一元一次方程应用题方案设计问题专项训练一

合集下载

一元一次方程应用题(含答案)

一元一次方程应用题(含答案)

一元一次方程应用题试卷简介:行程问题,经济问题,方案设计类应用题等一、单选题(共6道,每道10分)1.节日期间,某电器按成本价提高35%后标价,为了促销,决定打九折销售,为了吸引更多顾客又降价130元,此时仍可获利15%.请问该电器的成本价是多少元?设该电器的成本价为x元,根据题意可列方程为( )A. B.C. D.答案:D解题思路:由题知电器的售价是,利润是15%x,根据售价-成本=利润,可列方程为,故选D试题难度:三颗星知识点:一元一次方程的应用—打折销售2.某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是y件(y>20),而销售单价每增加1元,销售量就减少10件.则当y取何值时,才能使销售单价为80元与销售单价为82元时的销售利润相等,可列方程为( )A.(80-60)y=(82-60)(y-20)B.(80-60)y=(82-60)(y+20)C.80y=82(y-20)D.(80-60)y=(82-60)(y-10)答案:A解题思路:利润=售价-成本,因此单价为80元时,利润为(80-60)y,由题知单价为82元时销售量为(y-20),利润为(82-60)(y-20),当利润相等时可列方程(80-60)y=(82-60)(y-20),故选A 试题难度:三颗星知识点:经济问题3.某商场购进某种商品的进价是每件8元,销售价是每件10元.现为了扩大销售量,把每件的销售价降低x%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,根据题意可列方程为( )A.10(1-x%)-8=(1+90%)×(10-8)B.10(1-x%)-8=90%×(10-8)C.10·x%-8=90%×(10-8)D.10(1-x%)-8=(10-8)÷90%答案:B解题思路:利润=售价-成本,可知降价前一件商品的利润是(10-8)元,降价后一件商品的利润是10(1-x%)-8,根据题意可列方程为10(1-x%)-8=90%×(10-8),故正确选项为B试题难度:三颗星知识点:一元一次方程的应用—打折销售4.一列火车通过450米长的山洞用了23秒,经过一位站在铁路边的扳道工人用了8秒,求这列火车的长度.若设这列火车的长度为x米,根据题意可列方程为( )A. B.C. D.答案:C解题思路:路程火车通过山洞所行的路程是450+x,由速度=路程÷时间得火车速度为,经过工人所行的路程是x,由速度=路程÷时间得火车速度为,由于火车的速度不变,所以,故正确选项为C试题难度:三颗星知识点:行程问题5.甲、乙两船航行于A、B两地之间,由A到B航速为每小时35千米,由B到A航速为每小时25千米,现甲船由A地开往B地,乙船由B地开往A地,甲船先航行2小时,两船在距B地120千米处相遇,求两地的距离.若设两地的距离为x千米,根据题意可列方程为( )A. B.C. D.答案:A解题思路:两船在距B地120千米处相遇,所以甲船走的距离为(x-120),乙走路程为120,甲先走2小时,根据时间相等列等式:,故选A试题难度:三颗星知识点:行程问题6.用一根铁丝围成一个长4分米,宽2分米的长方形,然后将这个长方形改成正方形,则下列说法错误的是( )A.铁丝长度没变B.正方形的面积比长方形多1平方分米C.图形的形状发生了变化D.长方形和正方形的面积相等答案:D解题思路:因为铁丝的长度是不变的,利用长方形的周长公式可算出铁丝的长度为12分米,进而利用正方形的周长公式即可求出正方形的边长为3分米,从而求出长方形的面积为8平方分米,正方形的面积为9平方分米,故B选项正确,D选项错误,故答案选D.试题难度:三颗星知识点:一元一次方程的应用——我变高了二、填空题(共4道,每道10分)7.已知今年母女二人年龄之和是53,如果10年前母亲的年龄是女儿年龄的10倍,则今年母亲的年龄为____岁.答案:40解题思路:设母亲今年的年龄是x,则今年女儿的年龄是(53-x),十年前木母亲的年龄是(x-10),女儿的年龄是(53-x-10),根据题意可列方程为x-10=10(53-x-10),解得x=40,因此母亲今年的年龄是40岁试题难度:知识点:一元一次方程应用--数字规律问题8.足球的比赛记分规则为:胜一场得3分,平一场得1分,负一场得0分,一个球队踢了14场球,共得了19分,其中负了5场,那么这个球队胜了____场.答案:5解题思路:首先理解题意找出题中的等量关系:平场得分+胜场得分+负场得分=19分,根据此列方程即可.设该队胜了x场,则该队平了(14-x-5)场,胜场得分是3x分,平场得分是(14-x-5)分,负场得分为0分,根据等量关系列方程得:3x+(14-5-x)+0=19,解得x=5,故答案为5试题难度:知识点:一元一次方程的应用——得分问题9.一个停车场内有24辆车,其中汽车有4个轮子,摩托车有3个轮子,且停车场上只有汽车和摩托车,这些车共有86个轮子,那么摩托车有____辆.答案:10解题思路:设摩托车x辆,则汽车(24-x)辆,根据题意列等式3x+4(24-x)=86,求得x=10,故答案为10试题难度:知识点:一元一次方程应用--鸡兔同笼问题10.在“十一”黄金周期间,某超市推出如下表所示的优惠方案:小丽在该超市两次购物分别付款80元、216元.如果小丽改成在该超市一次性购买与上次完全相同的商品,则应付款____元.答案:256解题思路:当一次性购物金额不少于100且不足300元时,打折之后的价钱不少于90元且不足270元,因此可知小丽两次所购物品的打折情况分别是不打折和打九折,设付款216元的物品原价是x元,因此0.9x=216,解得x=240,可知小丽改成一次性购买与上次完全相同的物品时,原价是320元,大于300元,打八折,因此应付款元试题难度:知识点:一元一次方程应用——打折销售。

