朋友订购队服,有四种颜色可供选择:红色、白色、蓝色、紫色.东东对合唱团做了一个调查.请你帮他把表格填写完整,并回答问题.我知道喜欢白色的女生人数比男生多12人;喜欢蓝色的男生人数是女生的3倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七讲 数列规律前续知识点:二年级第一讲;XX 模块第X 讲 后续知识点:X 年级第X 讲;XX 模块第X 讲看,这里有扇门!芝麻开门!土豆开门! 白菜开门!冬瓜开门!……真傻,这年代,谁还用这么土的密码啊!快打开看看, 上面写上什么了?大家快来看,门下有张羊皮纸!小高小高卡莉娅萱萱卡莉娅 小高萱萱墨莫墨莫卡莉娅小高阿呆把里面的人物换成相应红字标明的人物.按一定次序排列的一列数称为数列.本讲将带领小朋友们探索数列的规律.找数列的规律,最基本的方法就是找前后相邻的两个数之间的关系.例题1找规律,填空:8 15 22 29 36 5796 92 88 84 80 68【提示】相邻两个数的差有什么特点?练习1找规律,填空:10 13 16 19 22 3165 58 51 44 37 16例题2甜甜要把100块糖装在10个纸盒里.她在第一个盒子里放1块,第二个盒子里放2块,第三个盒子里放4块,第四个盒子里放8块,……照这样一直放下去,要放满这10个盒子,甜甜这100块糖够不够?【提示】相邻两个数的倍数关系有什么特点?练习2有一种细菌,每过1分钟每一个细菌就分裂成2个.奇奇在瓶子里装1个这样的细菌,6分钟后瓶子里共有多少个细菌?在找数列的规律时,相邻两个数之间的差或商是非常重要的.并且相邻两个数的差或者商都相等的数列有着特殊的名称。

任何相邻的两个数中,后一个数减去前一个数的差都相等的数列,叫做等差数列,如例题1.任何相邻的两个数中,后一个数除以前一个数的商都相等的数列,叫做等比数列,如例题2.接下来,我们探索一些更为复杂的规律吧!观察下面的数列,是等差数列还是等比数列,或者都不是?你能说出这些数列中藏着的秘密吗?例题3找规律,填空.【提示】相邻两个数差的规律是什么?练习3找规律,填空.3 5 9 17 65 34 6 9 13 312571分钟下面我们学习斐波那契数列,斐波那契数列中的斐波那契数经常出现在我们眼前,例如:松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的是向日葵花瓣)、蜂巢、蜻蜓翅膀等.斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、34……这个数列的特点是:从第三个数开始,每一个数都等于前两个数的和.有时,我们又把斐波那契数列称为“兔子数列”.听老师讲讲“兔子数列”的故事,然后自己去发现其中的规律吧!例题4观察数列的变化规律,在括号里填上适当的数.(1)1,2,3,5,8,(),()(2)88,77,11,66,55,(),()【提示】从第三个数起,每个数与它前两个数的和或差有什么关系?练习4观察数列的变化规律,在括号里填上适当的数.(1)2,4,6,10,16,(),()(2)65,57,8,49,41,(),()由斐波那契数列的规律引申出很多有类似规律的数列.如例题4中的(2),它的规律是:从第三个数开始,每一个数都等于前两个数的差.有的时候,数列的规律不局限于相邻两个数之间.当我们在相邻两数间找不到规律的时候,就要考虑这个数列可能是由两组不同规律的数列组合成的.例题5找规律,填空.(1)1,2,4,4,7,8,10,16,13,32,( ),( ),19,128(2)1,2,3,3,6,5,10,8,15,13,(),(),28,34【提示】隔着看,找规律!像例题5这样隔着看、有规律排列的数列被称作“间隔数列”,其实“间隔数列”就是由两个简单的数列交叉合并得到的.例题6如下图所示,有一个五边形点阵图,它的中心是一个点作为第一层,第二层每边有2个点,第三层每边有3个点,……按照这个规律,第10层共有..()个点.【提示】由内到外写出每一层的点数,再找规律!课堂内外兔子数列从前,有一个穷光棍,平时只知好吃懒做,不肯踏踏实实做事情,还经常想入非非做发财梦.一天,他在路边捡到一个鸡蛋,他非常高兴,捧着鸡蛋就在脑子里盘算开了:“我借别人的母鸡把这个蛋孵成小鸡,等小鸡长大了,就可以生蛋,我再把生的蛋孵成鸡,这些鸡又可以生更多的蛋,蛋又可变成更多的鸡,……过不了几年,我就可以把蛋和鸡去换许多钱,然后可以盖新房,还可以娶个漂亮媳妇,生儿育女,……”他越想越高兴,不禁得意忘形手舞足蹈,忽听“啪”的一声,鸡蛋掉在地上,碎了!懒汉看着摔碎了的鸡蛋,放声痛哭:“哎呀,我的宝贝!我的房子呀!……”上面这则笑话流传已久,对我们很有教育意义,然而恐怕谁都没有认真计算过:如果鸡蛋没有打碎,几年后这个懒汉究竟有多少只鸡,多少个蛋呢?