【解析版】2014-2015学年广东省汕头市潮南区两英镇八年级下期末数学试卷

合集下载

汕头市潮南区2015~2016学年八年级上期末数学试卷(C)含解析

汕头市潮南区2015~2016学年八年级上期末数学试卷(C)含解析

2015-2016学年广东省汕头市潮南区八年级(上)期末数学试卷(C)一、选择题:本大题10小题,每小题3分,共20分1.如图,图中的图形是常见的安全标记,其中是轴对称图形的是()A.B.C.D.2.使分式有意义的x的取值范围是()A.x≤3 B.x≥3 C.x≠3 D.x=33.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60°C.75°D.90°4.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC5.下列运算正确的是()A.(3x2)3=9x6B.a6÷a2=a3C.(a+b)2=a2+b2D.22014﹣22013=220136.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°7.化简的结果是()A.B.a C.D.8.一个多边形的外角和是内角和的,这个多边形的边数为()A.5 B.6 C.7 D.89.已知a+=4,则a2+的值是()A.4 B.16 C.14 D.1510.将边长分别为a+b和a﹣b的两个正方形摆放成如图所示的位置,则阴影部分的面积化简后的结果是()A.a﹣b B.a+b C.2ab D.4ab二、填空题:本大题6小题,每小题4分,共24分11.计算:(2a)3=.12.若等腰三角形的周长为26cm,一边为11cm,则腰长为.13.已知10x=m,10y=n,则102x+3y等于.14.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为.15.如图,已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD,连接DE,则∠BDE=°.16.若分式﹣=2,则分式=.三、解答题(一):本大题共3小题,每小题6分,共18分17.分解因式:x2﹣4y2+x﹣2y.18.计算:|﹣2|+()﹣2﹣(﹣2)0.19.如图,在平面直角坐标系中,点A(4,4),B(2,﹣4).(1)若点A关于x轴、y轴的对称点分别是点C、D,请分别描出并写出点C、D的坐标;(2)在y轴上求作一点P,使PA+PB最小(不写作法,保留作图痕迹)四、解答题(二):本大题共3小题,每小题7分,共21分20.如图,AC∥BD,∠C=90°,∠ABC=∠EDB,AC=BE,求证;△ABC≌△EDB.21.已知x﹣3y=0,求•(x﹣y)的值.22.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC 的度数.五、解答题(三):本大题共3小题,每小题9分,共27分23.在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空.根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?24.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.25.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB 的度数.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE 之间的数量关系,并说明理由.2015-2016学年广东省汕头市潮南区八年级(上)期末数学试卷(C)参考答案与试题解析一、选择题:本大题10小题,每小题3分,共20分1.如图,图中的图形是常见的安全标记,其中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对常见的安全标记图形进行判断.【解答】解:A、有一条对称轴,是轴对称图形,符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.使分式有意义的x的取值范围是()A.x≤3 B.x≥3 C.x≠3 D.x=3【考点】分式有意义的条件.【分析】根据分母为零,分式无意义;分母不为零,分式有意义,可得x﹣3≠0,解可得答案.【解答】解:由题意得:x﹣3≠0,解得:x≠3.故选:C.【点评】此题主要考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60°C.75°D.90°【考点】三角形内角和定理.【分析】首先根据∠A:∠B:∠C=3:4:5,求出∠C的度数占三角形的内角和的几分之几;然后根据分数乘法的意义,用180°乘以∠C的度数占三角形的内角和的分率,求出∠C等于多少度即可.【解答】解:180°×==75°即∠C等于75°.故选:C.【点评】此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.4.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【考点】全等三角形的判定.【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.下列运算正确的是()A.(3x2)3=9x6B.a6÷a2=a3C.(a+b)2=a2+b2D.22014﹣22013=22013【考点】完全平方公式;有理数的乘方;幂的乘方与积的乘方;同底数幂的除法.【分析】分别根据幂的乘方与积的乘方、同底数幂的除法、完全平方公式等结合选项进行求解,然后选择正确选项.【解答】解:A、(3x2)3=27x6,原式计算错误,故本选项错误;B、a6÷a2=a4,原式计算错误,故本选项错误;C、(a+b)2=a2+2ab+b2,原式计算错误,故本选项错误;D、22014﹣22013=2×22013﹣22013=22013,原式计算正确,故本选项正确.故选D.【点评】本题考查了幂的乘方、同底数幂的除法、完全平方公式等知识,熟记公式以及运算法则是解答本题的关键.6.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°【考点】三角形内角和定理.【分析】由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.【点评】本题主要考查了三角形内角和定理和角平分线的性质,综合运用三角形内角和定理和角平分线的性质是解答此题的关键.7.化简的结果是()A.B.a C.D.【考点】分式的乘除法.【分析】将原式变形后,约分即可得到结果.【解答】解:原式==a.故答案选B.【点评】题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.8.一个多边形的外角和是内角和的,这个多边形的边数为()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【专题】计算题.【分析】根据多边形的外角和为360°及题意,求出这个多边形的内角和,即可确定出多边形的边数.【解答】解:∵一个多边形的外角和是内角和的,且外角和为360°,∴这个多边形的内角和为900°,即(n﹣2)•180°=900°,解得:n=7,则这个多边形的边数是7,故选C.【点评】此题考查了多边形的内角和与外角和,熟练掌握内角和公式及外角和公式是解本题的关键.9.已知a+=4,则a2+的值是()A.4 B.16 C.14 D.15【考点】完全平方公式;分式的混合运算.【分析】将a+=4两边平方得,整体代入解答即可.【解答】解:将a+=4两边平方得,a2+=16﹣2=14,故选C.【点评】此题考查完全平方公式问题,关键是把原式两边完全平方后整体代入解答.10.将边长分别为a+b和a﹣b的两个正方形摆放成如图所示的位置,则阴影部分的面积化简后的结果是()A.a﹣b B.a+b C.2ab D.4ab【考点】整式的混合运算.【分析】根据图形得出阴影部分的面积为(a+b)2﹣(a﹣b)2,再求出即可.【解答】解:阴影部分的面积为(a+b)2﹣(a﹣b)2=a2+2ab+b2﹣(a2﹣2ab+b2)=4ab,故选D.【点评】本题考查了整式的混合运算的应用,能正确根据题意列出算式是解此题的关键在,注意运算顺序.二、填空题:本大题6小题,每小题4分,共24分11.计算:(2a)3=8a3.【考点】幂的乘方与积的乘方.【分析】积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.【解答】解:(2a)3=23•a3=8a3.故答案为:8a3.【点评】本题比较容易,考查积的乘方的运算性质:(2a)3=8a3,有的同学对幂的乘方运算不熟练,从而得出错误的答案6a3.12.若等腰三角形的周长为26cm,一边为11cm,则腰长为7.5cm或11cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【解答】解:①当11cm为腰长时,则腰长为11cm,底边=26﹣11﹣11=4cm,因为11+4>11,所以能构成三角形;②当11cm为底边时,则腰长=(26﹣11)÷2=7.5cm,因为7.5+7.5>11,所以能构成三角形.故答案为:7.5cm或11cm.【点评】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.13.已知10x=m,10y=n,则102x+3y等于m2n3.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先根据同底数幂的乘法进行变形,再根据幂的乘方变形,最后整体代入求出即可.【解答】解:∵10x=m,10y=n,∴102x+3y=102x×103y=(10x)2×(10y)3=m2n3.故答案为:m2n3.【点评】本题考查了同底数幂的乘法,幂的乘方的应用,能灵活运用法则进行变形是解此题的关键,用了整体代入思想.14.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为20°.【考点】翻折变换(折叠问题).【分析】根据Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,可以得到∠B的度数,得到∠A与∠CA′D的关系,从而可以得到∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,∴∠B=90°﹣∠A=90°﹣55°=35°,∠A=∠CA′D,∵∠CA′D=∠B+∠A′DB,∴55°=35°+∠A′DB,∴∠A′DB=20°.故答案为:20°.【点评】本题考查翻折变换,解题的关键是明确题意,知道翻折后的对应角相等,利用数形结合的思想解答问题.15.如图,已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD,连接DE,则∠BDE=120°.【考点】等边三角形的性质;等腰三角形的性质.【分析】由△ABC为等边三角形,可求出∠BDC=90°,由△DCE是等腰三角形求出∠CDE=∠CED=30°,即可求出∠BDE的度数.【解答】解:∵△ABC为等边三角形,BD为中线,∴∠BDC=90°,∠ACB=60°∴∠ACE=180°﹣∠ACB=180°﹣60°=120°,∵CE=CD,∴∠CDE=∠CED=30°,∴∠BDE=∠BDC+∠CDE=90°+30°=120°,故答案为:120.【点评】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.16.若分式﹣=2,则分式=.【考点】分式的化简求值.【分析】先根据题意得出x﹣y=﹣2xy,再代入代数式进行计算即可.【解答】解:∵﹣=2,∴=2,即x﹣y=﹣2xy,∴原式====.故答案为:.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.三、解答题(一):本大题共3小题,每小题6分,共18分17.分解因式:x2﹣4y2+x﹣2y.【考点】因式分解-分组分解法;因式分解-运用公式法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中x2﹣4y2符合平方差公式,x﹣2y作为一项可进行下一步分解.【解答】解:x2﹣4y2+x﹣2y,=(x2﹣4y2)+(x﹣2y),=(x+2y)(x﹣2y)+(x﹣2y),=(x﹣2y)(x+2y+1).【点评】本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.比如本题x2﹣4y2符合平方差公式,所以首要考虑的就是两两分组法.18.计算:|﹣2|+()﹣2﹣(﹣2)0.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别进行绝对值的化简、负整数指数幂、零指数幂等运算,然后合并.【解答】解:原式=2﹣+4﹣1=5﹣.【点评】本题考查了实数的运算,涉及了绝对值的化简、负整数指数幂、零指数幂等知识,属于基础题.19.如图,在平面直角坐标系中,点A(4,4),B(2,﹣4).(1)若点A关于x轴、y轴的对称点分别是点C、D,请分别描出并写出点C、D的坐标;(2)在y轴上求作一点P,使PA+PB最小(不写作法,保留作图痕迹)【考点】轴对称-最短路线问题.【分析】(1)利用关于坐标轴对称点坐标关系得出C,D两点坐标即可;(2)连接BD交y轴于点P,P点即为所求.【解答】解:(1)如图所示;C点坐标为;(4,﹣4),D点坐标为:(﹣4,4);(2)连接BD交y轴于点P,P点即为所求;【点评】此题主要考查了关于坐标轴对称点的性质以及轴对称﹣最短路线问题,根据轴对称的性质得出对称点的坐标是解题关键.四、解答题(二):本大题共3小题,每小题7分,共21分20.如图,AC∥BD,∠C=90°,∠ABC=∠EDB,AC=BE,求证;△ABC≌△EDB.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据平行线的性质可得∠ACB+∠CBD=180°,然后可得∠CBD=90°,再利用AAS判定△ABC≌△EDB即可.【解答】证明:∵AC∥BD,∴∠ACB+∠CBD=180°,∵∠C=90°,∴∠CBD=90°,在△ACB和△EBD中,,∴△ABC≌△EDB(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.已知x﹣3y=0,求•(x﹣y)的值.【考点】分式的化简求值.【专题】计算题.【分析】首先将分式的分母分解因式,然后再约分、化简,最后将x、y的关系式代入化简后的式子中进行计算即可.【解答】解:==;当x﹣3y=0时,x=3y;原式=.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.22.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC 的度数.【考点】三角形的外角性质;三角形内角和定理.【分析】△ABD中,由三角形的外角性质知∠3=2∠2,因此∠4=2∠2,从而可在△BAC中,根据三角形内角和定理求出∠4的度数,进而可在△DAC中,由三角形内角和定理求出∠DAC的度数.【解答】解:设∠1=∠2=x,则∠3=∠4=2x.因为∠BAC=63°,所以∠2+∠4=117°,即x+2x=117°,所以x=39°;所以∠3=∠4=78°,∠DAC=180°﹣∠3﹣∠4=24°.【点评】此题主要考查了三角形的外角性质以及三角形内角和定理的综合应用.五、解答题(三):本大题共3小题,每小题9分,共27分23.在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空.根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?【考点】分式方程的应用.【分析】可设第二批鲜花每盒的进价是x元,根据等量关系:第二批所购鲜花的盒数是第一批所购鲜花的,列出方程求解即可.【解答】解:设第二批鲜花每盒的进价是x元,依题意有=×,解得x=150,经检验:x=150是原方程的解.故第二批鲜花每盒的进价是150元.【点评】考查了分式方程的应用,列方程解应用题的关键是正确确定题目中的相等关系,根据相等关系确定所设的未知数,列方程.24.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.【考点】角平分线的性质.【专题】证明题.【分析】(1)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;(2)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.【解答】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.【点评】本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.25.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB 的度数.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE 之间的数量关系,并说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)先证出∠ACD=∠BCE,那么△ACD≌△BCE,根据全等三角形证出∠ADC=∠BEC,求出∠ADC=120°,得出∠BEC=120°,从而证出∠AEB=60°;(2)证明△ACD≌△BCE,得出∠ADC=∠BEC,最后证出DM=ME=CM即可.【解答】解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠CDB=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)∠AEB=90°,AE=BE+2CM.理由:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.【点评】此题考查了全等三角形的判定与性质和等腰三角形的判定与性质以及等腰三角形的性质;证明三角形全等是解决问题的关键.2016年2月26日。