一元一次方程应用题专项练习

一元一次方程应用题专项练习

一元一次方程应用题专项练习一、单选题1.学校需制作若干块标志牌,由一名工人做要50h 完成.现计划由一部分工人先做4h ,然后增加5人与他们一起做6h 完成这项工作.假设这些工人的工作效率一样,具体应先安排多少人工作?小华的解法如下:设先安排x 人做4h .所列方程为46(5)15050x x ++=,其中“450x ”表示的意思是“x 人先做4h 完成的工作量”,“6(5)50x +”表示的意思是“增加5人后(5)x +人再做6小时完成的工作量”.小军所列的方程如下:(46)5615050x +⨯+=,其中,“(46)50x +”表示的含义是()A .x 人先做4h 完成的工作量.B .先工作的x 人前4h 和后6h 一共完成的工作量.C .增加5人后,新增加的5人完成的工作量.D .增加5人后,(5)x +人再做6h 完成的工作量.2.某书店推出如下优惠方案:(1)一次性购书不超过100元不享受优惠;(2)一次性购书超过100元但不超过300元一律九折;(3)一次性购书超过300元一律八折.某同学两次购书分别付款80元、252元,如果他将这两次所购书籍一次性购买,则应付款()元.A .288B .306C .288或316D .288或3063.足球比赛的记分规则:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队平了()A .3场B .4场C .5场D .6场4.如图,各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为()A .242B .232C .220D .2525.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设共有x 人,这个物品的价格是y 元.有下列四个等式:①8x +3=7x ﹣4;②3487y y -+=;③3487y y +-=;④8x ﹣3=7x +4,其中正确的是()A .①②B .②④C .②③D .③④二、填空题6.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.7.下表是某市居民出行方式以及收费标准:(不足1千米按1千米算)打车方式出租车3千米以内8元;超过3千米的部分2.4元/千米滴滴快车路程:1.4元/千米;时间:0.6元/分钟说明打车的平均车速40千米/时假设乘坐8千米,耗时:8406012÷⨯=分钟;出租车收费:8(83) 2.420+-⨯=元;滴滴快车收费:8 1.4120.618.4⨯+⨯=元.为了提升市场竞争力,出租车公司推出行使里程超过10千米立减4.8元活动.小聪乘坐出租车从甲地到达乙地支付车费22.4元,若改乘滴滴快车从甲地到乙地,则需支付______元.8.我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醐洒一斗直粟三斗,今持粟三斛,得酒五斗,问清跴酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醐洒酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清洒,醐洒酒各几斗?如果设清酒x 斗,那么可列方程为_________.9.明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时1斤=16两,故有“半斤八两”这个成语).这个问题中共有_____两银子.10.《九章算术》中记载这样一道题:今有牛、马、羊食人苗.苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”大意是:现在有一头牛、一匹马、一只羊吃了别人家的禾苗.禾苗的主人要求这些动物的主人共计赔偿五斗粟米.羊的主人说:“我家羊只吃了马吃的禾苗的一半.”马的主人说:“我家马只吃了牛吃的禾苗的一半."按此说法,羊的主人应当赔偿给禾苗的主人多少斗粟米?设羊的主人赔x 斗,根据题意,可列方程为________.三、解答题11.一套精密仪器由一个A 部件和两个B 部件构成,用31m 钢材可以做40个A 部件或240个B 部件,现在要用34m 钢材制作这种仪器.(1)请问用多少钢材做A 部件,多少钢材做B 部件,可以恰好制成整套的仪器?(2)可以制成仪器套.(3)现在某公司要租赁这批仪器a 套,每天的付费方案有两种选择:方案一:当a 不超过50套时,每套支付租金100元;当a 超过50套时,超过的套数每套支付租金打八折;方案二:不论租赁多少套,每套支付租金90元.当a >50时,请回答下列问题:①若按照方案一租赁,公司每天需支付租金元(用含a 代数式表示);若按照方案二租赁,公司每天需支付租金元(用含a 代数式表示).②假如你是公司负责人,请你谋划一下,选择哪种租赁方案更合算?并说明理由.12.我市是蔬菜水果生产大县.去年秋季,我市某果树基地安排26名工人将采摘的水果包装成果篮,每个工人每小时可包装 200 个苹果或者 300 个梨,每个果篮中放 3 个苹果和 2 个梨,为了使包装的水果刚好完整配成果篮,应该安排多少名工人包装苹果,多少名工人包装梨?(1)若设安排x 名工人包装苹果,y 名工人包装梨,请求出x ,y 的值;(2)若每个果篮可卖25元,每名工人每天工作8个小时,问该果树基地一天可以卖得多少钱?13.小敏和小强假期到某厂参加社会实践,该工厂用白板纸做包装盒,设计每张白板纸做盒身3个或者盒盖5个,且一个盒身和两个盒盖恰好做成一个包装盒.设裁成盒身的白板纸有x 张,回答下列问题:(1)若有11张白板纸.①请完成下表:x 张白板纸裁成盒身()张白板纸裁成盒盖盒身的个数()0盒盖的个数0()②若盒身与盒盖全部配套用完,求可做多少个包装盒.(2)若仓库中已有5个盒身,4个盒盖和21张白板纸,现把白板纸分成两部分,一部分裁成盒身,一部分裁成盒盖,当盒身与盒盖全部配套用完,可做多少个包装盒?(3)若有n 张(5060)n ≤≤白板纸,先把一张纸适当裁成3个盒身和1个盒盖,余下白板纸分成两部分,一部分裁成盒身,一部分裁成盒盖,当盒身与盒盖全部配套用完,求n 的可能值.14.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每人每小时生产疫苗500剂,但受某些因素影响,某车间有10名工人不能按时到厂.为了应对疫情,该车间其余工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天能完成预定任务.(1)求该车间当前参加生产的工人有多少人;(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该车间共780万剂的生产任务,问该车间还需要多少天才能完成任务.15.某水果店以5元/千克的价格购进一批橙子,很快售罄,该店又再次购进,第二次进货价格比第一次每千克便宜了2元,两次一共购进600千克,且第二次进货的花费是第一次进货花费的1.2倍.(1)该水果店两次分别购进了多少千克的橙子?(2)售卖中,第一批橙子在其进价的基础上加价%a 进行定价,第二批橙子因为进价便宜,因此以第一批橙子的定价再打八折进行销售.销售时,在第一批橙子中有5%的橙子变质不能出售,在第二批橙子中有10%的橙子变质不能出售,该水果店售完两批橙子能获利2102元,求a 的值.16.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?17.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房都住7人,那么有7人无房可住;如果每一间客房都住9人,那么就空出一间房.求该店有客房多少间?该批住店房客多少人?18.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?19.甲、乙两家超市新年期间推出优惠活动,推出如表购物优惠方案:甲超市乙超市消费金额(元)优惠活动消费金额(元)优惠活动0~100(包含100)无优惠0~200(包含200)无优惠100~350(包含350)一律享受九折优惠超过200元的部分享受大于200八折优惠大于350一律享受八折优惠(1)小王需要购买价格为240元的商品,去哪家店更划算?(2)小李带了252元去购物、为了买到最多的商品,应选择哪家超市?最多能买到原价为多少元的商品?(3)小刘在甲超市购物、两次购物分别付了80元和288元,如果小刘把这两次购物改为一次性购物,付款多少元?20.相传大禹治水时,“洛水”中出现了一个神龟,其背上有美妙的图案,史称“洛书”.用现在的数字翻译出来,就是三阶幻方.三阶幻方是最简单的幻方,又叫九宫格,其对角线、横行、纵向的数字之和均相等,这个和叫做幻和,正中间那个数叫中心数,且幻和恰好等于中心数的3倍.如图1,是由1、2、3、4、5、6、7、8、9所组成的一个三阶幻方,其幻和为15,中心数为5.