不过,公元1202年,一位意大利比萨的商人斐波那契(Fibonacci,约1170-1250?)在他的《算盘全书》(这里的“算盘”指的是计算用沙盘)中提出过一个“养兔问题”,却被无数人算过.这道题说的是:某人买回一对小兔,一个月后小兔长成大兔.再过一个月,大兔生了一对小兔,以后,每对大兔每月都生一对小兔,小兔一个月后长成大兔.如此下去,问一年后此人共有多少对兔子?你能算清吗?不少同学恐怕看完题就已经动手算了,而且很快就算出了答案,不过对不对可不敢保证.说实在的,这题要算对并不那么容易,这可要不慌不忙细心地算才行.作业1.找规律,填空:2.皮皮共有200块小立方体的积木,他要用这些积木叠起来堆成一座8层的“宝塔”.那么按照图中的规律来堆积木,皮皮的积木够不够?3.找规律,填空:……90 85 80 75 70 55 4 8 12 16 20 324.观察数列的变化规律,在括号里填上适当的数.3,1,4,5,9,14,(),()5.找规律,填空:(1)5,3,7,6,9,12,11,24,( ),( )(2)3,2,5,5,8,10,13,17,21,26,(),()第七讲数列规律1.例题1答案:43,50;76,72详解:这两个数列都是等差数列,第一个数列的变化规律是越来越大,相邻两数的差是7,36743+=,43750+=,所以两个空格中分别填43,50,第二个数列的变化规律是越来越小,相邻两数的差是4,80476-=,76472-=,所以两个空格中分别填76,72. 2.例题2 答案:不够详解:这个数列是1、2、4、8……规律是后一个数是前一个数的2倍,那么这10个盒子里的糖数是:1、2、4、8、16、32、64、128……放满第8个盒子就已经需要128块糖,128>100,所以这100块糖不够. 3.例题3答案:18,24;33,129详解:第一个数列相邻两个数的差分别是:1、2、3、4……,是等差数列.第二个数列相邻两个数的差分别是:2、4、8…….如图所示:4.例题4答案:(1)13,21;(2)11,44详解:第一个数列是“斐波那契数列”的规律,从第三个数起,每个数都是它前两个数的和.5813+=,81321+=,所以两个空格分别填13,21.第二个数列的规律是:从第三个数起,每个数都是它前两个数的差(大减小).665511-=,551144-=,所以两个空格分别填11,44. 5.例题5答案:(1)16,64;(2)21,21 详解:如图所示:6.例题6 答案:45详解:从里到外每边的点数规律是:1、2、3、4、5、6……按照这个规律,第10层每边有10个点,第10层的总点数(101)545-⨯=(个). 7.练习1答案:25,28;30,23简答:两小题均是等差数列.第一个等差数列中,相邻两数的差是3;第二个等差数列中,相邻两数的差是7. 8.练习2 答案:64简答:细菌分裂的规律是后一个数是前一个数的2倍:1、2、4、8、16、32、64.6分钟后瓶子里共有64个细菌. 9.练习3答案:36,49;31,127简答:本题可以找每个数列相邻两数之差的规律.第一行数列的相邻两数之差是:3、5、7、9……第二行数列的相邻两数之差是:2、4、8、16…… 10. 练习4答案:26,42;8,33简答:第一个数列符合“兔子数列”的规律:从第三个数开始,后一个数是前两个数相加的和.第二个数列的规律是:从第三个数起,每个数都是它前两个数的差(大减小). 11. 作业1答案:(1)24、28;(2)65、60简答:两小题均是等差数列.第一个等差数列中,相邻两数的差是4;第二个等差数列中,相邻两数的差是5. 12. 作业21,2,4,4,7,8,10,16,13,32,( 16 ),(64 ),19,128+3+3 +3 +3 +3 +3×2 ×2 ×2 ×2 ×2 ×2 1,2,3,3,6,5,10,8,15,13,(21),(21),28,34+2 +3 +4 +5 +6 +7每个数都是它前两个数的和.(1) (2)答案:不够简答:因为图中的规律是:下面一排积木数量是上面一排积木数量的2倍,那么,+++++++=,255>200,所以皮皮的积木不够.124816326412825513.作业3答案:27、38;58、53简答:本题可以找每个数列相邻两数之差的规律.第一行数列的相邻两数之差是:1、3、5、7……第二行数列的相邻两数之差是:10、9、8、7……14.作业4答案:23、37简答:本题符合“兔子数列”的规律:从第三个数开始,后一个数是前两个数相加的和.15.作业5答案:(1)13、48;(2)34、37简答:本题中的两个数列都是双重数列,隔一个数看,可得出每个双重数列都是由两个有规律的数列组成,可以先拆成两个新数列,并分别找出这两个新数列的规律.。

相关文档
最新文档