广东省八年级下册期末数学试卷及答案

广东省八年级下册期末数学试卷及答案

广东省八年级下册期末数学试卷一、选择题(共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上)1.(3分)不等式2x﹣1<1的解集在数轴上表示正确的是()A.B.C.D.2.(3分)下列图标中,是中心对称图形的是()A.B.C.D.3.(3分)若分式有意义,则x的取值范围是()A.x≠1B.x≠﹣1C.x=1D.x=﹣1 4.(3分)已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7B.6+a>b+6C.D.﹣3a>﹣3b 5.(3分)下列式子变形是因式分解的是()A.x2﹣2x﹣3=x(x﹣2)﹣3B.x2﹣2x﹣3=(x﹣1)2﹣4C.(x+1)(x﹣3)=x2﹣2x﹣3D.x2﹣2x﹣3=(x+1)(x﹣3)6.(3分)如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍7.(3分)如图,点P是正方形ABCD内一点,将△ABP绕着B沿顺时针方向旋转到与△CBP′重合,若PB=3,则PP′的长为()A.2B.3C.3D.无法确定8.(3分)如果点P(x﹣4,x+3)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.9.(3分)如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在()A.三条边的垂直平分线的交点B.三个角的角平分线的交点C.三角形三条高的交点D.三角形三条中线的交点10.(3分)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:华、爱、我、中、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.中华游C.爱我中华D.美我中华11.(3分)如图,在▱ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB于点P、Q,再分别以P、Q为圆心,以大于PQ 的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为()A.3B.5C.2D.6.512.(3分)下面说法中正确的个数有()①等腰三角形的高与中线重合②一组对边平行,另一组对边相等的四边形是平行四边形③顺次连接任意四边形的中点组成的新四边形为平行四边形④七边形的内角和为900°,外角和为360°⑤如果方程+=会产生增根,那么k的值是4A.1个B.2个C.3个D.4个二、填空题(共4题,每小题3分,共12分)13.(3分)若分式的值为零,则x的值为.14.(3分)如图,函数y1=﹣2x和y2=ax+3的图象相交于点A(﹣1,2),则关于x的不等式﹣2x>ax+3的解集是15.(3分)如图,▱ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE的周长是cm.16.(3分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB 于E,F在AC上,BD=DF,BC=8,AB=10,则△FCD的面积为三、解答题(17题8分,18题6分,19题6分,20题6分,21题8分,22题8分,23题10分)17.(8分)因式分解:(1)2x3﹣8x;(2)(x+y)2﹣14(x+y)+4918.(6分)解不等式组,并将解集在数轴上表示出来.19.(6分)先化简,再求值:(a+)÷,其中a=2.20.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2.21.(8分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.22.(8分)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1.2倍,数量比第一批多了10支.(1)求第一批每支钢笔的进价是多少元?(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?23.(10分)如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.(1)求C点的坐标;(2)如图1,在平面内是否存在一点H,使得以A、C、B、H为顶点的四边形为平行四边形?若存在,请直接写出H点坐标;若不存在,请说明理由;(3)如图1点M(1,﹣1)是第四象限内的一点,在y轴上是否存在一点F,使得|FM﹣FC|的绝对值最大?若存在,请求出F点坐标;若不存在,请说明理由。

2019-2020学年广东省汕头市潮南区两英镇八年级下学期期末数学试卷(A卷) (解析版)

2019-2020学年广东省汕头市潮南区两英镇八年级下学期期末数学试卷(A卷) (解析版)

2019-2020学年广东省汕头市潮南区两英镇八年级第二学期期末数学试卷(A卷)一、选择题(共10小题).1.二次根式的值等于()A.±2B.﹣2C.2D.42.函数y=自变量x的取值范围()A.x≠0B.x≠1C.x>1D.x<13.如果最简二次根式与是同类二次根式,那么a的值为()A.1B.±3C.3D.34.数据3、4、6、7、x的平均数是5,则这组数据的中位数是()A.4B.4.5C.5D.65.对于函数y=2x+1,下列结论正确的是()A.y的值随x值的增大而减小B.它的图象经过第一、三、四象限C.当x>时,y<0D.它的图象必经过点(0,1)6.若a、b、c为三角形的三条边,则+|b﹣a﹣c|=()A.2b﹣2c B.2a C.2(a+b﹣c)D.2a﹣2c7.如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3≥0的解集是()A.x>2B.x<2C.x≥2D.x≤28.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.49.如图,笑笑将一张A4纸(A4纸的尺寸为210mm×297mm,AC>AB)剪去了一个角,量得CF=90mm,BE=137mm,则剪去的直角三角形的斜边长为()A.50 mm B.120 mm C.160 mm D.200 mm10.如图,若正方形ABCD的边长为14,正方形IJKL的边长为2,则正方形EFGH的边长为()A.6B.8C.10D.12二、填空题(共7小题).11.数据8,9,10,10,10的众数是.12.若平行四边形中相邻的两个内角度数比为1:4,则其中较小的内角是.13.如果y=,那么x+=.14.函数y=3x+2的图象与y轴的交点坐标是.15.如图,小华剪了两条宽为3的纸条,交叉叠放在一起,且它们较小的交角为60°,则它们重叠部分的面积为.16.如图,△ABC是边长为12cm的正三角形,动点P从A向B以2cm/s匀速运动,同时动点Q从B向C以1cm/s匀速运动,当点P到达点B时,P、Q两点停止运动,设点P 的运动时间为t秒,则t=时,△PBQ为直角三角形.17.如图所示,在△ABC中,BD是AC边上的中线,BD⊥BC,∠ABC=120°,AB=8,则BC=.三、解答题(一)(本大题3小题,每小题6分,共18分)18.计算:(﹣)0|+﹣()﹣119.先化简,再求值:(),其中x=﹣1.20.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:BE=DF.四、解答题(二)(本大题3小题,每小题8分,共24分)21.按下列要求进行尺规作图:(1)作∠A的平分线,交BC于D;(2)作AD的垂直平分线,分别交AB、AC、AD于E、F、Q;(3)连接DE、DF,判断四边形AEDF的形状,并说明理由.22.某学生本学期6次数学考试成绩如下表所示:成绩类别第一次月考第二次月考期中第三次月考第四次月考期末成绩/分105110108113108112(1)6次考试成绩的中位数为,众数为.(2)求该生本学期四次月考的平均成绩.(3)如果本学期的总评成绩按照月考平均成绩占20%、期中成绩占30%、期末成绩占50%计算,那么该生本学期的数学总评成绩是多少?23.甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD 表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:(1)求线段CD对应的函数关系式;(2)在轿车追上货车后到到达乙地前,何时轿车在货车前30千米.五、解答题(三)(本大题2小题,每小题10分,共20分)24.某项工程需要将一批水泥运送到施工现场,现有甲、乙两种货车可以租用.已知2辆甲种货车和3辆乙种货车一次可运送37吨水泥,1辆甲种货车和4辆乙种货车一次可运送36吨水泥.(1)求每辆甲种货车和每辆乙种货车一次分别能装运多少吨水泥?(2)已知甲种货车每辆租金为500元,乙种货车每辆租金为450元,该企业共租用8辆货车.请求出租用货车的总费用(元)与租用甲种货车的数量(辆)之间的函数关系式.(3)在(2)的条件下,为了保障能拉完这批水泥,发现甲种货车不少于4辆,请你为该企业设计如何租车费用最少?并求出最少费用是多少元?25.如图,在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG⊥CE于G,CD=AE.(1)求证:CG=EG.(2)已知BC=13,CD=5,连结ED,求△EDC的面积.参考答案一、选择题(本大题10小题,每小题3分,共30分)1.二次根式的值等于()A.±2B.﹣2C.2D.4【分析】直接利用二次根式的性质化简求出答案.解:原式=|﹣2|=2.故选:C.2.函数y=自变量x的取值范围()A.x≠0B.x≠1C.x>1D.x<1【分析】根据分式的分母不为0列式计算,得到答案.解:由题意得3x﹣3≠0,解得x≠1.故选:B.3.如果最简二次根式与是同类二次根式,那么a的值为()A.1B.±3C.3D.3【分析】根据最简二次根式及同类二次根式的定义列方求解.解:∵最简二次根式与是同类二次根式,∴3a+8=12﹣a,解得:a=1,故选:A.4.数据3、4、6、7、x的平均数是5,则这组数据的中位数是()A.4B.4.5C.5D.6【分析】根据平均数的计算公式先求出x的值,再根据中位数的定义即可得出答案.解:∵数据3、4、6、7、x的平均数是5,∴(3+4+6+7+x)÷5=5,解得:x=5,把这些数从小到大排列为:3、4、5、6、7,最中间的数是5,∴这组数据的中位数是5;故选:C.5.对于函数y=2x+1,下列结论正确的是()A.y的值随x值的增大而减小B.它的图象经过第一、三、四象限C.当x>时,y<0D.它的图象必经过点(0,1)【分析】A、由k=2>0,利用一次函数的性质可得出y的值随x值的增大而增大;B、由k=2>0,b=1>0,利用一次函数图象与系数的关系可得出函数y=2x+1的图象经过第一、二、三象限;C、利用一次函数图象上点的坐标特征可得出当x=﹣时y=0,再结合y的值随x值的增大而增大可得出当x<﹣时,y<0;D、代入x=0求出与之对应的y值,进而可得出函数y=2x+1的图象必经过点(0,1).解:A、∵k=2>0,∴y的值随x值的增大而增大;B、∵k=2>0,b=1>0,∴函数y=2x+1的图象经过第一、二、三象限;C、∵当y=0时,2x+1=0,解得:x=﹣,又∵y的值随x值的增大而增大,∴当x<﹣时,y<0;D、当x=0时,y=2×0+1=1,∴函数y=2x+1的图象必经过点(0,1).故选:D.6.若a、b、c为三角形的三条边,则+|b﹣a﹣c|=()A.2b﹣2c B.2a C.2(a+b﹣c)D.2a﹣2c【分析】先利用二次根式的性质得到原式=|a+b﹣c|+|a+c﹣b|,然后根据三角形三边的关系和绝对值的意义去绝对值后合并同类项.解:∵a、b、c为三角形的三条边,∴a+b>c,a+c>b,∴原式=|a+b﹣c|+|a+c﹣b|=a+b﹣c+a+c﹣b=2a.故选:B.7.如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3≥0的解集是()A.x>2B.x<2C.x≥2D.x≤2【分析】写出函数图象在x轴上方及x轴上所对应的自变量的范围即可.解:当x≤2时,y≥0.所以关于x的不等式kx+3≥0的解集是x≤2.故选:D.8.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.4【分析】根据勾股定理求得OD=,然后根据矩形的性质得出CE=OD=.解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==,∴CE=,故选:C.9.如图,笑笑将一张A4纸(A4纸的尺寸为210mm×297mm,AC>AB)剪去了一个角,量得CF=90mm,BE=137mm,则剪去的直角三角形的斜边长为()A.50 mm B.120 mm C.160 mm D.200 mm【分析】解答此题只要把原来的图形补全,构造出直角三角形解答.解:延长BE、CF相交于D,则EFD构成直角三角形,运用勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直角三角形的斜边长为200mm.故选:D.10.如图,若正方形ABCD的边长为14,正方形IJKL的边长为2,则正方形EFGH的边长为()A.6B.8C.10D.12【分析】设S△AEH+S△BFE+S△CGF+S△DHG=S△HJE+S△EKF+S△FLG+S△GIH=x,则S正方形EFGH=S正方形ABCD﹣x=S正方形IJKL+x,求得x的值即可得出结论.解:由图可得,S△AEH+S△BFE+S△CGF+S△DHG=S△HJE+S△EKF+S△FLG+S△GIH,设S△AEH+S△BFE+S△CGF+S△DHG=S△HJE+S△EKF+S△FLG+S△GIH=x,则S正方形EFGH=S正方形ABCD﹣x=S正方形IJKL+x,即196﹣x=4+x,解得x=96,∴S正方形EFGH=196﹣96=100,∴正方形EFGH的边长为10,故选:C.二、填空题(本大题7小题,每小题4分,共28分)11.数据8,9,10,10,10的众数是10.【分析】根据众数的定义直接写出答案即可.解:∵数据8,9,10,10,10中10出现了3次,出现的次数最多,∴众数为10;故答案为:10.12.若平行四边形中相邻的两个内角度数比为1:4,则其中较小的内角是36°.【分析】由平行四边形的性质得出∠B+∠C=180°,由已知条件得出∠C=4∠B,得出∠B+4∠B=180°,得出∠B=36°即可.解:如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B:∠C=1:4,∴∠C=4∠B,∴∠B+4∠B=180°,解得:∠B=36°,故答案为:36°.13.如果y=,那么x+=5.【分析】根据二次根式有意义的条件可得x=3,进而可得y的值,然后代入x+可得答案.解:由题意得:,解得:x=3,则y=,x+=3+2=5,故答案为:5.14.函数y=3x+2的图象与y轴的交点坐标是(0,2).【分析】把x=0代入解析式求得即可.解:令x=0,则y=3x+2=2,所以图象与y轴的交点坐标(0,2).故答案是:(0,2).15.如图,小华剪了两条宽为3的纸条,交叉叠放在一起,且它们较小的交角为60°,则它们重叠部分的面积为6.【分析】首先过点B作BE⊥AD于点E,BF⊥CD于点F,由题意可得四边形ABCD是平行四边形,继而求得AB=BC的长,判定四边形ABCD是菱形,则可求得答案.解:过点B作BE⊥AD于点E,BF⊥CD于点F,根据题意得:AD∥BC,AB∥CD,BE=BF=3,∴四边形ABCD是平行四边形,∵∠BAD=∠BCD=60°,∴∠ABE=∠CBF=30°,∴AB=2AE,BC=2CF,∵AB2=AE2+BE2,∴AB=,同理:BC=2,∴AB=BC,∴四边形ABCD是菱形,∴AD=2,∴S菱形ABCD=AD•BE=6.故答案为:6.16.如图,△ABC是边长为12cm的正三角形,动点P从A向B以2cm/s匀速运动,同时动点Q从B向C以1cm/s匀速运动,当点P到达点B时,P、Q两点停止运动,设点P 的运动时间为t秒,则t=3或时,△PBQ为直角三角形.【分析】先分别表示出BP,BQ的值,当∠BQP和∠BPQ分别为直角时,由等边三角形的性质就可以求出结论.解:∵△ABC是等边三角形,∴AB=BC=6cm,∠A=∠B=∠C=60°,当∠PQB=90°时,∠BPQ=30°,∴BP=2BQ.∵BP=12﹣2x,BQ=x,∴12﹣2x=2x,解得x=3;当∠QPB=90°时,∠PQB=30°,∴BQ=2PB,∴x=2(12﹣2x),解得x=.答:3或秒时,△BPQ是直角三角形.故答案为3或.17.如图所示,在△ABC中,BD是AC边上的中线,BD⊥BC,∠ABC=120°,AB=8,则BC=4.【分析】如图,过点D作DE⊥AB于点E,利用S△ABD=S△BCD求得BC的长度.解:如图,过点D作DE⊥AB于点E,∵BD⊥BC,∠ABC=120°,∴∠DBE=30°.∴ED=BD.∵BD是AC边上的中线,∴S△ABD=S△BCD,即AB•ED=BC•BD,即8×BD=BC•BD.∴BC=4.故答案是:4.三、解答题(一)(本大题3小题,每小题6分,共18分)18.计算:(﹣)0|+﹣()﹣1【分析】将原式中每一项分别化为1+﹣1+3﹣再进行化简.解:原式=1+﹣1+3﹣=3;19.先化简,再求值:(),其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.解:原式=•=﹣•=﹣,当x=﹣1时,原式=﹣.20.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:BE=DF.【分析】由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可得证.【解答】证明∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵DE⊥AB,BF⊥CD,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE为矩形,∴BE=DF.四、解答题(二)(本大题3小题,每小题8分,共24分)21.按下列要求进行尺规作图:(1)作∠A的平分线,交BC于D;(2)作AD的垂直平分线,分别交AB、AC、AD于E、F、Q;(3)连接DE、DF,判断四边形AEDF的形状,并说明理由.【分析】(1)利用基本作图(作角的平分线)画出AD;(2)利用基本作图(作线段的垂直平分线)画出EF;(3)先利用线段的垂直平分线的性质得到EA=ED,FA=FD,∠AQE=∠AQF=90°,再证明△AEQ≌△AFQ得到AE=AF,所以AE=AF=DE=DF,于是可判断四边形AEDF为菱形.解:(1)如图,AD为所作;(2)如图,EF为所作;(3)四边形AEDF为菱形.理由如下:∵EF垂直平分AD,∴EA=ED,FA=FD,∠AQE=∠AQF=90°,∵AD平分∠BAC,∴∠BAD=∠CAD,在△AEQ和△AFQ中∴△AEQ≌△AFQ(ASA),∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF为菱形.22.某学生本学期6次数学考试成绩如下表所示:成绩类别第一次月考第二次月考期中第三次月考第四次月考期末成绩/分105110108113108112(1)6次考试成绩的中位数为109分,众数为108分.(2)求该生本学期四次月考的平均成绩.(3)如果本学期的总评成绩按照月考平均成绩占20%、期中成绩占30%、期末成绩占50%计算,那么该生本学期的数学总评成绩是多少?【分析】(1)将数据重新排列,在根据中位数和众数的概念求解可得;(2)利用算术平均数的概念求解可得;(3)利用加权平均数的概念求解可得.解:(1)将6次成绩重新排列为105、108、108、110、112、113,∴6次考试成绩的中位数为=109(分),众数为108分,故答案为:109分,108分;(2)(105+110+113+108)÷4=109(分),∴该生本学期四次月考的平均成绩为109分;(3)109×20%+108×30%+112×50%=110.2∴该生本学期的数学总评成绩为110.2分.23.甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD 表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:(1)求线段CD对应的函数关系式;(2)在轿车追上货车后到到达乙地前,何时轿车在货车前30千米.【分析】(1)设线段CD对应的函数解析式为y=kx+b,由待定系数法求出其解即可;(2)由货车和轿车相距30千米列出方程解答即可.解:(1)设线段CD对应的函数表达式为y=kx+b.将C(2,100)、D(4.5,400)代入y=kx+b中,得解方程组得所以线段CD所对应的函数表达式为y=120x﹣140(2≤x≤4.5).(2)根据题意得,120x﹣140﹣80x=30,解得.答:当x=时,轿车在货车前30千米.五、解答题(三)(本大题2小题,每小题10分,共20分)24.某项工程需要将一批水泥运送到施工现场,现有甲、乙两种货车可以租用.已知2辆甲种货车和3辆乙种货车一次可运送37吨水泥,1辆甲种货车和4辆乙种货车一次可运送36吨水泥.(1)求每辆甲种货车和每辆乙种货车一次分别能装运多少吨水泥?(2)已知甲种货车每辆租金为500元,乙种货车每辆租金为450元,该企业共租用8辆货车.请求出租用货车的总费用(元)与租用甲种货车的数量(辆)之间的函数关系式.(3)在(2)的条件下,为了保障能拉完这批水泥,发现甲种货车不少于4辆,请你为该企业设计如何租车费用最少?并求出最少费用是多少元?【分析】(1)根据题意列出方程组求解即可;(2)将两车的费用相加即可求得总费用的函数解析式;(3)根据一次函数的性质解答即可.解:(1)设每辆甲种货车装a吨,每辆乙种货车装b吨,根据题意得,解得.答:每辆甲种货车装8吨,每辆乙种货车装7吨.(2)设租用甲种货车的数量为x,则乙种货车的数量为8﹣x.w=500x+450(8﹣x)=50x+3600.(3)根据题意得x≥4,∵w=50x+3600(4≤x≤8的整数),k=50>0,∴y随x的增大而增大.∴当x=4时,w最小=3800元.答:租用4辆甲种货车,租用4辆乙种货车费用最少,最少费用是3800元.25.如图,在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG⊥CE于G,CD=AE.(1)求证:CG=EG.(2)已知BC=13,CD=5,连结ED,求△EDC的面积.【分析】(1)连接DE,根据直角三角形的性质得到DE=AB=AE,根据等腰三角形的性质证明结论;(2)作EF⊥BC于F,根据题意求出BD,根据等腰三角形的性质求出DF,根据勾股定理求出EF,根据三角形的面积公式计算,得到答案.【解答】(1)证明:连接DE,在Rt△ADB中,点E是AB的中点,∴DE=AB=AE,∵CD=AE,∴DE=DC,又DG⊥CE,∴CG=EG.(2)解:作EF⊥BC于F,∵BC=13,CD=5,∴BD=13﹣5=8,∵DE=BE,EF⊥BC,∴DF=BF=4,∴EF===3,∴△EDC的面积=×CD×EF=×5×3=7.5.。