(1)如图2所示,则幻和=;(2)若4b =,6c =,求a 的值;(3)由三阶幻方可以衍生出许多有特定规律的新幻方.在如图3所示的“幻方”中,每个小三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等,当2x =,=3y -时,则a b c d --+的值为多少?21.数轴是一个非常重要的数学工具,它把数和数轴上的点建立了对应关系,形象地揭示了数与数轴上的点之间的内在联系,是数形结合的基础.小明在一条长方形纸带上画了一条数轴,进行如下操作探究:(1)操作1:折叠纸带,使数轴上表示3的点与表示1-的点重合,则表示数23a +的点与表示数___________(用含a 的式子)的点重合;(2)操作2:若点A 、B 表示的数分别是1-、4,点P 从点A 出发,沿数轴以每秒2个单位长度的速度向左匀速运动;同时,点Q 从点B 出发,沿数轴以每秒4个单位长度的速度向左匀速运动.设运动时间为t 秒,在运动过程中,当t 为何值时,点P 与点Q 之间的距离为2;(3)操作3:在数轴上剪下6个单位长度(从1-到5)的一条线段,并把这条线段沿某点向左对折,然后在重叠部分的某处剪一刀得到三条线段(如图),若这三条线段的长度之比为1:2:3,则折痕处对应的点表示的数可能是___________.22.如图,在数轴上,点O 为原点,点A 表示的数为a ,点B 表示的数为b ,且a ,b 满足29(05)a b +-+=.(1)a =;b =;(2)动点P ,Q 分别从点A ,点B 同时出发,沿着数轴向右匀速运动,点P 的速度为每秒3个单位长度,点Q 的速度为每秒1个单位长度.①几秒时,点P 与点Q 距离2个单位长度?②动点P ,Q 分别从点A ,点B 出发的同时,动点R 也从原点O 出发,沿着数轴向右匀速运动,速度为每秒()3n n >个单位长度.记点P 与点R 之间的距离为PR ,点A 与点Q 之间的距离为AQ ,点O 与点R 之间的距离为OR .设运动时间为t 秒,请问:是否存在n 的值,使得在运动过程中,743PR OR AQ -+的值是定值?若存在,请求出此n 值和这个定值;若不存在,请说明理由.23.为了节约用水,某市决定调整居民用水收费方法,规定如果每户每月用水不超过20吨,每吨水收费2元,如果每户每月用水超过20吨,则超过部分每吨水收费2.5元;小红看到这种收费方法后,想算算她家每月的水费,但她不清楚家里每月用水是否超过20吨.(1)如果小红家每月用水15吨,则水费是元;如果小红家每月用水23吨,则水费是元.(2)如果字母x 表示小红家每月用水的吨数,那么小红家每月的水费该如何用x 的代数式表示.当020x ≤≤时,每个月的水费为:(用含x 的代数式表示);当20x >时,每个月的水费为:(用含x 的代数式表示);(3)小红家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额(单位:元)263450.5小红家这个季度共用水多少吨?24.探究与发现:a b -表示a 与b 之差的绝对值,实际上也可理解为a 与b 两数在数轴上所对应的两点之间的距离.如3x -的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.(1)如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且20AB =,则数轴上点B 表示的数;(2)若82x -=,则x =.(3)拓展与延伸:在(1)的基础上,解决下列问题:动点P 从O 点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为()0t t >秒.求当t 为多少秒时?A ,P 两点之间的距离为2;(4)数轴上还有一点C 所对应的数为30,动点P 和Q 同时从点O 和点B 出发分别以每秒5个单位长度和每秒10个单位长度的速度向C 点运动,点Q 到达C 点后,再立即以同样的速度返回,点P 到达点C 后,运动停止.设运动时间为()0t t >秒.问当t 为多少秒时?P ,Q 之间的距离为425.如图1是2022年2月的日历表:(1)在图1中用优美的“”U 形框框住五个数,其中最小的数为1,则U 形框中的五个数字之和为_________;(2)在图1中将U 形框上下左右移动,框住日历表中的5个数字,设最小的数字为x ,用代数式表示U 形框框住的五个数字之和为_________;(3)在图1中移动U 形框的位置,若U 形框框住的五个数字之和为53,则这五个数字从小到大依次为_________;(4)在图1日历表的基础上,继续将连续的自然数排列成如图2的数表,在图2中U 形框框住的5个数字之和能等于2023吗?若能,分别写出U 形框框住的5个数字;若不能,请说明理由.26.小颖在国庆期间用五天时间看完了一本课外阅读书,第一天看了全书的15,第二天看的页数比第一天多14,第三天看的页数比第二天多了13,第四天看了52页,第五天看了第三天余下的13,这本课外阅读书共有多少页?27.我们规定:对于数轴上不同的三个点M ,N ,P ,当点M 在点N 左侧时,若点P 到点M 的距离恰好为点P 到点N 的距离的k 倍,且k 为正整数,(即PM kPN =),则称点P 是“[]M N ,整k 关联点”如图,已知在数轴上,原点为O ,点A ,点B 表示的数分别为24A B x x =-=,.(1)原点O ________(填“是”或“不是”)“[]A B ,整k 关联点”;(2)若点C 是“[]A B ,整2关联点”,则点C 所表示的数C x =_______;(3)若点A 沿数轴向左运动,每秒运动2个单位长度,同时点B 沿数轴向右运动,每秒运动1个单位长度,则运动时间为________秒时,原点O 恰好是“[]A B ,整k 关联点”,此时k 的值为_______.(4)点Q 在A ,B 之间运动,且不与A ,B 两点重合,作“[]A Q ,整2关联点”,记为A ',作“[]Q B ,整3关联点”,记为B ',且满足A ',B '分别在线段AQ 和BQ 上.当点Q 运动时,若存在整数m ,n ,使得式子mQA nQB ''+为定值,求出m ,n 满足的数量关系.28.已知M 、N 两点在数轴上所装示的数分别为m 、n ,且m 、n 满足()21020m n -++=:(1)则m =_________,n =_________;(2)①情境:有一个玩具汽车AB 如图所示,放置在数轴上,将汽车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具汽车的长为_________个单位长度;②应用:一天,小阳问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢;若是我现在这么大,我已是老寿星,116 岁了!”小阳心想:爷爷的年龄到底是多少岁呢?聪明的你能帮小阳求出来吗?(3)在(2)①的条件下,当汽车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记汽车AB 运动后对应的位置为A B ''.是否存在常数k 使得2PQ kB A '-的值与它们的运动时间无关?若存在,请直接写出k 的值;若不存在,请说明理由.29.如图,点A 表示的数是a ,点B 表示的数是b ,满足210(8)0a b -++=,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒,动点P 表示的数是p .(1)直接写=a ______,b =______,p =______(用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,①问点P 运动多少秒时追上点Q ?②问点P 运动多少秒时与点Q 相距4个单位长度?并求出此时点P 表示的数;(3)点P 、Q 以(2)中的速度同时分别从点A 、B 向右运动,同时点R 从原点O 以每秒7个单位的速度向右运动,是否存在常数m ,使得23QR OP mOR +-的值为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由.30.学校为了让学生积极参加体育锻炼强健体魄,做好大课间活动,计划购买体育用品,价格如下表:备选体育用品篮球排球羽毛球拍价格60元/个35元/个25元/支(1)若用2550元全部用来购买篮球、排球和羽毛球拍,篮球和排球的数量比2:3,排球与羽毛球拍数量的比为4:5,求篮球、排球和羽毛球拍的购买数量各为多少?(2)初一学年计划购买篮球,初二学年计划购买排球,商场的优惠促销活动如下:打折前一次性购物总金额优惠措施不超过500元不优惠超过500元且不超过600元售价打九折超过600元售价打八折按上述优惠条件,若初一年级一次性付款420元,初二年级一次性付款504元,那么这两个年级购买两种体育用品的数量一共是多少?。

一元一次方程(四)(通用版)(含答案)

一元一次方程(四)(通用版)(含答案)

一元一次方程(四)(通用版)试卷简介:方案设计问题一、单选题(共6道,每道16分)1.某市为鼓励市民节约用水,对自来水用户按如下标准收费:若每月用户用水不超过15立方米,则每立方米按a元收费;若超过15立方米,则超过部分每立方米按2a元收费.如果某居民在一个月内用水35立方米,那么他该月应缴纳的水费是( )A.35a元B.55a元C.52.5a元D.70a元答案:B解题思路:根据题意,用水超过15立方米时,居民所交水费应分为两部分:15立方米的水费和超过15立方米部分的水费.该居民在一个月内用水35立方米,应交水费为15×a+(35-15)×2a=55a,答案选B.试题难度:三颗星知识点:一元一次方程应用——方案类应用题2.为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费;超过15立方米,则超过部分按每立方米2.4元收费.小明家六月份交水费33.6元,则小明家六月份实际用水( )A.14立方米B.19立方米C.20立方米D.21立方米答案:B解题思路:小明家六月份交水费33.6元,其中包括15立方米的水费和超过15立方米的水费,设小明家六月份实际用水x立方米,根据题意得:15×1.6+(x-15)×2.4=33.6,解得x=19,答案为B.试题难度:三颗星知识点:一元一次方程应用——方案类应用题3.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;超过60立方米,则超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么这位用户4月份应交煤气费( )A.60元B.66元C.75元D.78元答案:B解题思路:4月份的煤气费平均每立方米0.88元,那么煤气一定超过60立方米,等量关系为:60立方米的煤气费+超过60立方米的煤气费=所交煤气费,设4月份用了煤气x立方米,根据题意得60×0.8+(x-60)×1.2=0.88x,解得x=75,4月份应交煤气费为75×0.88=66元,故选B.试题难度:三颗星知识点:一元一次方程应用——方案类应用题4.某单位要购置一批某型号的电脑,该型号的电脑市场价为每台5800元.现有甲、乙两电脑商进行竞标,甲电脑商提出的优惠条件是购买10台以上,则从第11台开始每台按七折计价;乙电脑商提出的优惠条件是每台均按八五折计价.假设这两家电脑商在品牌、质量、售后服务等方面都相同,若要使到甲、乙两电脑商处购买电脑花钱一样多,则应该买电脑( )A.18台B.19台C.20台D.21台答案:C解题思路:若购买的电脑不多于10台,则在甲电脑商处购买没有优惠,因此到甲、乙两电脑商购买电脑花钱不一样,因此要使花钱一样,必然购买多于10台.设购买电脑x台,在甲处购买需要花钱数目为元,在乙处购买需要花钱数目为元,根据题意可列方程为,解得x=20,即应该买电脑20台.试题难度:三颗星知识点:一元一次方程应用——方案类应用题5.九年级某班师生30人准备在中考后到某地旅游,班主任李老师了解到当地甲、乙两旅行社的服务项目和服务质量相同,且甲旅行社平时收费为每人300元,暑期对教师实行八折优惠,对学生实行五折优惠;乙旅行社平时收费为每人280元,暑期对教师和学生均实行六折优惠.若在甲、乙两家旅行社所需费用相同,则这个班师生中教师为( )A.4人B.5人C.6人D.7人答案:C解题思路:设这个班师生中教师有x人,学生有(30-x)人,由题可知甲旅行社收费为元,乙旅行社收费为元,若两家旅行社所需费用相同,可得,解得x=6,故选C试题难度:三颗星知识点:一元一次方程应用——方案类应用题6.某种海产品,若直接销售,每吨可获利1 200元;若粗加工后销售,每吨可获利5 000元;若精加工后销售,每吨可获利7 500元.某公司现有这种海产品100吨,该公司的生产能力是:如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在10天内(含10天)将这批海产品全部销售或加工完毕,为此该公司设计了三种方案:方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没来得及进行精加工的直接销售;方案三:将一部分进行精加工,其余的进行粗加工,并恰好10天完成.你认为获利最多的方案和对应的利润是( )A.方案三,600 000元B.方案二,435 000元C.方案三,562 500元D.方案一,500 000元答案:C解题思路:方案一:全部粗加工所需时间为天,因此10内100吨可全部加工完毕,对应的利润为:5 000×100=500 000元;方案二:10天内(含10天)可以精加工10×5=50吨,剩余100-50=50吨直接销售,因此对应的利润:7 500×5×10+1 200×(100-5×10)=435 000元;方案三,设精加工的有x天,则粗加工的有(10-x)天,根据题意可列方程为,解得x=5,即5天精加工,5天粗加工,也即精加工5×5=25吨,粗加工15×5=75吨,因此方案三对应的利润为:562 500元.综上可知,方案三的利润最高,为562 500元.答案为C.试题难度:三颗星知识点:一元一次方程应用——方案类应用题。