2019-2020学年广东省汕头市潮南区两英镇八年级(上)期末数学试卷(解析版)

2019-2020学年广东省汕头市潮南区两英镇八年级(上)期末数学试卷(解析版)

2019-2020学年广东省汕头市潮南区两英镇八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.式子有意义,则x的取值范围是()A.x>1B.x<1C.x≥1D.x≤12.在下列图形中,中心对称图形是()A.B.C.D.3.若分式的值为0,则x的值是()A.3或﹣3B.﹣3C.0D.34.小亮用天平称得一个鸡蛋的质量为50.47g,用四舍五入法将50.47精确到0.1的近似值为()A.50B.50.0C.50.4D.50.55.已知a、b、c为三角形的边长,则图2中甲、乙、丙三个三角形和图1中的△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙6.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线,当∠ACE=35°时,∠BAD的度数是()A.55°B.40°C.35°D.20°8.下列等式正确的是()A.B.C.D.9.在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角()A.小于60°B.等于60°C.大于60°D.大于或等于60°10.若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣二、填空题(每小题4分,共24分)11.若分式的值为0,则x的值是.12.分解因式:x2﹣2x+1=.13.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为.14.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=.15.a﹣=2,则a2=.16.如图,△ABC中,点E是BC上的一点,EC=2BE,点D是AC的中点.若△ABC的面积S△ABC=12,则S△ADF﹣S△BEF=.三、解答题(一)(每小题6分,共18分)17.(6分)解方程:+=118.(6分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,求BC的长.19.(6分)如图,一长方形模具长为2a,宽为a,中间开出两个边长为b的正方形孔.(1)求图中阴影部分面积(用含a、b的式子表示)(2)用分解因式计算当a=15.7,b=4.3时,阴影部分的面积.四、解答题(二)(每小题7分,共21分)20.(7分)如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB=°.21.(7分)已知x=2018,y=2019,求÷+﹣y的值.22.(7分)观察下列式:(x2﹣1)÷(x﹣1)=x+1;(x3﹣1)÷(x﹣1)=x2+x+1;(x4﹣1)÷(x﹣1)=x3+x2+x+1;(x5﹣1)÷(x﹣1)=x4+x3+x2+x+1;(1)猜想:(x7﹣1)÷(x﹣1)=;(27﹣1)÷(2﹣1)=;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27.五、解答题(三)(每小题9分,共27分)23.(9分)如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD.(1)求证:△ABD≌△CFD;(2)已知BC=7,AD=5,求AF的长.24.(9分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.(1)求二月份每辆车售价是多少元?(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?25.(9分)如图,在Rt△AOB中,∠AOB=90°,∠BAO=30°,以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点D.(1)连接BD,OE.求证:BD=OE;(2)连接DE交AB于F.求证:F为DE的中点.2018-2019学年广东省汕头市潮南区两英镇八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】分式有意义,分母不为0,即x≠0.【解答】解:如果分式有意义,那么x≠0.故选:D.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.2.【分析】根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.【解答】解:A、x6÷x2=x4,不符合题意;B、x4﹣x不能再计算,不符合题意;C、x+x2不能再计算,不符合题意;D、x2•x=x3,符合题意;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、乘法及同类项的定义.3.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选:B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.4.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:五角星的对称轴共有5条,故选:C.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.5.【分析】根据多边形的外角和都等于360°,即可得到正确选项.【解答】解:∵n边形的外角和都等于360°(n≥3)∴十边形的外角和等于360°故选:C.【点评】本题考查的是多边形的外角和,把握相关性质定理即可快速解决问题.6.【分析】利用关于x轴对称点的特征确定出m与n的值,即可求出m+n的值.【解答】解:∵点A(1+m,1﹣n)与点B(﹣3,2)关于x轴对称,∴1+m=﹣3,1﹣n=﹣2,解得:m=﹣4,n=3,则m+n=﹣1,故选:A.【点评】此题考查了关于x轴,y轴对称的点的坐标,熟练掌握关于x轴对称点的特征是解本题的关键.7.【分析】根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.【点评】本题考查了完全平方公式的应用,注意:a2+b2=(a+b)2﹣2ab.8.【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.【点评】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.9.【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,=BC•EF=×5×2=5,∴S△BCE故选:C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.10.【分析】直接解分式方程,再利用解为正数列不等式,解不等式得出x的取值范围,进而得出答案.【解答】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,∵关于x的方程+=3的解为正数,∴﹣2m+9>0,解得:m<,当x=3时,x==3,解得:m=,故m的取值范围是:m<且m≠.故选:B.【点评】此题主要考查了分式方程的解以及不等式的解法,正确解分式方程是解题关键.二、填空题(每小题4分,共24分)11.【分析】分式的值等于零时,分子等于零,且分母不等于零.【解答】解:依题意得:x﹣2=0且x+5≠0.解得x=2.故答案是:2.【点评】本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.12.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.【分析】根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出∠ABE,最后根据∠EBC=∠ABC﹣∠ABE代入数据进行计算即可得解.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=(180°﹣∠A)=×(180°﹣36°)=72°,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=72°﹣36°=36°.故答案为:36°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形的两底角相等的性质,是基础题,熟记性质是解题的关键.14.【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【解答】解:∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a =7,b =1,∵7﹣1=6,7+1=8,∴6<c <8,又∵c 为奇数,∴c =7,故答案是:7.【点评】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.15.【分析】将a ﹣=2两边平方,即可求出答案.【解答】解:(a ﹣)2=a 2﹣2+=4,∴a 2+=6, 故答案为:6【点评】本题考查完全平方公式,涉及分式的运算.16.【分析】本题需先分别求出S △ABD ,S △ABE 再根据S △ADF ﹣S △BEF =S △ABD ﹣S △ABE 即可求出结果.【解答】解:∵点D 是AC 的中点,∴AD =AC ,∵S △ABC =12,∴S △ABD =S △ABC =×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =S △ABC =×12=4,∵S △ABD ﹣S △ABE =(S △ADF +S △ABF )﹣(S △ABF +S △BEF )=S △ADF ﹣S △BEF ,即S △ADF ﹣S △BEF =S △ABD ﹣S △ABE =6﹣4=2.故答案为:2.【点评】本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.三、解答题(一)(每小题6分,共18分)17.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣x﹣2+x=x2﹣2x,解得:x=1,经检验x=1是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.【分析】根据角平分线的性质求出DC,根据直角三角形的性质求出BD,结合图形计算,得到答案.【解答】解:∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DC=DE=1,在Rt△DEB中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=3.【点评】本题考查的是角平分线的性质、直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.19.【分析】(1)影部分面积等于大长方形的面积减去中间两个正方形的面积;(2)把a=15.7,b=4.3带入(1)中的最终结果,即可求出阴影部分的面积.【解答】解:(1)2a•a﹣2b2=2(a2﹣b2);(2)当a=15.7,b=4.3时,阴影部分的面积2(a2﹣b2)=2(a+b)(a﹣b)=2(15.7+4.3)(15.7﹣4.3)=456.【点评】本题主要考查了矩形面积的计算以及因式分解中的公式法,熟练矩形面积的计算以及因式分解的方法是解题关键.四、解答题(二)(每小题7分,共21分)20.【分析】(1)根据过直线上一点作直线垂线的方法作出垂线即可;(2)利用全等三角形的判定与性质结合四边形内角和定理得出答案.【解答】解:(1)如图,DA,DB即为所求垂线;(2)连接OD,∵DB⊥ON,DA⊥OM,∴∠OBD=∠OAD=90°,∠MON=50°,∴∠ADB=180°﹣50°=130°.在Rt△OBD与Rt△OAD中,∵,∴Rt△OBD≌Rt△OAD(HL),∴∠ODB=∠ADB=65°.故答案为:65.【点评】此题主要考查了基本作图以及全等三角形的判定与性质,正确得出Rt△OBD≌Rt△OAD 是解题关键.21.【分析】先对分式用因式分解法进行化简,再把x、y的值代入求值.【解答】解:原式=当x=2018,y=2019时原式=1+2018﹣2019=0.【点评】本题考查了分式的运算,因式分解,代数式求值.把分式的分子和分母分别因式分解并化简是准确计算的关键.22.【分析】(1)直接利用已知等式变化规律进而得出答案;(2)直接利用(1)中所求,进而得出答案.【解答】解:(1)(x7﹣1)÷(x﹣1)=x6+x5+x4+x3+x2+x+1;(27﹣1)÷(2﹣1)=26+25+24+23+22+2+1;故答案为:x6+x5+x4+x3+x2+x+1;26+25+24+23+22+2+1;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27=(28﹣1)÷(2﹣1)=28﹣1=255.【点评】此题主要考查了整式的除法运算,正确利用已知式子变化规律分析是解题关键.五、解答题(三)(每小题9分,共27分)23.【分析】(1)由ASA证明△ABD≌△COD即可;(2)理由全等三角形的性质即可解决问题;∵【解答】(1)证明:证明:∵AD⊥BC,CE⊥AB,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠FCD,在△ABD和CFD中,,∴△ABD≌△CFD(ASA),(2)∵△ABD≌△CFD,∴BD=DF,∵BC=7,AD=DC=5,∴BD=BC﹣CD=2,∴AF=AD﹣DF=5﹣2=3.【点评】此题考查了全等三角形的判定与性质的应用,证明三角形全等是解决问题的关键,属于中考常考题型.24.【分析】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每辆山地自行车的进价为y元,根据利润=售价﹣进价,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据题意得:=,解得:x=900,经检验,x=900是原分式方程的解.答:二月份每辆车售价是900元.(2)设每辆山地自行车的进价为y元,根据题意得:900×(1﹣10%)﹣y=35%y,解得:y=600.答:每辆山地自行车的进价是600元.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.25.【分析】(1)连接OD,易证△ADO为等边三角形,再证△ABD≌△AEO即可.(2)作EH⊥AB于H,先证△ABO≌△AEH,得AO=EH,再证△AFD≌△HFE即可.【解答】证明:(1)连接OD,如图1,∵△ABE是等边三角形,∴AB=BE,∠EAB=60°,∵DA⊥BA,∴∠DAB=90°,∵∠BAO=30°,∴∠DAO=90°﹣30°=60°,∴∠OAE=∠DAB,∵MN垂直平分OA,∴OD=DA,∴△AOD是等边三角形,∴DA=OA,∴△ABD≌△AEO(SAS),∴BD=OE;(2)证明:如图2,作EH⊥AB于H,∴∠EHA=∠DAF=90°,∵AE=BE,∴2AH=AB,∵∠AOB=90°,∠BAO=30°,∴2OB=AB,∴AH=BO,∴Rt△AEH≌Rt△BAO(HL),∴EH=AO=AD,∵∠EHF=∠DAF=90°,∠EFH=∠DFA,∴△HFE≌△AFD(AAS),∴EF=DF,∴F为DE的中点.【点评】本题主要考查的是等边三角形的性质,直角三角形的性质,全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.。