一元一次方程应用----方案题

一元一次方程应用----方案题

一元一次方程应用----方案题1.“中国竹乡”安吉县有着丰富的毛竹资源.某企业已收购毛竹52.5吨.根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加0.5吨,每吨可获利5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售.为此研究了二种方案:方案一:将毛竹全部粗加工后销售,则可获利 ______ 元.方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利 ______ 元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.2.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价40元,乒乓球每盒10元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠,该班需买球拍6副,乒乓球若干盒(不小于6盒)(1)当购买乒乓球多少盒时两种优惠办法付款一样?(2)当购买20盒乒乓球时,请你去办这件事,你打算去哪家商店购买为什么?(3)当购买40盒乒乓球时,请你去办这件事,你打算去哪家商店购买为什么?3.某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:消费金额a(元) 200≤a<400 400≤a<500 500≤a<700 700≤a<900 …获奖券金额(元) 30 60 100 130 …根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1-80%)+30=110(元).购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?4.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,共有哪几种进货方案?5.《中华人民共和国个人所得税法》规定,公民月工资所得不超过1600元(人民币)的部分不必纳税,超过1600元的部分为各月应纳税所得额,超过部分的税款按下表分段累加计算.例如,你月工资是2000元,2000-1600=400,那么就对400元进行纳税,400×5%=20,即你应交纳的税款为20元.若某人1月份应交纳此项税款92元,则她当月的工资是多少?6.市政府根据社会需要,对自来水价格举行了听证会,决定从今年4月份起对自来水价格进行调整.调整后生活用水价格的部分信息如下表:已知5月份小晶家和小磊家分别交水费19元、31元,且小磊家的用水量是小晶家的用水量的1.5倍.(1)用含x的式子填空:∵19>5×2,∴小晶家的用水量超过5m3,则超过部分应交水费(19-5×2元),用水量5m3以上的部分是 ______ ,小晶家的总用水量为 ______ .(2)请你仿照上述进行分析,再求出表中的x.7.随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A、B两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售.预计每箱水果的盈利情况如表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元有两种配货方案(整箱配货):方案一:甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱;方案二:按照甲、乙两店盈利相同配货,其中A种水果甲店 ______ 箱,乙店 ______ 箱;B种水果甲店 ______ 箱,乙店 ______ 箱.(1)如果按照方案一配货,请你计算出经销商能盈利多少元?(2)请你将方案二填写完整(只填写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多?8.如图,在长方形ABCD中,AB=12厘米,BC=6厘米.点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么:(1)如图1,当t为何值时,△QAP为等腰直角三角形?(2)如图2,当t为何值时,△QAB的面积等于长方形面积的?(3)如图3,P、Q到达B、A后继续运动,P点到达C点后都停止运动.当t为何值时,线段AQ的长等于线段CP的长的一半?9.根据下面的两种移动电话计费方式表,考虑下列问题.方式一方式二月租费20元/月50元/月本地通话费0.3元/分钟0.2元/分钟(1)一个月本地通话时间200分钟和400分钟,计算按两种移动电话计费方式各需要交费多少元?(2)会出现两种移动电话计费方式收费一样吗?如果会,请计算出此时的通话时间?如果不会,请说明理由;(3)请你说明在怎样选择计费方式下更省钱?10.七年级上册数学书本中,第二章的数学活动课带领我们感受许多有趣的日历问题.请你仔细观察日历表,探究以下日历的有关问题.如图就是某年10月份的一张日历.(1)若今天是某年10月28日,星期一,再过7天,是星期 ______ ;(2)若用阴影部分在表中随意框住2×2个数字,这4个数字的关系 ______ ,并求出这四个数的和的最大值是 ______ ;(3)圈出日历中相邻的2×2个数字,已知四个数的和为48,求这四个数;(4)圈出日历中相邻的2×2个数字,能否求出这四个数的和为64?若能,请求出;若不能,能否在下个月中找到?若找到,请求出下个月中这四个数的最小数是星期几?11.某酒店客房部有三人间、双人间客房,收费数据如下表:为吸引游客,实行团体入住五折优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通客房和双人普通客房,每间客房正好住满.(1)设入住的三人普通客房为x间,则入住的双人普通客房为 ______ 间;(用x的代数式表示)(2)若一天共花去住宿费1510元,则旅游团住了三人普通客房和双人普通间客房各多少间?12.某开发公司要生产若干件新产品,需要精加工后才能投入市场,现有红星和巨星两个工厂都想加工这批产品.已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天加工16件产品,巨星厂每天可以加工24件产品,公司需付红星厂每天加工费80元,付巨星厂每天加工费120元.(1)这个开发公司要生产多少件新产品?(2)公司制定产品加工方案如下,可以由每个厂家单独完成,也可以由两个厂家同时合作完成,在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并由公司为其提供每天5元的午餐补助,请你帮公司选择一种既省线又省时的加工方案.13.某超市以每千克a元的统一进价购进600千克苹果.若将这批苹果按某种标准分为甲乙两类,乙类苹果的重量是甲类的一半.(1)求甲乙两类苹果的重量各是多少千克?(2)现有以下三种销售方案:方案一:甲类苹果以进价的2倍价格直接销售,乙类苹果以高于进价20%直接销售;方案二:将两类苹果精加工后销售,两类苹果的售价比方案一中的售价每千克均提高2元;方案三:所有苹果不分类精加工后按同一价格销售,其价格按方案一中的甲类苹果和乙类苹果售价的平均数定价.无论用哪种方案均能确保苹果全部销完,解决以下问题:①用含a的式子表示三种方案的利润;②若方案一的利润比方案三的利润高m元,方案二的利润比方案三的利润高n元,且m:n=2:5,试确定a的值.14.某班的一次数学小测验中,共出了20道选择、填空题,每题5分,总分为100分.现从中抽出5份试卷进行分析,如下表:试卷正确个数错误个数得分A 19 1 94B 18 2 88C 17 3 82D 14 6 64E 10 10 40(1)某同学得70分,他答对了多少道题?(2)刘婧婧同学告诉老师:她和同桌张欣都考到了及格(60分以上),而且比张欣的分数高,她俩的平均分是76分,通过你的计算她们俩各考了多少分?15.某校组织七年级学生参加社会实践活动,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租1辆,并且剩余15个座位.(1)该校参加社会实践活动有多少人?(2)已知45座客车的日租金为每辆1000元,60座客车的日租金为每辆1200元,该校租用哪种车更合算?16.为了加强公民的节约意识,我市出台阶梯电价计算方案:居民生活用电将月用电量分为三档,第一档为月用电量200度(含)以内,第二档为月用电量200~320度(含),第三档为月用电量320度以上.这三个档次的电价分别为:第一档0.52元/度,第二档0.57元/度,第三档0.82元/度.若某户居民1月份用电250度,则应收电费:0.52×200+0.57×(250-200)=132.5元.(1)若某户居民10月份电费78元,则该户居民10月份用电 ______ 度;(2)若该户居民2月份用电340度,则应缴电费 ______ 元;(3)用x(度)来表示月用电量,请根据x的不同取值范围,用含x的代数式表示出月用电费用.17.列方程解应用题(1)表中是“深圳市路边临时停车位使用费收费标准”,上周六上午9:00,小亮妈妈把车停在深圳中心书城路边临时停车位(属一类区域).离开时,她发现共需要缴纳停车费30元,则她停车的时间是多少小时? 深圳市路边临时停车车位使用费收费标准(2)“旺旺”商场计划销售某品牌的衣服,每件若以原定价的3折销售,则亏20元,每件若以原定价的3.5折销售,则赚10元. ①该种品牌的衣服原定价是多少元?