2017-2018学年广东省汕头市潮南区两英镇八年级(上)期末数学试卷(解析版)

2017-2018学年广东省汕头市潮南区两英镇八年级(上)期末数学试卷(解析版)

2017-2018学年广东省汕头市潮南区两英镇八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)三角形的三个外角的和是()A.90°B.180°C.270°D.360°2.(3分)若分式有意义,则x的取值范围是()A.x≠1B.x≠﹣1C.x=1D.x=﹣13.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣24.(3分)下列四个汽车标志图中,不是轴对称图形的是()A.B.C.D.5.(3分)石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为()A.1×10﹣6B.10×10﹣7C.0.1×10﹣5D.1×1066.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC7.(3分)若点A(m,n)和点B(5,﹣7)关于x轴对称,则m+n的值是()A.2B.﹣2C.12D.﹣128.(3分)已知x m=6,x n=3,则x2m﹣n的值为()A.9B.39C.12D.1089.(3分)若分式方程+1=m有增根,则这个增根的值为()A.1B.3C.﹣3D.3或﹣310.(3分)如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE ≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①B.②C.①和②D.①②③二、填空题(共6小题,每小题4分,满分24分)11.(4分)计算:6a2b÷2a=.12.(4分)已知,则的值是.13.(4分)已知y2+my+4是完全平方式,则常数m的值是.14.(4分)等腰三角形周长为19cm,若有一边长为9cm,则等腰三角形其他两边长分别为15.(4分)如图,在直角三角形ABC中,两锐角平分线AM、BN所夹的钝角∠AOB=度.16.(4分)如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为.三、解答题(共9小题,满分66分)17.(6分)计算:(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.18.(6分)解方程:.19.(6分)如图:求作一点P,使PM=PN,并且使点P到∠AOB的两边的距离相等.20.(7分)先化简,再求值:•﹣3(x﹣1),其中x=2.21.(7分)在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF的度数.22.(7分)某校为了进一步开展“阳光体育”活动,计划用2000元购买乒乓球拍,用2800元购买羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵14元.该校购买的乒乓球拍与羽毛球拍的数量能相同吗?请说明理由.23.(9分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.24.(9分)乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:公式2:(4)运用你所得到的公式计算:10.3×9.7.25.(9分)如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P 从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)如图1,当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说理由;若不变,求出它的度数.(3)如图2,若点P、Q在分别运动到点B和点C后,继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC=度.(直接填写度数)2017-2018学年广东省汕头市潮南区两英镇八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)三角形的三个外角的和是()A.90°B.180°C.270°D.360°【分析】可以根据三角形外角的性质直接选择.【解答】解:根据三角形外角的性质,可得三角形的三个外角的和是360°.故选:D.【点评】掌握三角形内角和180°之外,也要注意对外角和的应用.2.(3分)若分式有意义,则x的取值范围是()A.x≠1B.x≠﹣1C.x=1D.x=﹣1【分析】根据分母不能为零,可得答案.【解答】接:由题意,得x﹣1≠0,解得x≠1,故选:A.【点评】本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键3.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣2【分析】根据因式分解的意义,可得答案.【解答】解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、没把一个多项式转化成几个整式积的形式,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:B.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.4.(3分)下列四个汽车标志图中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形概念求解.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、是轴对称图形,故错误.故选:B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为()A.1×10﹣6B.10×10﹣7C.0.1×10﹣5D.1×106【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 001=1×10﹣6,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC【分析】根据全等三角形的性质可得到AD=AE、AB=AC,则可得到BD=CE,∠B=∠C,则可证明△BDF≌△CEF,可得DF=EF,可求得答案.【解答】解:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选:B.【点评】本题主要考查全等三角开的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.7.(3分)若点A(m,n)和点B(5,﹣7)关于x轴对称,则m+n的值是()A.2B.﹣2C.12D.﹣12【分析】直接利用关于x轴对称点的性质得出m,n的值,进而得出答案.【解答】解:∵点A(m,n)和点B(5,﹣7)关于x轴对称,∴m=5,n=7,则m+n的值是:12.故选:C.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的符号是解题关键.8.(3分)已知x m=6,x n=3,则x2m﹣n的值为()A.9B.39C.12D.108【分析】先将x2m﹣n变形为(x m)2÷x n,然后将x m=6,x n=3代入求解即可.【解答】解:∵x m=6,x n=3,∴x2m﹣n=(x m)2÷x n=62÷3=12.故选:C.【点评】本题考查了同底数幂的除法,解答本题的关键在于先将x2m﹣n变形为(x m)2÷x n,然后将x m=6,x n=3代入求解.9.(3分)若分式方程+1=m有增根,则这个增根的值为()A.1B.3C.﹣3D.3或﹣3【分析】根据分式方程的增根的定义得出x+3=0,求出即可.【解答】解:∵分式方程+1=m有增根,∴x+3=0,∴x=﹣3,即﹣3是分式方程的增根,故选:C.【点评】本题考查了对分式方程的增根的定义的理解和运用,能根据题意得出方程x+3=0是解此题的关键,题目比较典型,难度不大.10.(3分)如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE ≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①B.②C.①和②D.①②③【分析】如图,证明△ABE≌△ACF,得到∠B=∠C;证明△CDE≌△BDF;证明△ADC≌△ADB,得到∠CAD=∠BAD;即可解决问题.【解答】解:如图,连接AD;在△ABE与△ACF中,,∴△ABE≌△ACF(SAS);∴∠B=∠C;∵AB=AC,AE=AF,∴BF=CE;在△CDE与△BDF中,,∴△CDE≌△BDF(AAS),∴DC=DB;在△ADC与△ADB中,,∴△ADC≌△ADB(SAS),∴∠CAD=∠BAD;综上所述,①②③均正确,故选:D.【点评】该题主要考查了全等三角形的判定及其性质的应用问题;应牢固掌握全等三角形的判定及其性质定理,这是灵活运用解题的基础.二、填空题(共6小题,每小题4分,满分24分)11.(4分)计算:6a2b÷2a=3ab.【分析】根据单项式除单项式的法则计算,再根据系数相等,相同字母的次数相同列式求解即可.【解答】解:原式=3ab.故答案是:3ab.【点评】本题考查了单项式的除法法则,正确理解法则是关键.12.(4分)已知,则的值是﹣2.【分析】先把所给等式的左边通分,再相减,可得=,再利用比例性质可得ab=﹣2(a﹣b),再利用等式性质易求的值.【解答】解:∵﹣=,∴=,∴ab=2(b﹣a),∴ab=﹣2(a﹣b),∴=﹣2.故答案是:﹣2.【点评】本题考查了分式的加减法,解题的关键是通分,得出=是解题关键.13.(4分)已知y2+my+4是完全平方式,则常数m的值是±4.【分析】利用完全平方公式的结构特征判断即可.【解答】解:∵y2+my+4是完全平方式,∴m=±4,故答案为:±4【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.(4分)等腰三角形周长为19cm,若有一边长为9cm,则等腰三角形其他两边长分别为9cm、1cm或5cm、5cm【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【解答】解:①当9cm为腰长时,则腰长为9cm,底边=19﹣9﹣9=1cm,因为9+1>9,所以能构成三角形;②当9cm为底边时,则腰长=(19﹣9)÷2=5cm,因为5+5>9,所以能构成三角形.则等腰三角形其他两边长分别为9cm、1cm或5cm、5cm.故答案为:9cm、1cm或5cm、5cm.【点评】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.15.(4分)如图,在直角三角形ABC中,两锐角平分线AM、BN所夹的钝角∠AOB=135度.【分析】根据三角形内角与外角的定义即可解答.【解答】解:∵△ABC是直角三角形,∴∠BAC+∠ABC=90°,又∵AM,BN为∠BAC,∠ABC的角平分线,∴∠CAM+∠NBC=45°,∴∠AOB=180°﹣(∠CAM+∠NBC)=135°,∴∠AOB=135°.故答案为:135【点评】本题考查的是角平分线的定义,三角形内角和定理.三角形内角和等于180°.16.(4分)如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为8.【分析】连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为12可求得AD的长.【解答】解:连接AD交EF与点M′,连结AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=12,解得AD=6,∴S△ABC∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值6.∴△BDM的周长的最小值为DB+AD=2+6=8.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.三、解答题(共9小题,满分66分)17.(6分)计算:(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.【分析】原式第一项利用平方差公式计算,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式化简,去括号合并即可.【解答】解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.(6分)解方程:.【分析】∵x2﹣4=(x+2)(x﹣2),∴最简公分母为(x+2)(x﹣2).方程两边都乘最简公分母,把分式方程转换为整式方程求解.结果要检验.【解答】解:方程两边都乘(x+2)(x﹣2),得:x(x+2)+2=(x+2)(x﹣2),即x2+2x+2=x2﹣4,移项、合并同类项得2x=﹣6,系数化为1得x=﹣3.经检验:x=﹣3是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.19.(6分)如图:求作一点P,使PM=PN,并且使点P到∠AOB的两边的距离相等.【分析】(1)作∠AOB 的平分线OC;(2)连结MN,并作MN 的垂直平分线EF,交OC于P,连结PM、PN,则P点即为所求.【解答】解:如图,点P即为所求.(1)作∠AOB 的平分线OC;(2)连结MN,并作MN 的垂直平分线EF,交OC于P,连结PM、PN,则P点即为所求.【点评】本题考查作图﹣复杂作图、角平分线的性质,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本作图的步骤,属于中考常考题型.20.(7分)先化简,再求值:•﹣3(x﹣1),其中x=2.【分析】原式第一项约分,去括号合并得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=•﹣3x+3=2x+2﹣3x+3=5﹣x,当x=2时,原式=5﹣2=3.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(7分)在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF的度数.【分析】(1)由AB=CB,∠ABC=90°,AE=CF,即可利用HL证得Rt△ABE≌Rt△CBF;(2)由AB=CB,∠ABC=90°,即可求得∠CAB与∠ACB的度数,即可得∠BAE的度数,又由Rt△ABE≌Rt△CBF,即可求得∠BCF的度数,则由∠ACF=∠BCF+∠ACB即可求得答案.【解答】(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL);(2)解:∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°,又∵∠BAE=∠CAB﹣∠CAE=45°﹣30°=15°,由(1)知:Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=45°+15°=60°.【点评】此题考查了直角三角形全等的判定与性质.此题难度不大,解题的关键是注意数形结合思想的应用.22.(7分)某校为了进一步开展“阳光体育”活动,计划用2000元购买乒乓球拍,用2800元购买羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵14元.该校购买的乒乓球拍与羽毛球拍的数量能相同吗?请说明理由.【分析】假设能相等,设乒乓球拍每一个x元,羽毛球拍就是x+14,得方程,进而求出x=35,再利用2000÷35不是一个整数,得出答案即可.【解答】解:不能相同.理由如下:假设能相等,设乒乓球拍每一个x元,羽毛球拍就是x+14.根据题意得方程:,解得x=35.经检验得出,x=35是原方程的解,但是当x=35时,2000÷35不是一个整数,这不符合实际情况,所以不可能.【点评】此题主要考查了分式方程的应用,根据已知假设购买的乒乓球拍与羽毛球拍的数量能相同得出等式方程求出是解题关键.23.(9分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.24.(9分)乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是a2﹣b2(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是a+b,宽是a﹣b,面积是(a+b)(a﹣b)(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:(a+b)(a﹣b)=a2﹣b2公式2:a2﹣b2=(a+b)(a﹣b)(4)运用你所得到的公式计算:10.3×9.7.【分析】(1)中的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)中的长方形,宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);(3)中的答案可以由(1)、(2)得到(a+b)(a﹣b)=a2﹣b2;反过来也成立;(4)把10.3×9.7写成(10+0.3)(10﹣0.3),利用公式求解即可.【解答】解:(1)阴影部分的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)长方形的宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);故答案为:a+b,a﹣b,(a+b)(a﹣b);(3)由(1)、(2)得到,公式1:(a+b)(a﹣b)=a2﹣b2;公式2:a2﹣b2=(a+b)(a﹣b)故答案为:(a+b)(a﹣b),a2﹣b2=(a+b)(a﹣b);(4)10.3×9.7=(10+0.3)(10﹣0.3)=102﹣0.32=100﹣0.09=99.91.【点评】本题考查了平方差公式的几何表示,利用不同的方法表示图形的面积是解题的关键.25.(9分)如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P 从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)如图1,当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说理由;若不变,求出它的度数.(3)如图2,若点P、Q在分别运动到点B和点C后,继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC=120度.(直接填写度数)【分析】(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;(2)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.【解答】(1)证明:∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS);(2)解:点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠QMC=∠BAQ+∠MAC=∠BAC=60°;(3)解:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°.故答案为:120°.【点评】本题考查了等边三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定是解题的关键.。

2018-2019学年广东省汕头市潮南区两英镇八年级(下)期中数学试卷(A卷)(含解析)

2018-2019学年广东省汕头市潮南区两英镇八年级(下)期中数学试卷(A卷)(含解析)

2018-2019学年广东省汕头市潮南区两英镇八年级(下)期中数学试卷(A 卷)姓名: 得分: 日期:一、选择题(本大题共 10 小题,共 30 分)1、(3分) 若代数式√x+2有意义,则实数x 的取值范围是( ) A.x≥-2 B.x≤-2C.x >-2D.x <-22、(3分) 在平行四边形ABCD 中,∠D+∠B=60°,则∠C=( )A.30°B.90°C.120°D.150°3、(3分) 在Rt△ABC 中,∠B=90°,BC=1,AC=2,则AB 的长是( )A.√3B.1C.2D.√54、(3分) 在四边形ABCD 中,两对角线交于点O ,若OA=OB=OC=OD ,则这个四边形( )A.可能不是平行四边形B.一定是菱形C.一定是正方形D.一定是矩形 5、(3分) 如图,在△ABC 中,∠BAC=90°,点D 在BC 延长线上,且AD=12BC ,若∠D=40°,则∠B=( )A.10°B.20°C.30°D.40°6、(3分) 平行四边形的一边长是12,那么这个平行四边形的两条对角线的长可以是( )A.10和34B.18和20C.14和10D.10和127、(3分) 如图,三角形是直角三角形,四边形是正方形,已知正方形A 的面积是64,正方形B的面积是100,则半圆C的面积是()A.36B.4.5πC.9πD.18π8、(3分) 如图,从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,则余下部分的面积为()A.78 cm2B.(4√3+√30)2cm2C.12√10cm2D.24√10cm29、(3分)如图,在平面直角坐标系中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是()A.(5,4)B.(4,5)C.(4,4)D.(5,3)10、(3分) 如图,正方形ABCD的对角线AC与B相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=√2,则线段BN的长为()B.√2C.1D.2−√2A.√22二、填空题(本大题共 6 小题,共 24 分)11、(4分) 化简:3√2=______.312、(4分) 如图,已知AC平分∠BAD,∠1=∠2,AB=DC=3,则BC=______.13、(4分) 将一副三角尺如图所示叠放在一起,如果AB=10cm,那么AF=______cm.14、(4分) 直角三角形的斜边为10cm,两直角边之比为3:4,那么这个直角三角形的周长为______.15、(4分) 如图,已知BEFG是长方形,A为EB延长线上一点,AF交BG于点C,D为AC上一点,且AD=BD=BF,若∠BFG=60°,则∠AFG的度数为______.16、(4分) 已知x=√5+5,则代数式(x-3)2-4(x-3)+4的值是______.三、解答题(本大题共 8 小题,共 60 分)17、(6分) 计算:√40÷√5+(√2-1)218、(6分) 已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,E、F是直线AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.19、(7分) 已知,如图,在▱ABCD中,点E在边AB上,连接CE.(1)尺规作图(保留作图痕迹,不必写出作法);以点A为顶点,AB为一边作∠FAB=∠CEB,AF交CD于点F;(2)求证:AF=CE.20、(7分) 已知:如图,有一块凹四边形土地ABCD,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求这块四边形土地的面积.21、(7分) 如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC 于点D,已知AB=10,AC=16.(1)求证:BN=DN;(2)求MN的长.22、(9分) 观察下列各式:√1+112+122=1+11-12=112;√1+122+132=1+12-13=116;√1+132+142=1+13-14=1112,…请你根据以上三个等式提供的信息解答下列问题①猜想:√1+172+182=______=______;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:______;③应用:计算√8281+1100.23、(9分) 如图,四边形ABCD和四边形CEFG都是正方形,且BC=CD,CE=CG,∠BCD=∠GCE=90°.(1)求证:△BCG≌△DCE;(2)求证:BG⊥DE .24、(9分) 如图,BD 是△ABC 的角平分线,过点D 作DE∥BC 交AB 于点E ,DF∥AB 交BC 于点F .(1)求证:四边形BEDF 为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF 的面积.四、计算题(本大题共 1 小题,共 6 分)25、(6分) 先化简,再求值:(2x+1x -1)÷x 2−1x ,其中x=√2+12018-2019学年广东省汕头市潮南区两英镇八年级(下)期中数学试卷(A卷)【第 1 题】【答案】C【解析】有意义,解:代数式√x+2故x+2>0,解得:x>-2.故选:C.直接利用二次根式有意义的条件分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.【第 2 题】【答案】D【解析】解:∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠B+∠D=60°,∴∠B=30°,∵∠B+∠C=180°,∴∠C=180°-∠B=150°.故选:D.由在▱ABCD中,∠D+∠B=60°,根据平行四边形的性质,可求得∠B的度数,又由平行线的性质,求得答案.本题主要考查了平行四边形的性质,解题的关键是掌握平行四边形的对角相等,此题比较简单.【第 3 题】【答案】A【解析】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB=√AC2−BC2=√22−12=√3,故选:A.根据勾股定理即可得到结论.本题考查了勾股定理,熟练掌握勾股定理是解题的关键.【第 4 题】【答案】D【解析】解:这个四边形是矩形,理由如下:∵对角线AC、BD交于点O,OA=OB=OC=OD,∴四边形ABCD是平行四边形,又∵OA+OC=OD+OB,∴AC=BD,∴四边形ABCD是矩形.故选:D.根据OA=OB=OC=OD,判断四边形ABCD是平行四边形.然后根据AC=BD,判定四边形ABCD 是矩形.本题考查了矩形的判断,熟记矩形的各种判定方法是解题的关键.【第 5 题】【答案】B【解析】解:取BC 的中点E ,连接AE ,∵∠BAC=90°,点E 是BC 的中点, ∴AE=12BC=BE ,∴∠B=∠EAB , ∵AD=12BC , ∴AE=AD ,∴∠AED=∠D=40°,∴∠B=20°,故选:B .取BC 的中点E ,连接AE ,根据直角三角形的性质得到AE=12BC=BE ,根据等腰三角形的性质,三角形的外角的性质计算.本题考查的是直角三角形的性质,等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.【 第 6 题 】【 答 案 】B【 解析 】解:如图,作CE∥BD ,交AB 的延长线于点E ,∵AB=CD ,DC∥AB∴四边形BECD 是平行四边形,∴CE=BD ,BE=CD=AB ,∴在△ACE 中,AE=2AB=24<AC+CE ,∴四个选项中只有A ,B 符合条件,但是10,34,24不符合三边关系,故选:B .作辅助线CE∥BD ,根据平行四边形的性质和三角形的三边关系,对题中的选项逐个进行判断,即可得出结论.本题考查了平行四边形的性质,通过作一条对角线的平行线,将两条对角线转化到一个三角形,利用三角形的三边关系解题是关键.【 第 7 题 】【 答 案 】B【 解析 】解:正方形A 的面积是64,正方形B 的面积是100,∴DE=10,EF=8,由勾股定理得,DF=√DE 2−EF 2=6, ∴半圆C 的面积=12×π×32=4.5π,故选:B .根据正方形的性质分别求出DE ,EF ,根据勾股定理求出DF ,根据圆的面积公式计算. 本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.【 第 8 题 】【 答 案 】D【 解析 】解:从一个大正方形中裁去面积为30cm 2和48cm 2的两个小正方形,大正方形的边长是√30+√48=√30+4√3,留下部分(即阴影部分)的面积是(√30+4√3)2-30-48=8√90=24√10(cm 2).故选:D .根据题意求出阴影部分的面积进而得出答案.此题主要考查了二次根式的应用,正确求出阴影部分面积是解题关键.【 第 9 题 】【 答 案 】A【 解析 】【分析】此题主要考查了菱形的性质以及坐标与图形的性质,解题的关键是利用勾股定理求出DO 的长度.首先根据菱形的性质求出AB 的长度,再利用勾股定理求出DO 的长度,进而得到点C 的坐标.【解答】解:∵菱形ABCD 的顶点A ,B 的坐标分别为(-3,0),(2,0),点D 在y 轴上,∴AB=AO+OB=5,∴AD=AB=CD=5,∴DO=√AD 2−AO 2=√52−32=4,∴点C 的坐标是(5,4).故选A .【 第 10 题 】【 答 案 】C【 解析 】解:过M 点作MH⊥AC 于H 点,∵四边形ABCD 是正方形,∴∠HAM=45°. ∴△HAM 是等腰直角三角形, ∴HM=√22AM=1. ∵CM 平分∠ACB ,MH⊥AC ,MB⊥CB ,∴BM=HM=1,∠ACM=∠BCN .∵∠BMN=45°+∠ACM ,∠BNM=45°+∠BCM ,∴∠BMN=∠BNM .∴BN=BM=1.故选:C . 过M 点作MH⊥AC 于H 点,在等腰直角△HAM 中可求HM=√22AM=1,根据角平分线的性质可得BM=MH=1,再证明BN=BM 即可.本题主要考查了正方形的性质、角平分线的性质,解决这类问题一般会利用到正方形对角线平分90°得到45°等腰直角三角形,涉及角平分线时作角两边的垂线段是常见辅助线.【 第 11 题 】【 答 案 】 √6【 解析 】解:3√23=√9×23=√6.故答案为:√6.直接利用二次根式的性质化简求出答案.此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.【 第 12 题 】【 答 案 】3【 解析 】解:∵AC 平分∠BAD∴∠1=∠BAC ∴AB∥DC又∵AB=DC∴四边形ABCD 是平行四边形∴BC=AD又∵∠1=∠2∴AD=DC=3∴BC=3.利用角平分线的性质和平行线,平行四边形的判定即可计算.此题考查角平分线的定义,平行线的判定,平行四边形的判定等知识点.【 第 13 题 】【 答 案 】5√2【 解析 】解:在Rt△ACB 中,∠ACB=90°,∠B=30°,∴AC=12AB=5,∵FC∥DE ,∴∠AFC=∠D=45°,∴FC=AC=5,由勾股定理得,AF=√AC2+CF2=5√2(cm),故答案为:5√2.根据直角三角形的性质求出AC,根据勾股定理计算即可.本题考查的是勾股定理,直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.【第 14 题】【答案】24cm【解析】解:设两直角边分别为3x,4x,由勾股定理得,(3x)2+(4x)2=102,解得,x=2,则两直角边分别为6cm,8cm,∴这个直角三角形的周长=6cm+8cm+10cm=24cm,故答案为:24cm.设两直角边分别为3x,4x,根据勾股定理求出两直角边长,根据三角形的周长公式计算,得到答案.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.【第 15 题】【答案】20°【解析】解:∵四边形BEFG是长方形,∴FG∥BE,∴∠FBE=∠BFG=60°,∵AD=BD=BF,∴∠A=∠ABD,∠BDF=∠BFD,∵∠BDF=∠DFB=∠A+∠ABD=2∠A,∴∠EBF=∠A+∠AFB=3∠A=60°,∴∠A=20°,∵FG∥BE,∴∠AFG=∠A=20°,故答案为:20°.根据矩形的性质得到FG∥BE,根据平行线的性质得到∠FBE=∠BFG=60°,根据等腰三角形的性质得到∠A=∠ABD,∠BDF=∠BFD,由三角形的外角的性质得到∠BDF=∠DFB=∠A+∠ABD=2∠A,求得∠A=20°,根据平行线的性质即可得到结论.本题考查了矩形的性质,等腰三角形的性质,三角形的外角的性质,平行线的性质,熟练掌握各性质定理是解题的关键.【第 16 题】【答案】5【解析】解:当x=√5+5时,原式=(x-3-2)2=(x-5)2=(√5+5-5)2=(√5)2=5,故答案为:5.将x=√5+5代入原式=(x-3-2)2=(x-5)2计算可得.本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式.【第 17 题】【答案】解:原式=√8+2-2√2+1=2√2+2-2√2+1=3.【解析】直接利用二次根式的混合运算法则分别计算得出答案.此题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.【第 18 题】【答案】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又∵AE=CF,∴OE=OF.∴四边形BFDE是平行四边形.【解析】平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题所给的条件为AE=CF,根据条件在图形中的位置,可选择利用“对角线相互平分的四边形为平行四边形”来解决.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.【第 19 题】【答案】(1)解:如图所示:(2)证明:由(1)得:∠FAB=∠CEB,∴AF∥CE,∵四边形ABCD是平行四边形,∴AB∥CD,∴四边形AECF是平行四边形,∴AF=CE.【解析】(1)根据作一个角等于已知角的方法作∠FAB=∠CEB即可;(2)首先根据平行线的判定可得AF∥CE,再根据平行四边形的性质可得AB∥CD,然后证明四边形AECF是平行四边形,根据平行四边形的性质可得AF=CE.此题主要考查了基本作图和平行四边形的性质,关键是掌握平行四边形两组对边分别平行且相等.【第 20 题】【答案】解:连接AC , ∵∠ADC=90°,AD=4m ,CD=3m ,∴AC=√CD 2+AD 2=5m .∵BC=12,AB=13,∴AC 2+BC 2=AB 2.∴△ABC 为直角三角形且∠ACB=90°, S △ABC =12×5×12=30(m 2),S △ACD =12×3×4=6(m 2)∴这块四边形土地的面积30-6=24 (m 2).【 解析 】连接AC ,根据解直角△ADC 求AC ,求证△ABC 为直角三角形,根据四边形ABCD 的面积=△ABC 面积-△ACD 面积即可计算.本题考查了直角三角形中勾股定理的运用,考查了根据勾股定理判定直角三角形,本题中求证△ABC 是直角三角形是解题的关键.【 第 21 题 】【 答 案 】证明:(1)∵AN 平分∠BAC∴∠1=∠2,∵BN⊥AN∴∠ANB=∠AND ,在△ABN 和△ADN 中,{∠1=∠2AN =AN ∠ANB =∠AND ,∴△ABN≌△ADN (ASA )∴BN=DN ;(2)∵△ABN≌△ADN∴AD=AB=10,DN=NB ,∴CD=AC -AD=16-10=6,又∵点M 是BC 中点,∴MN 是△BDC 的中位线, ∴MN=12CD=3.【 解析 】(1)证明△ABN≌△ADN ,即可得出结论;(2)先判断MN 是△BDC 的中位线,从而得出MN .本题考查了三角形的中位线定理,关键是根据全等三角形的判定证明△ABN≌△ADN .【 第 22 题 】【 答 案 】解:①猜想:√1+17+18=1+17-18=1156;故答案为:1+17-18,1156;②归纳:根据你的观察,猜想,写出一个用n (n 为正整数)表示的等式:√1+1n 2+1(n+1)2=1+1n -1n+1=n 2+n+1n 2+n ;③应用:√8281+1100=√1+181+1100=√1+192+1102=1+19-110=1190.【 解析 】①直接利用利用已知条件才想得出答案;②直接利用已知条件规律用n (n 为正整数)表示的等式即可;③利用发现的规律将原式变形得出答案.此题主要考查了二次根式的性质与化简,正确发现数字变化规律是解题关键.【 第 23 题 】【 答 案 】证明:(1)∵∠BCD=∠GCE=90°,∴∠BCG=∠DCE ,在△BCG 与△DCE 中{BC =CD ∠BCG =∠DCE CE =CG ,∴△BCG≌△DCE (SAS );(2)∵△BCG≌△DCE,∴∠HBC=∠ODH,∵∠BHC=∠DHO,∵∠HBC+∠BHC=90°,∴∠ODH+∠DHO=90°,∴∠DOH=90°,∴BG⊥DE.【解析】(1)根据正方形的性质和全等三角形的判定证明即可;(2)利用全等三角形的性质和三角形内角和解答即可.本题考查三角形全等的判定和性质和正方形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.【第 24 题】【答案】证明:(1)∵DE∥BC,DF∥AB,∴四边形BFDE是平行四边形,∵BD是△ABC的角平分线,∴∠EBD=∠DBF,∵DE∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB,∴BE=ED,∴平行四边形BFDE是菱形;(2)连接EF,交BD于O,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠DBC=30°,∴BD=DC=12,∵DF∥AB,∴∠FDC=∠A=90°,∴DF=√3=√3=4√3,在Rt△DOF 中,OF=2−OD 2=√(4√3)2−62=2√3,∴菱形BFDE 的面积=12×EF ⋅BD =12×12×4√3=24√3.【 解析 】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.【 第 25 题 】【 答 案 】解:原式=(2x+1x -x x )÷(x+1)(x−1)x =x+1x •x (x+1)(x−1)=1x−1,当x=√2+1时,原式=√2+1−1=√22. 【 解析 】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值代入计算即可求出值.本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.。