②“元旦”期间,“旺旺”商场对该品牌衣服举办“1换2倍”的优惠促销活动,共售出了80件该品牌衣服,那么“旺旺”商场在“元旦”期间销售该品牌衣服共获利多少元?18.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同;规定吨数以上的超过部分收费标准相同,以下是小明家1-5月份用水量和缴费情况: 根据表格中提供的信息,回答以下问题: (1)求出规定吨数和两种收费标准.(2)若小明家6月份用水20吨,则应缴多少元?(3)若小明家7月份缴水费100元,则7月份用水多少吨?19.某旅游景点门票价格规定如下:每张票的价格90元80元70元某校七年级组织甲、乙两个班共92人去该景点游玩,其中甲班人数多余乙班人数且甲班人数不够90人,如果两个班单独购买门票,一共应付7760元.(1)如果甲、乙两个班联合起来购买门票,那么比各自购买门票可以节省多少钱?(2)甲、乙两个班各有多少学生?(3)如果甲班有10名学生因学校有任务不能参加这次旅游,请你作为两个班设计出购买门票的方案,并指出最省钱的方案.20.春节期间,七(1)班的明明、丽丽等同学随家长一同到某公园游玩,下面是购买门票时,明明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)明明他们一共去了几个成人,几个学生?(2)请你帮助明明算一算,用哪种方式购票更省钱?说明理由;(3)购完票后,明明发现七(2)班的张小涛等8名同学和他们的12名家长共20人也来购票,请你为他们设计出最省的购票方案,并求出此时的购票费用.一元一次方程应用----方案题答案和解析1.52500;787502.解:(1)设购买x盒乒乓球时,两家优惠办法付款一样.由题意得:40×6+10(x-6)=(40×6+10x)×90%,解得:x=36,答:购买36盒乒乓球时两种优惠办法付款一样;(2)当购买20盒乒乓球时,甲店需付款:40×6+10(20-6)=380(元),乙店需付款:(40×6+10×20)×0.9=396(元),∴380<396,答:去甲店合算;(3)当购买40盒乒乓球时,甲店需付款:40×6+10(40-6)=580(元),乙店需付款:(40×6+10×40)×0.9=576(元), 580>576.答:去乙店合算.3.解:(1)优惠额:1000×(1-80%)+130=330(元) 优惠率:×100%=33%;(1分) (2)设购买标价为x元的商品可以得到的优惠率.购买标价为500元与800元之间的商品时,消费金额a在400元与640元之间.①当400≤a<500时,500≤x<625由题意,得:0.2x+60=x解得:x=450 但450<500,不合题意,故舍去;②当500≤a≤640时,625≤x≤800 由题意,得:0.2x+100=x解得:x=750而625≤750<800,符合题意.答:购买标价为750元的商品可以得到的优惠率.4.解:(1)设今年三月份甲种电脑每台售价为m元,=m=4000 检验:m=4000时,m(1000+m)≠0,m=4000是原分式方程的解.今年三月份的售价为4000元.(2)设购进甲x台,购进乙为(15-x)台,6≤x≤10.方案:甲6台,乙9台.甲7台,乙8台.甲8台,乙7台.甲9台,乙6台.甲10台,乙5台.故5种方案.5.解:∵0<当月的工资≤1600时,应交纳的税款为0;1600<当月的工资≤2100时,0<应交纳的税款≤25;2100<当月的工资≤3600时,25<应交纳的税款≤175.∴若某人1月份应交纳此项税款92元,则她当月的工资超过2100元小于3600元.设她当月的工资是x元,由题意得500×0.5+0.1(x-1600-500)=92,解得x=2770.答:若某人1月份应交纳此项税款92元,则她当月的工资是2770元.6.9元;5+7.2;8;6;48.解:(1)由题可知:DQ=tcm,AQ=(6-t)cm,AP=2tcm,使△QAP为等腰三角形,∴AQ=AP,⇒6-t=2t解得t=2;(2)由题可知:DQ=tcm,AQ=(6-t)cm,∵△QAB的面积=(6-t)×12,依题意得:(6-t)×12=×6×12,解得:t=3;(3)由题可知:AQ=(t-6)cm,CP=(18-2t)cm,依题意使线段AQ的长等于线段CP 的长的一半,∴t-6=(18-2t),解得:t=7.5.9.解:(1)一个月本地通话时间200分钟时,方式一需交费:20+0.3×200=80元,方式二需交费:50+0.2×200=90元;一个月本地通话400分钟时,方式一需交费:20+0.3×400=140元,方式二需交费:50+0.2×400=130元;(2)设此时的通话时间为x分钟,根据题意有: 20+0.3x=50+0.2x,解得:x=300,即当本地通话时间为300分钟时,两种计费方式的收费一样;(4)由20+0.3x>50+0.2x,解得:x>300,即当本地通话时间大于300分时,用方式二更合算;由20+0.3x=50+0.2x,解得:x=300,即当本地通话时间等于300分时,用方式一与方式二没有区别;由20+0.3x<50+0.2x,解得:x<300,即当本地通话时间少于300分时,用方式一更合算.10.一;对角线上的数字之和相等;10811.12.解:(1)设这个公司要加工x件新产品,由题意得:-=20,解得:x=960.答:这个公司要加工960件新产品.(2)①由红星厂单独加工:需要耗时为=60天,需要费用为:60×(5+80)=5100元;②由巨星厂单独加工:需要耗时为=40天,需要费用为:40×(120+5)=5000元;③由两场厂共同加工:需要耗时为=24天,需要费用为:24×(80+120+5)=4920元.所以,由两厂合作同时完成时,即省钱,又省时间.13.解:(1)设乙类苹果的重量是x,则甲类苹果的重量是2x千克,根据题意得x+2x=600,解得x=200.答:甲乙两类苹果的重量各是400千克、200千克;(2)①用方案一所获利润:400a+0.2a×200=440a(元);用方案二所获利润:400(a+2)+(0.2a+2)×200=440a+1200(元);用方案三所获利润:(-a)×600=360a(元);②(440a-360a):(440a+1200-360a)=2:5,解得a=10.14.解:(1)先设答错一道得x分,由题意,得5×19+x=94,解得:x=-1.设某同学得70分,他答对了y道题,由题意,得5y-(20-y)=70,解得:y=15.答:某同学得70分,他答对了15道题;(2)设刘婧婧同学答对a道题,张欣同学答对b道题,由题意,得,由①,得a+b=32,a=32-b由②、③,得a>,b>,∵a>b,∴32-b>,∴b<.∵a、b为整数,∴b=14,15,16,17,18,∴a=18,17,16,15,14.∵a>b,∴a=18,17.∴b=14,15,∴刘婧婧的得分为:88,82,张欣的得分为:64,70答:当刘婧婧考88分时,张欣考64分,当刘婧婧考82分时,张欣考70分.15.解:(1)设该校参加社会实践活动有x人,根据题意,得-=1,解得:x=225.答:该校参加社会实践活动有225人;(2):由题意,得需45座客车:225÷45=5(辆),需60座客车:225÷60=3.75≈4(辆),租用45座客车需:5×1000=5000(元),租用60座客车需:4×1200=4800(元),∵5000>4800,∴该校租用60座客车更合算.16.150;188.817.解:(1)周六是非工作日.设她停车的时间是x小时,则2+(x -)×8=30,解得x=4.答:她停车的时间是4小时.(2)①设该种商品每件的原定价为x元.x×35%-10=x×30%+20,解得x=600,答:该种品牌的衣服原定价是600元;②该种品牌的衣服进价为:600×30%+20=200(元).利润=80×(×600-200)=8000(元).答:“旺旺”商场在“元旦”期间销售该品牌衣服共获利8000元.18.解:(1)从表中可以看出规定吨数位不超过10吨,10吨以内,每吨2元,超过10吨的部分每吨3元,(2)小明家6月份的水费是:10×2+(20-10)×3=50(元);(3)设小明家7月份用水x吨,100>10×2,所以x>10.所以,10×2+(x-10)×3=100,解得:x =.小明家7月份用水吨.19.解:(1)如果甲、乙两班联合起来购买门票需70×92=6440(元),比各自购买门票共可以节省:7760-6440=1320(元);(2)设甲班有学生x人(依题意46<x<90),则乙班有学生(92-x)人.依题意得:80x+90×(92-x)=7760,解得:x=52.则92-52=40(人).故甲班有52人,乙班有40人;(3)方案一:各自购买门票需42×90+40×90=6860(元);方案二:联合购买门票需(42+40)×80=6560(元);方案三:联合购买91张门票需91×70=6370(元);∵6860>6560>6370,∴应该甲乙两班联合起来选择按70元一次购买91张门票最省钱.20.解:(1)设成人人数为x人,则学生人数为(12-x)人,则:由题中所给的票价单可得:35x +(12-x)=350 解得:x=8故:学生人数为12-8=4人,成人人数为8人.(2)如果买团体票,按16人计算,共需费用:35×0.6×16=336元336<350 所以,购团体票更省钱.(3)最省的购票方案为:买16人的团体票,再买4张学生票.此时的购票费用为:16×35×0.6+4×17.5=406元.第11页。