汕头市潮南区八年级下期末联考练兵数学试题含答案.doc

2015~2016学年度第二学期八年级期末试题数学说明:1、考试内容:八年级下册。

2、总分120分,时间60分钟一、选择题(本大题10小题,每小题3分,共30分).1.二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤22.下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.3,4,5 C.4,5,6 D.7,8,93.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.94.若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.15.下列式子一定是最简二次根式的是()A.B.C.D.(6)6.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°7.已知,如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=10cm,则OE的长为()(7)A.6cm B.5cm C.4cm D.3cm8.如图,以原点O为圆心,OB为半径画弧与数轴交于点A,且点A表示的数为x,则x2﹣10的立方根为()A.B.﹣C.2 D.﹣29.如图,已知一次函数y=2x+a,y=﹣x+b的图象都经过A(﹣2,0),且与y轴分别交于B、C两点,则△ABC的面积为()A.4 B.5 C.6 D.710.平移边长为1的小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,其中第(1)个图形含边长为1的菱形2个,第(2)个图形含边长为1的菱形8个,第(3)个图形含边长为1的菱形18个,则第(6)个图形中含边长为1的菱形的个数是()A.32 B.36 C.50 D.72二、填空题(本大题6小题,每小题4分,共24分)11.在市初中毕业生体能测试中,某校初三有7名同学的体能测试成绩(单位:分)如下:50,48,47,50,48,49,48.这组数据的众数是.12.如图,在▱ABCD中,对角线AC与BD相交于点O,请添加一个条件,使▱ABCD成为矩形(写出符合题意的一个条件即可)13.函数中,自变量x的取值范围是.14.一次函数y=﹣3x+6的图象不经过第象限.(12)15.在△A BC中,∠C=90°,若a+b=7cm,c=5cm,则△ABC的面积为.16.如图,在菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为。