一元一次方程应用题专题练习

一元一次方程应用题专题练习

一元一次方程应用题专题(15个)一、年龄问题1.小明今年6年,他爷爷今年72岁,问多少年之后小明年龄是他爷爷年龄的14倍?解:设x 年后小明的年龄是爷爷的14倍,根据题意得方程为 : 二、数字问题2.一个两位数它的个位数字比十位数字大3,那么这个两位数可以表示为什么?如果把个位数字和十位数字对调,新的两位数可以表示为什么?〔添表格并完成解答过程〕 解:设这个数的十位数字是x ,根据题意得 解方程得: 答:3.两个连续奇数的和为156,求这两个奇数,设最小的数为x ,列方程得4.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。

5.将连续的奇数1,3,5,7,9…,排成如下的数表: 〔1〕十字框中的五个数的平均数与15有什么关系?〔2〕假设将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?假设能,请求出这五个数;假设不能,请说明理由.三、日历时钟问题6、你能在日历中圈出2×2的一个正方形,使得圈出的4个数之和是77吗如果能,3735333121111求出这四天分别是几号如果不能,请说明理由.7、在6点和7点间,时钟分针和时针重合?四、几何等量变化问题〔等周长变化,等体积变化〕常用公式:三角形面积=,正方形面积圆的面积,梯形面积矩形面积柱体体积椎体体积球体体积8、一个用铁丝折成的长方形,它的长为9cm,宽为6cm,把它重新折成一个宽为5cm的长方形,那么新的长方形的宽是多少?设新长方形长为xcm,列方程为9、将棱长为20cm的正方体铁块没入盛水量筒中,量筒底面积为12cm2,问量筒中水面升高了多少cm?10、如下图,两个长方形重叠局部的面积相当于大长方形面积的六分之一,相当于小长方形面积的四分之一,阴影局部的面积为224cm2,求重叠局部面积。

11、如图是两个圆柱体的容器,它们的半径分别是4cm和8cm,高分别为16cm 和10cm,先在第一个容器中倒满水,然后将其全部倒入第二个容器中。

一元一次方程应用题专项训练讲解

一元一次方程应用题专项训练讲解

一元一次方程应用题专项训练讲解一元一次方程是初中阶段数学中的重要内容,也是数学建模和实际问题解决中常用的工具。

在学习一元一次方程的过程中,应用题的训练是非常重要的。

通过应用题的训练,可以帮助学生更好地理解一元一次方程的实际意义和解题方法。

下面我们将通过一些专项训练来讲解一元一次方程的应用题。

1. 问题描述,一个数比它的1/3大3,求这个数。

解题思路,设这个数为x,则根据题意可以列出方程x =1/3x + 3。

通过解这个方程,可以求得这个数的值。

解题步骤,将方程转化为一元一次方程,得到3x = x + 9,进一步化简得到2x = 9,最终解得x = 4.5。

2. 问题描述,某班学生人数的1/5比1/3少8人,求这个班级学生的人数。

解题思路,设这个班级学生的人数为x,则可以列出方程1/5x = 1/3x 8。

通过解这个方程,可以求得班级学生的人数。

解题步骤,将方程转化为一元一次方程,得到3x = 5x 120,进一步化简得到2x = 120,最终解得x = 60。

3. 问题描述,甲乙两人一起搬砖,甲单独搬需要5小时,乙单独搬需要8小时,问他们一起搬需要多长时间?解题思路,设甲、乙两人一起搬砖需要的时间为x,则可以列出方程1/5x + 1/8x = 1。

通过解这个方程,可以求得他们一起搬砖需要的时间。

解题步骤,将方程转化为一元一次方程,得到13x/40 = 1,进一步化简得到13x = 40,最终解得x = 40/13。

通过以上专项训练的讲解,我们可以看到一元一次方程在实际问题中的应用。

希望同学们通过不断地练习和思考,能够更加熟练地运用一元一次方程解决实际问题,提高数学建模和解题能力。

一元一次方程应用题专练

一元一次方程应用题专练

一元一次方程应用题专练一.配套问题:1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?2、制作一张课桌要一个桌面和4条桌腿,1立方米木材可以制作20个桌面或制作400条桌腿,某学校买来12立方米木材,应该怎样计划用料才能制作尽可能多的桌子?这些桌子够150名新生使用吗?二.工程问题:1、某件文件需要打印,小李独立完成需要6个小时,小王独立完成需要8个小时,如果两人合作的话,需要多少时间可以完成2、一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?3、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。

如先由甲队做4天,然后两队合做,问再做几天后可完成这项工程的56?4、整理一批图书,由一个从做要40小时完成。

现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。

假设这些人的工作效率相同,具体应先安排工人工作?5、一整理一批数据,由一个人做需80小时完成任务。

现在计划由一些人先做2小时,再增加5人做8小时,完成任务这项工作的3/4。

怎样安排参与整理数据的具体人数?三.利润与利润率:(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.1.一只钢笔原价30元,现打8折出售,现售价是元;如果这支钢笔的成本价为12元,那么不打折前商家每支可以获利元,打折之后,商家每支还可以获利元2.一种药物涨价25%的价格是50元,那么涨价前的价格x满足的方程是____________。

七年级数学一元一次方程应用题(方案设计问题)(人教版)(专题)(含答案)

七年级数学一元一次方程应用题(方案设计问题)(人教版)(专题)(含答案)

一元一次方程应用题(方案设计问题)(人教版)(专题)一、单选题(共6道,每道16分)1.某市为鼓励市民节约用水,对自来水用户按如下标准收费:若每月用户用水不超过15立方米时,按每立方米a元收费;超过15立方米时,不超过的部分每立方米扔按a元收费,超过的部分每立方米按2a元收费.如果某居民在一个月内用水35立方米,那么他该月应缴纳的水费是( )A.35a元B.55a元C.52.5a元D.70a元答案:B解题思路:根据题意,用水超过15立方米时,居民所交水费应分为两部分:15立方米的水费和超过15立方米部分的水费.因此该居民在一个月内用水35立方米时,应交水费:(元).故选B.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题2.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米时,按每立方米0.8元收费;超过60立方米时,不超过部分仍按每立方米0.8元收费,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么这位用户4月份应交煤气费( )A.66元B.60元C.78元D.75元答案:A解题思路:4月份的煤气费平均每立方米0.88元,那么所用煤气一定超过60立方米.交煤气费包括60立方米的煤气费和超过60立方米的煤气费,设4月份用了煤气x立方米,根据题意得,解得x=75,4月份应交煤气费:75×0.88=66(元).故选A.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题3.某单位要购置一批某型号的电脑,该型号的电脑市场价为每台5800元.现有甲、乙两电脑商进行竞标,甲电脑商提出的优惠条件是购买10台以上,则从第11台开始每台按七折计价;乙电脑商提出的优惠条件是每台均按八五折计价.假设这两家电脑商在品牌、质量、售后服务等方面都相同.设购买电脑x台(x>10),用含x的代数式分别表示在甲、乙两电脑商购买时付的钱数,下列正确的是( )A.B.C.D.答案:D解题思路:由题意得,在甲处购买需要花钱数:在乙处购买需要花钱数:故选D.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题4.(上接第3题)若要使得在甲、乙两电脑商购买电脑花钱一样多,则应该买电脑( )A.18台B.19台C.20台D.21台答案:C解题思路:根据第3题,要使得在甲、乙两电脑商购买电脑花钱一样多,则,解得x=20.故选C.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题5.某种海产品,若直接销售,每吨可获利1 200元;若粗加工后销售,每吨可获利5 000元;若精加工后销售,每吨可获利7 500元.某公司现有这种海产品100吨,该公司的生产能力是:如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在10天内(含10天)将这批海产品全部销售或加工完毕,为此该公司设计了三种方案:方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没来得及进行精加工的直接销售;方案三:将一部分进行精加工,其余的进行粗加工,并恰好10天完成.若采用方案三,则需要精加工( )A.3天B.4天C.5天D.6天答案:C解题思路:设精加工的有x天,则粗加工的有(10x)天,根据题意可列方程为,解得x=5,即需要精加工5天,粗加工5天.故选C.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题6.(上接第5题)5题的三种方案中,获利最多的方案和对应的利润分别为( )A.方案三,562 500元B.方案二,435 000元C.方案三,600 000元D.方案一,500 000元答案:A解题思路:根据题意,列表梳理信息如下:由题意和第5题的计算结果得方案一:,所以利润为5000×100=500 000(元);方案二:利润为7 500×5×10+1 200×(100-5×10)=435000(元);方案三:利润为7 500×5×5+5 000×5×15=562 500(元).综上可知,方案三的利润最高,为562 500元.故选A.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生做题前请先回答以下问题
问题1:方案设计问题思考步骤:
①理解题意,找关键词,确定_____________或者_____________.
②梳理信息,列表,确定_____________.
③表达或计算_____________,比较、选择适合方案.
一元一次方程应用题(方案设计问题)专项训练
(一)
一、单选题(共7道,每道15分)
1.某城市按以下规定收取每月天然气费:如果用天然气不超过60立方米,按每立方米
1.6元收费;超过60立方米,则超过部分按每立方米
2.4元收费.已知某用户4月份用天然气立方米
(),那么这位用户4月份应交天然气费( )元.
A. B.
C. D.
2.下表中有两种移动电话计费方式:
(比如选用方式一,每月固定交费58元,当主动打出电话月累计时间不超过150分钟,不再额外交费;当超过150分钟,超过部分每分钟收0.25元.)
某用户一个月内用移动电话主叫了t分钟(t是正整数,且t大于350).根据上表,若选择方式二的计费方式,则该用户应交付的费用为( )元.
A. B.
C. D.
3.用A4纸在某复印店复印文件,复印页数不超过20页时,每页收费0.12元;复印页数超
过20页时,超过部分每页收费0.09元.在某图书馆复印同样的文件,不论复印多少页,每页收费0.1元.若复印
张,则在复印店复印和图书馆复印的费用分别为( )
A.在复印店复印:;在图书馆复印:
B.在复印店复印:;在图书馆复印:
C.在复印店复印:;在图书馆复印:
D.在复印店复印:;在图书馆复印:
4.(上接第3题)若复印50张,你认为在哪里复印省钱?( )
A.复印店
B.图书馆
C.复印店和图书馆一样
D.无法判断
5.某市为了节约用水,对自来水的收费标准做以下规定:每月每户用水不超过10吨部分,按2元/吨收费;超过10吨而不超过20吨部分,按2.5元/吨收费;超过20吨部分,按4元/吨收费.若王老师家某月用水吨,则王老师应缴纳的水费为( )元.
A.
B.
C.
D.
6.(上接第5题)若小华家7月份用水18吨,则应交水费( )
A.36元
B.52元
C.45元
D.40元
7.(上接第5,6题)若小华家8月份交水费65元,则小华家8月份用水( )
A. B.
C. D.
(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档