广东省汕头市潮南区两英镇2018-2019学年八年级(下)期末数学试卷 解析版

2018-2019学年八年级(下)期末数学试卷一.选择题(共10小题)1.9的平方根为()A.3 B.﹣3 C.±3 D.2.如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是()A.∠A=25°,∠B=65°B.∠A:∠B:∠C=2:3:5C.a:b:c=::D.a=6,b=10,c=123.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛,在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如表所示:甲乙丙丁平均数/环9.5 9.5 9.5 9.5方差/环2 4.5 4.7 5.1 5.1 请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠BCE=28°,则∠D=()A.28°B.38°C.52°D.62°5.如图,∠ABC=∠ADC=Rt∠,E是AC的中点,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2大小关系不能确定6.若﹣=n(n为整数),则m的值可以是()A.B.12 C.18 D.247.如图,在△ABC中,∠B=45°,∠ACB=60°,AB=16,AD⊥BC,垂足为D,∠ACB的平分线交AD于点E,则AE的长为()A.B.4C.D.68.已知一次函数y=kx+b随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.9.如图,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列条件①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四边形BEDF是菱形的条件有()A.1个B.2个C.3个D.4个10.如图,直线y=﹣x+2分别交x轴、y轴于点A,B,点D在BA的延长线上,OD的垂直平分线交线段AB于点C.若△OBC和△OAD的周长相等,则OD的长是()A.2 B.2C.D.4二.填空题(共6小题)11.已知m+3n的值为2,则﹣m﹣3n的值是.12.若一组数据4,a,7,8,3的平均数是5,则这组数据的中位数是.13.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=3,则AF的长为.14.已知三角形三边长分别为,,,则此三角形的最大边上的高等于.15.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠ECD=°.16.一次函数y=kx﹣2的图象经过第一、三、四象限,且与两坐标轴围成的三角形的面积等于4,则k的值等于.三.解答题(共9小题)17.计算:﹣﹣(3﹣)(3+)18.已知a=,求的值.19.如图,将平行四边形ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.求证:四边形CEDF是平行四边形.20.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.21.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.22.如图一次函数y=kx+b的图象经过点A和点B.(1)写出点A和点B的坐标并求出k、b的值;(2)求出当x=时的函数值.23.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E作EF ⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.24.小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A、B两种水果进行销售,并分别以每箱35元与60元的价格售出,设购进A水果x箱,B水果y箱.(1)若小王将水果全部售出共赚了215元,则小王共购进A、B水果各多少箱?(2)若要求购进A水果的数量不得少于B水果的数量,则应该如何分配购进A、B水果的数量并全部售出才能获得最大利润,此时最大利润是多少?25.如图,在平行四边形ABCD中,AC⊥AD,延长DA于点E,使得DA=AE,连接BE.(1)求证:四边形AEBC是矩形;(2)过点E作AB的垂线分别交AB,AC于点F,G,连接CE交AB于点O,连接OG,若AB=6,∠CAB=30°,求△OGC的面积.参考答案与试题解析一.选择题(共10小题)1.9的平方根为()A.3 B.﹣3 C.±3 D.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选:C.2.如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是()A.∠A=25°,∠B=65°B.∠A:∠B:∠C=2:3:5C.a:b:c=::D.a=6,b=10,c=12【分析】根据三角形的内角和和勾股定理的逆定理判定即可.【解答】解:A、∵∠A=25°,∠B=65°,∴∠C=180°﹣∠A﹣∠C=90°,∴△ABC是直角三角形,故A选项正确;B、∵∠A:∠B:∠C=2:3:5,∴∠C=180°×=90°,∴△ABC是直角三角形;故B选项正确;C、∵a:b:c=::,∴设a=k,b=k,c=k,∴a2+b2=5k2=c2,∴△ABC是直角三角形;故C选项正确;D、∵62+102≠122,∴△ABC不是直角三角形,故D选项错误.故选:D.3.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛,在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如表所示:甲乙丙丁平均数/环9.5 9.5 9.5 9.5方差/环2 4.5 4.7 5.1 5.1 请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁【分析】根据方差的意义求解可得.【解答】解:∵四人的平均成绩相同,而甲的方差最小,即甲的成绩最稳定,∴最合适的人选是甲,故选:A.4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠BCE=28°,则∠D=()A.28°B.38°C.52°D.62°【分析】求出∠CEB=90°,根据三角形内角和定理求出∠B,根据平行四边形的性质得出即可.【解答】解:∵CE⊥AB,∴∠CEB=90°,∵∠BCE=28°,∴∠B=62°,∵四边形ABCD是平行四边形,∴∠D=∠B=62°,故选:D.5.如图,∠ABC=∠ADC=Rt∠,E是AC的中点,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2大小关系不能确定【分析】根据直角三角形斜边上的中线等于斜边的一半,可以证明DE=BE,再根据等腰三角形的性质即可解答.【解答】解:∵∠ABC=∠ADC=90°,E是AC的中点,∴DE=AC,BE=AC,∴DE=BE,∴∠1=∠2.故选:B.6.若﹣=n(n为整数),则m的值可以是()A.B.12 C.18 D.24【分析】根据﹣=n(n为整数),可得:m的值等于一个整数的平方与2的乘积,据此求解即可.【解答】解:∵﹣=n(n为整数),∴m的值等于一个整数的平方与2的乘积,∵12=22×3,18=32×2,24=22×6,∴m的值可以是18.故选:C.7.如图,在△ABC中,∠B=45°,∠ACB=60°,AB=16,AD⊥BC,垂足为D,∠ACB的平分线交AD于点E,则AE的长为()A.B.4C.D.6【分析】解直角三角形分别求出AD,DE即可解决问题.【解答】解:在Rt△ABD中,∵∠ADB=90°,AB=16,∠B=45°,∴BA=DA=8,在Rt△ADC中,∵∠ADC=90°,∠ACD=60°,AD=8,∴CD=,∵CE平分∠ACD,∴∠ECD=30°,∴DE=CD•tan30°=,∴AE=AD﹣DE=8﹣=,故选:C.8.已知一次函数y=kx+b随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.【分析】先根据一次函数的增减性判断出k的符号,再由kb<0判断出b的符号,进而可得出结论.【解答】解:∵一次函数随着x的增大而减小,∴k<0.∵kb<0,∴b>0,∴函数图象经过一二四象限.故选:A.9.如图,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列条件①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四边形BEDF是菱形的条件有()A.1个B.2个C.3个D.4个【分析】根据正方形的四条边都相等,对角线互相垂直平分且每一条对角线平分一组对角的性质,再加上各选项的条件,对各选项分析判断后再计算正确选项的个数.【解答】解:连接BD,交AC于点O,在正方形ABCD中,AB=BC,∠BAC=∠ACB,AC⊥BD,①在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴BE=BF,∵AC⊥BD,∴OE=OF,所以四边形BEDF是菱形,故①选项正确;②正方形ABCD中,OA=OB=OC=OD,∵AE=CF,∴OE=OF,又EF⊥BD,BO=OD,∴四边形BEDF是菱形,故②选项正确;③AB=AF,不能推出四边形BEDF其它边的关系,故不能判定是菱形,本选项错误;④BE=BF,同①的后半部分证明,故④选项正确.所以①②④共3个可以判定四边形BEDF是菱形.故选:C.10.如图,直线y=﹣x+2分别交x轴、y轴于点A,B,点D在BA的延长线上,OD的垂直平分线交线段AB于点C.若△OBC和△OAD的周长相等,则OD的长是()A.2 B.2C.D.4【分析】根据直线解析式可得OA和OB长度,利用勾股定理可得AB长度,再根据线段垂直平分线的性质以及两个三角形周长线段,可得OD=AB.【解答】解:∵直线y=﹣x+2分别交x轴、y轴于点A,B,∴OA=OB=2.在Rt△BOA中,利用勾股定理求得BA=.又△OBC周长=2+BC+OC,△OAD周长=2+OD+AD,由△OBC和△OAD的周长相等,可得BC+OC=OD+AD.∵OD的垂直平分线交线段AB于点C,∴OC=CD,则OC=CA+AD.∴BC+CA+AD=OD+AD,整理得BC+CA=OD,即BA=OD.∴OD=.故选:B.二.填空题(共6小题)11.已知m+3n的值为2,则﹣m﹣3n的值是.【分析】将m+3n=2代入﹣m﹣3n=3﹣(m+3n)计算可得.【解答】解:∵m+3n=2,∴﹣m﹣3n=3﹣(m+3n)=3﹣2=,故答案为:.12.若一组数据4,a,7,8,3的平均数是5,则这组数据的中位数是 4 .【分析】先根据平均数的定义求出a的值,然后根据中位数的定义求解.【解答】解:一组数据4,a,7,8,3的平均数是5∴4+a+7+8+3=5×5解得:a=3从小到大排列为:3,3,4,7,8第3个数是4,∴这组数据的中位数为4.故答案为:4.13.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=3,则AF的长为 3 .【分析】先利用直角三角形斜边中线性质求出AB,再在RT△ABF中,利用30角所对的直角边等于斜边的一半,求出AF即可解决问题.【解答】解:在RT△ABF中,∵∠AFB=90°,AD=DB,DF=3,∴AB=2DF=6,∵AD=DB,AE=EC,∴DE∥BC,∴∠ADE=∠ABF=30°,∴AF=AB=3,故答案为:3.14.已知三角形三边长分别为,,,则此三角形的最大边上的高等于.【分析】根据勾股定理的逆定理,△ABC是直角三角形,利用它的面积:斜边×高÷2=短边×短边÷2,就可以求出最长边的高.【解答】解:∵2+2=(2)2,∴根据勾股定理的逆定理,△ABC是直角三角形,最长边是2,设斜边上的高为h,则S△ABC=××=×h,解得:h=,故答案为.15.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠ECD=57.5 °.【分析】根据矩形的性质由∠ADF求出∠CDF,再由等腰三角形的性质得出∠ECD即可.【解答】解:∵四边形ABCD是矩形,∴∠ADC=90°,∵∠ADF=25°,∴∠CDF=∠ADC﹣∠ADF=90°﹣25°=65°,∵DF=DC,∴∠ECD==57.5°.故答案为:57.5.16.一次函数y=kx﹣2的图象经过第一、三、四象限,且与两坐标轴围成的三角形的面积等于4,则k的值等于.【分析】一次函数图象与两坐标轴围成的面积,就要先求出一次函数图象与两坐标轴的交点,再由直角三角形面积公式求三角形面积,结合已知条件图象经过第一、三、四象限,判断k的取值范围k>0,进而求出k的值.【解答】解:∵一次函数y=kx﹣2的图象经过第一、三、四象限,∴k>0,又∵一次函数y=kx﹣2与两坐标轴的交点分别为(0,﹣2),(,0),∴与两坐标轴围成的三角形的面积S=×2×||=||=4,∴k=±,∵k>0,∴k=.故答案为:.三.解答题(共9小题)17.计算:﹣﹣(3﹣)(3+)【分析】先利用负整数指数幂的意义化简第二项,再算乘除,然后去括号计算减法即可.【解答】解:﹣﹣(3﹣)(3+)=﹣4﹣(9﹣2)=﹣4﹣7=﹣11.18.已知a=,求的值.【分析】先将a的值分母有理化,从而判断出a﹣2<0,再根据二次根式的混合运算顺序和运算法则化简原式,继而将a的值代入计算可得.【解答】解:∵a===2﹣,∴a﹣2=2﹣﹣2=﹣<0,则原式=﹣=a+3+=2﹣+3+2+=7.19.如图,将平行四边形ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.求证:四边形CEDF是平行四边形.【分析】利用平行四边形的性质得出AD=BC,AD∥BC,进而利用已知得出DE=FC,DE ∥FC,进而得出答案;【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=AD,F是BC边的中点,∴DE=FC,DE∥FC,∴四边形CEDF是平行四边形;20.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE= 3 .【分析】(1)根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;(2)根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.【解答】解:(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.故答案为:3.21.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.【分析】(1)直接利用三角形中位线定理得出DE∥BC,再利用平行四边形的判定方法得出答案;(2)利用等边三角形的性质结合平行四边形的性质得出DC=EF,进而求出答案.【解答】解:(1)∵D、E分别为AB、AC的中点,∴DE∥BC,DE=BC,∵EF∥CD∴四边形DEFC是平行四边形,∴DE=CF.(2)∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.22.如图一次函数y=kx+b的图象经过点A和点B.(1)写出点A和点B的坐标并求出k、b的值;(2)求出当x=时的函数值.【分析】(1)由图可直接写出A、B的坐标,将这两点代入联立求解可得出k和b的值.(2)由(1)的关系式,将x=代入可得出函数值.【解答】解:(1)由图可得:A(﹣1,3),B(2,﹣3),将这两点代入一次函数y=kx+b得:,解得:∴k=﹣2,b=1;(2)将x=代入y=﹣2x+1得:y=﹣2.23.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E作EF ⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.【分析】(1)由正方形的性质可得∠ABC=90°,AD∥BC,由“AAS”可证△ABM≌△EFA,可得AF=BM;(2)由勾股定理可求AM=13,由全等三角形的性质可得AM=AE=13,即可求DE的长.【解答】证明:(1)∵四边形ABCD是正方形∴∠ABC=90°,AD∥BC∴∠EAF=∠AMB,∵∠AFE=∠ABC=90°,AE=AM,∴△ABM≌△EFA(AAS)∴AF=BM(2)∵在Rt△ABM中,AB=12,AF=BM=5∴AM==13∵△ABM≌△EFA,∴AM=AE=13,∵四边形ABCD是正方形,∴AB=AD,∴DE=AE﹣AD=13﹣12=124.小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A、B两种水果进行销售,并分别以每箱35元与60元的价格售出,设购进A水果x箱,B水果y箱.(1)若小王将水果全部售出共赚了215元,则小王共购进A、B水果各多少箱?(2)若要求购进A水果的数量不得少于B水果的数量,则应该如何分配购进A、B水果的数量并全部售出才能获得最大利润,此时最大利润是多少?【分析】(1)根据总价=单价×数量列出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设利润为W元,找出利润W关于x的函数关系式,由购进A水果的数量不得少于B 水果的数量找出关于x的一元一次不等式,解不等式得出x的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)由题意可得,,解得,答:小王共购进A种水果25箱,B种水果9箱.(2)设利润为W元,W=(35﹣30)x+(60﹣50)y=5x+10×=﹣x+240.∵购进A水果的数量不得少于B水果的数量,∴x≥,解得:x≥15.∵﹣1<0,∴W随x的增大而减小,∴当x=15时,W取最大值,最大值为225,此时y=(1200﹣30×15)÷50=15.答:购进水果A、B的数量均为15箱并全部售出才能获得最大利润,此时最大利润为225元.25.如图,在平行四边形ABCD中,AC⊥AD,延长DA于点E,使得DA=AE,连接BE.(1)求证:四边形AEBC是矩形;(2)过点E作AB的垂线分别交AB,AC于点F,G,连接CE交AB于点O,连接OG,若AB=6,∠CAB=30°,求△OGC的面积.【分析】(1)根据平行四边形的性质得到AD∥BC,AD=BC,推出四边形AEBC是平行四边形,求得∠CAE=90°,于是得到四边形AEBC是矩形;(2)根据三角形的内角和得到∠AGF=60°,∠EAF=60°,推出△AOE是等边三角形,得到AE=EO,求得∠GOF=∠GAF=30°,根据直角三角形的性质得到OG=2,根据三角形的面积公式即可得到结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DA=AE,∴AE=BC,AE∥BC,∴四边形AEBC是平行四边形,∵AC⊥AD,∴∠DAC=90°,∴∠CAE=90°,∴四边形AEBC是矩形;(2)∵EG⊥AB,∴∠AFG=90°,∵∠CAB=30°,∴∠AGF=60°,∠EAF=60°,∵四边形AEBC是矩形,∴OA=OC=OB=OE,∴△AOE是等边三角形,∴AE=EO,∴AF=OF,∴AG=OG,∴∠GOF=∠GAF=30°,∴∠CGO=60°,∴∠COG=90°,∵OC=OA=AB=3,∴OG=,∴△OGC的面积=×3×=.。

XXX 2014-2015学年八年级下学期期末数学试卷(含答案)

XXX 2014-2015学年八年级下学期期末数学试卷(含答案)XXX2014-2015学年度下学期期末质量监测八年级数学试卷一、选择题:本大题共12个小题,每小题4分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列根式中,是最简二次根式的是()A。

$\frac{1}{2}$ $\sqrt{2}$ B。

3 $\sqrt{2}$ C。

8 D。

12 $\sqrt{2}$2.下列计算正确的是()A。

3+2=5 B。

3×2=6 C。

12-3=9 D。

8÷2=43.下列各点在函数y=2x的图象上的是()A。

(2,-1) B。

(-1,2) C。

(1,2) D。

(2,1)4.下列各数组中,能作为直角三角形三边长的是()A。

1,1,2 B。

2,3,4 C。

2,3,5 D。

3,4,55.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲成绩的方差为1.21,乙成绩的方差为3.98,由此可知()A。

甲比乙的成绩稳定 B。

乙比甲的成绩稳定 C。

甲、乙两人的成绩一样稳定 D。

无法确定谁的成绩更稳定6.如图,矩形ABCD中,∠AOD=120,AB=3,则BD的长是()A。

$\sqrt{33}$ B。

6 C。

4 D。

$\sqrt{23}$7.若(-4,y1),(2,y2)两点都在直线y=-2x-4上,则y1与y2的大小关系是()A。

y1>y2 B。

y1=y2 C。

y1<y2 D。

无法确定8.如图,平行四边形ABCD中,对角线AC与BD交于点O,已知∠OAB=90,BD=10cm,AC=6cm,则AB的长为()A。

4cm B。

5cm C。

6cm D。

8cm9.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A。

4cm B。

5cm C。

6cm D。

8cm10.为了解某班学生每天使用零花钱的情况,XXX随机调查了该班15名同学,结果如下表:人数。

汕头市潮南区八级下期末数学试卷含答案解析

2015-2016学年广东省汕头市潮南区八年级(下)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分).1.二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤22.下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.3,4,5 C.4,5,6 D.7,8,93.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.94.若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.15.下列式子一定是最简二次根式的是()A.B.C.D.6.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°7.已知,如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=10cm,则OE的长为()A.6cm B.5cm C.4cm D.3cm8.如图,以原点O为圆心,OB为半径画弧与数轴交于点A,且点A表示的数为x,则x2﹣10的立方根为()A.B.﹣C.2 D.﹣29.已知一次函数y=2x+a,y=﹣x+b的图象都经过A(﹣2,0),且与y轴分别交于B、C 两点,则△ABC的面积为()A.4 B.5 C.6 D.710.平移边长为1的小菱形◇可以得到美丽的“中国结”图案.下面四个图案是由◇平移后得到的类似“中国结”的图案,其中第(1)个图形含边长为1的菱形2个,第(2)个图形含边长为1的菱形8个,第(3)个图形含边长为1的菱形18个,则第(6)个图形中含边长为1的菱形的个数是()A.32 B.36 C.50 D.72二、填空题(本大题6小题,每小题4分,共24分)11.在2014年重庆市初中毕业生体能测试中,某校初三有7名同学的体能测试成绩(单位:分)如下:50,48,47,50,48,49,48.这组数据的众数是.12.如图,在ABCD中,对角线AC与BD相交于点O,请添加一个条件,使ABCD成为菱形(写出符合题意的一个条件即可)13.函数中,自变量x的取值范围是.14.一次函数y=﹣3x+6的图象不经过象限.15.在△ABC中,∠C=90°,若a+b=7cm,c=5cm,则△ABC的面积为.16.如图,菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为.三、解答题(本大题3小题,每小题6分,共18分)17.÷﹣×2.18.如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,过点O画直线EF分别交AD,BC于点E,F,求证:AE=CF.19.为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:(1)计算这家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?四、解答题(本大题3小题,每小题7分,共21分)20.已知,如图,把长方形纸片ABCD沿EF折叠后,点D与点B重合,点C落在点C′的位置上,若∠1=60°,AE=2.(1)求∠2,∠3的度数.(2)求长方形ABCD的纸片的面积S.21.如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.22.如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?五、解答题(本大题3小题,每小题9分,共27分)23.如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点A作AE的垂线交DE 于P,若AE=AP(1)求证:△ABE≌△ADP;(2)求证:BE⊥DE.24.A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台,已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元.(1)设B市运往C村机器x台,求总运费W关于x的函数关系式;(2)若要求总运费不超过9000元,共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?分析由已知条件填出下表:25.在平面直角坐标系中,已知点A(a,0),C(0,b),且a、b满足(a+1)2+=0.(1)直接写出:a=,b=;(2)如图,点B为x轴正半轴上一点,过点B作BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,此时,OB与OC有怎样的大小关系?证明你的结论.(3)在(2)的条件下,求直线BE的解析式.2015-2016学年广东省汕头市潮南区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分).1.二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤2【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0,解得x≥2.故选C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.3,4,5 C.4,5,6 D.7,8,9【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、因为12+22≠32,故不是勾股数;故此选项错误;B、因为32+42=52,故是勾股数.故此选项正确;C、因为42+52≠62,故不是勾股数;故此选项错误;D、因为72+82≠92,故不是勾股数.故此选项错误;故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.9【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故选:C.【点评】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.1【分析】把点的坐标代入函数解析式计算即可得解.【解答】解:∵点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,∴3k﹣2=1,解得k=1.故选:D.【点评】本题考查了一次函数图象上点的坐标特征,准确计算是解题的关键.5.下列式子一定是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念,(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,即可得到答案.【解答】解:A.被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项错误;B.被开方数中含有分母,不是最简二次根式,故本选项错误;C.被开方数不含分母,被开方数中不含能开得尽方的因数或因式,是最简二次根式,故本选项正确;D.被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项错误;故选C.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.6.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°【分析】根据矩形的对角线互相平分且相等可得OB=OC,再根据等边对等角可得∠OBC=∠ACB,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵矩形ABCD的对角线AC,BD相交于点O,∴OB=OC,∴∠OBC=∠ACB=30°,∴∠AOB=∠OBC+∠ACB=30°+30°=60°.故选:B.【点评】本题考查了矩形的性质,等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.7.已知,如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=10cm,则OE的长为()A.6cm B.5cm C.4cm D.3cm【分析】据已知可得OE是△ABC的中位线,从而求得OE的长.【解答】解:∵OE∥DC,AO=CO,∴OE是△ABC的中位线,∵四边形ABCD是菱形,∴AB=AD=10cm,∴OE=5cm.故选B.【点评】本题考查了菱形的性质及三角形的中位线定理,属于基础题,关键是得出OE是△ABC的中位线,难度一般.8.如图,以原点O为圆心,OB为半径画弧与数轴交于点A,且点A表示的数为x,则x2﹣10的立方根为()A.B.﹣C.2 D.﹣2【分析】根据勾股定理列式求出x2,再利用立方根的定义解答.【解答】解:由图可知,x2=12+12=2,则x2﹣10=2﹣10=﹣8,﹣8的立方根为﹣2,故选:D.【点评】本题考查了实数与数轴,主要是数轴上无理数的作法,需熟练掌握.9.已知一次函数y=2x+a,y=﹣x+b的图象都经过A(﹣2,0),且与y轴分别交于B、C 两点,则△ABC的面积为()A.4 B.5 C.6 D.7【分析】将A的坐标分别代入一次函数y=2x+a,y=﹣x+b中,得出a与b的值,即求出B,C两点的坐标.然后根据三角形的面积公式求出△ABC的面积.【解答】解:将A的坐标分别代入一次函数y=2x+a,y=﹣x+b中,可得a=4,b=﹣2,那么B,C的坐标是:B(0,4),C(0,﹣2),因此△ABC的面积是:BC×OA÷2=6×2÷2=6.故选C.【点评】本题考查的知识点是一次函数的性质和点与点之间的距离等知识点,要注意线段的距离不能为负.10.平移边长为1的小菱形◇可以得到美丽的“中国结”图案.下面四个图案是由◇平移后得到的类似“中国结”的图案,其中第(1)个图形含边长为1的菱形2个,第(2)个图形含边长为1的菱形8个,第(3)个图形含边长为1的菱形18个,则第(6)个图形中含边长为1的菱形的个数是()A.32 B.36 C.50 D.72【分析】仔细观察图形发现第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;由此规律得到通项公式,然后代入n=6即可求得答案.【解答】解:第(1)个图形有2×12=2个小菱形;第(2)个图形有2×22=8个小菱形;第(3)个图形有2×32=18个小菱形;…第(n)个图形有2n2个小菱形;第(6)个图形有2×62=72个小菱形;故选D.【点评】本题主要考查图形的变化类问题,仔细观察图形的变化,并找到图形的变化规律是解题的关键.二、填空题(本大题6小题,每小题4分,共24分)11.在2014年重庆市初中毕业生体能测试中,某校初三有7名同学的体能测试成绩(单位:分)如下:50,48,47,50,48,49,48.这组数据的众数是48.【分析】利用众数的定义求解.找出数据中出现次数最多的数即可.【解答】解:数据48出现了三次最多为众数.故答案为:48.【点评】考查了众数的定义,一组数据中出现次数最多的数据叫做众数.它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.12.如图,在ABCD中,对角线AC与BD相交于点O,请添加一个条件AB=AD,使ABCD成为菱形(写出符合题意的一个条件即可)【分析】根据邻边相等的平行四边形是菱形可得添加条件AB=AD.【解答】解:添加AB=AD,∵四边形ABCD是平行四边形,AB=AD,∴ABCD成为菱形.故答案为:AB=AD.【点评】此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.13.函数中,自变量x的取值范围是x≥﹣2且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解【解答】解:根据题意得:,解得:x≥﹣2且x≠1.故答案为:x≥﹣2且x≠1.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.14.一次函数y=﹣3x+6的图象不经过三象限.【分析】直接根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵一次函数y=﹣3x+6中,k=﹣3<0,b=6>0,∴此函数的图象经过一、二、四象限故不经过三象限,故答案为:三【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象在一、二、四象限是解答此题的关键.15.在△ABC中,∠C=90°,若a+b=7cm,c=5cm,则△ABC的面积为6cm2.【分析】要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=25.根据勾股定理就可以求出ab的值,进而得到三角形的面积.【解答】解:∵a+b=7,∴(a+b)2=49,∴2ab=49﹣(a2+b2)=49﹣25=24,∴ab=6,故答案为:6cm2.【点评】本题考查了熟练运用完全平方公式的变形和勾股定理求三角形的面积.16.如图,菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为2.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q ⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,∵AB=4,∠A=120°,∴点P′到CD的距离为4×=2,∴PK+QK的最小值为2.故答案为:2.【点评】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.三、解答题(本大题3小题,每小题6分,共18分)17.÷﹣×2.【分析】先算除法和乘法,进一步化简合并即可.【解答】解:原式=2﹣6=﹣4.【点评】此题二次根式的混合运算,注意先化简再求值.18.如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,过点O画直线EF分别交AD,BC于点E,F,求证:AE=CF.【分析】由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,继而可利用ASA,判定△AOE≌△COF,继而证得OE=OF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.解题的关键是熟记平行四边形的各种性质以及全等三角形的各种判定方法.19.为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:(1)计算这家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?【分析】(1)根据加权平均数的计算公式即可得出答案;(2)用每月每户的用电乘以总的户数即可得出答案.【解答】解:(1)这家庭的平均月用水量是(10×2+13×2+14×3+17×2+18)÷10=14(吨);(2)根据题意得:14×500=7000(吨),答:该小区居民每月共用水7000吨.【点评】此题考查了用样本估计总体,用到的知识点是加权平均数的计算公式和用样本估计总体.四、解答题(本大题3小题,每小题7分,共21分)20.已知,如图,把长方形纸片ABCD沿EF折叠后,点D与点B重合,点C落在点C′的位置上,若∠1=60°,AE=2.(1)求∠2,∠3的度数.(2)求长方形ABCD的纸片的面积S.【分析】(1)根据AD∥BC,∠1与∠2是内错角,因而就可以求得∠2,根据图形的折叠的定义,可以得到∠4=∠2,进而可以求得∠3的度数;(2)已知AE=2,在Rt△ABE中,根据三角函数就可以求出AB、BE的长,BE=DE,则可以求出AD的长,就可以得到矩形的面积.【解答】解:(1)∵AD∥BC,∴∠2=∠1=60°;又∵∠4=∠2=60°,∴∠3=180°﹣60°﹣60°=60°.(2)在直角△ABE中,由(1)知∠3=60°,∴∠5=90°﹣60°=30°;∴BE=2AE=4,∴AB=2;∴AD=AE+DE=AE+BE=2+4=6,∴长方形纸片ABCD的面积S为:ABAD=2×6=12.【点评】此题考查了矩形的性质,折叠的性质以及直角三角形的性质.注意数形结合思想以及建模思想的运用是解题的关键.21.如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.【分析】(1)根据三角形的面积公式S△OPA=OAy,然后把y转换成x,即可求得△OPA 的面积S与x的函数关系式;(2)把s=10代入S=﹣4x+40,求得x的值,把x的值代入y=﹣x+10即可求得P的坐标.【解答】解(1)∵A(8,0),∴OA=8,S=OA|y P|=×8×(﹣x+10)=﹣4x+40,(0<x<10).(2)当S=10时,则﹣4x+40=10,解得x=,当x=时,y=﹣+10=,∴当△OPA的面积为10时,点P的坐标为(,).【点评】本题考查了一次函数图象上点的坐标特征和一次函数的性质,把求三角形的面积和一次函数的图象结合起来,综合性比较强.22.如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?【分析】(1)首先利用平行四边形的判定方法得出四边形ABDF是平行四边形,进而得出AF=DC,利用一组对边相等且平行的四边形是平行四边形,进而得出答案;(2)利用直角三角形的性质结合菱形的判定方法得出即可.【解答】(1)证明:∵点D、E分别是边BC、AC的中点,∴DE∥AB,∵AF∥BC,∴四边形ABDF是平行四边形,∴AF=BD,则AF=DC,∵AF∥BC,∴四边形ADCF是平行四边形;(2)当△ABC是直角三角形时,四边形ADCF是菱形,理由:∵点D是边BC的中点,△ABC是直角三角形,∴AD=DC,∴平行四边形ADCF是菱形.【点评】此题主要考查了平行四边形的判定与性质以及菱形的判定,熟练应用平行四边形的判定与性质是解题关键.五、解答题(本大题3小题,每小题9分,共27分)23.如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点A作AE的垂线交DE 于P,若AE=AP(1)求证:△ABE≌△ADP;(2)求证:BE⊥DE.【分析】(1)根据两角夹边对应相等的两个三角形全等即可判定.(2)由△ABE≌△ADP得∠APD=∠AEB,再由∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,可以证明∠BEP=∠PAE=90°由此即可证明.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵AE⊥AP,∴∠EAP=90°,∴∠EAB=∠PAD,在△ABE和△ADP中,,∴△ABE≌△ADP;(2)证明:∵△ABE≌△ADP,∴∠APD=∠AEB,又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∠AEP=∠APE=45°∴∠BEP=∠PAE=90°,∴BE⊥DE;【点评】本题考查正方形性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形,熟练应用全等三角形性质,属于中考常考题型.24.A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台,已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元.(1)设B市运往C村机器x台,求总运费W关于x的函数关系式;(2)若要求总运费不超过9000元,共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?分析由已知条件填出下表:【分析】(1)给出B市运往C村机器x台,再结合给出的分析表,根据等量关系总运费=A 运往C的钱+A运往D的钱+B运往C的钱+B运往D的钱,可得函数式;(2)列一个符合要求的不等式;(3)根据函数式的性质以及自变量的取值范围求解.【解答】解根据题意得:(1)W=300x+500(6﹣x)+400(10﹣x)+800[12﹣(10﹣x)]=200x+8600.(2)因运费不超过9000元∴W=200x+8600≤9000,解得x≤2.∵0≤x≤6,∴0≤x≤2.则x=0,1,2,所以有三种调运方案.(3)∵0≤x≤2,且W=200x+8600,∴W随x的增大而增大∴当x=0时,W的值最小,最小值为8600元,此时的调运方案是:B市运至C村0台,运至D村6台,A市运往C市10台,运往D村2台,最低总运费为8600元.【点评】函数的综合应用题往往综合性强,覆盖面广,包含的数学思想方法多.它能真正考查学生运用所学知识解决实际问题的能力.一次函数的综合应用题常出现于销售、收费、行程等实际问题当中,通常是以图象信息的形式出现.25.在平面直角坐标系中,已知点A(a,0),C(0,b),且a、b满足(a+1)2+=0.(1)直接写出:a=﹣1,b=﹣3;(2)如图,点B为x轴正半轴上一点,过点B作BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,此时,OB与OC有怎样的大小关系?证明你的结论.(3)在(2)的条件下,求直线BE的解析式.【分析】(1)利用非负数的性质可求得a、b的值;(2)过O作OF⊥OE,可得△OEF为等腰直角三角形,可证明△EOC≌△FOB,可证明OB=OC;(3)可证明△AOC≌△DOB,可求得D点坐标,由(2)可求得B点坐标,从而可求得直线BE的解析.【解答】解:(1)∵(a+1)2+=0,∴a+1=0,b+3=0,∴a=﹣1,b=﹣3,故答案为:﹣1;﹣3;(2)OB=OC,证明如下:如图,过O作OF⊥OE,交BE于F,∵BE⊥AC,OE平分∠AEB,∴△EOF为等腰直角三角形,∴∠EOC+∠DOF=∠DOF+∠FOB=90°,∴∠EOC=∠FOB,且∠OEC=∠OFB=135°,在△EOC和△FOB中,,∴△EOC≌△FOB(ASA),∴OB=OC;(3)∵△EOC≌△FOB,∴∠OCE=∠OBE,OB=OC,在△AOC和△DOB中,,∴△AOC≌△DOB(ASA),∴OD=OA,∵A(﹣1,0),C(0,﹣3),∴OD=1,OC=3,∴D(0,﹣1),B(3,0),设直线BE解析式为y=kx+b,把B、D两点坐标代入可得,解得.∴直线BE的解析式为y=x﹣1.【点评】本题主要考查一次函数的综合应用,涉及非负数的性质、全等三角形的判定和性质、等腰直角三角形的性质、待定系数法等知识点.在(1)中注意非负数的性质的应用,在(2)中构造三角形全等是解题的关键,在(3)中证明三角形全等求得D点坐标是解题的关键.本题考查知识点较为基础,综合性强,但难度不大.x;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年广东省汕头市潮南区两英镇八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.函数y=中,自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤52.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,33.边长为3cm的菱形的周长是()A.6cm B.9cm C.12cm D.15cm4.下列二次根式中,不能与合并的是()A.B.C.D.5.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限6.下列计算错误的是()A.•=B.+=C.÷=2 D.=27.为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5、10.9,则下列说法正确的是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐8.如图,要使平行四边形ABCD变为矩形,需要添加的条件是()A.AC=BD B.AD=BC C.AB=CD D.AB=BC9.已知点M(1,a)和点N(2,b)是一次函数y=3x﹣1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.以上都不对10.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10二、填空题(共6小题,每小题4分,满分24分)11.的值为.12.一次函数y=2x+4的图象与y轴交点的坐标是.13.已知一组数据:0,2,x,4,5的众数是4,那么这组数据的中位数是.14.已知直角三角形的两条直角边长为6,8,那么斜边上的中线长是.15.如图,△ABC中,D、E分别是AB、AC的中点,若BC=4cm,则DE=cm.16.正方形ABCD的边长为acm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是cm2.三、解答题(一)(共3小题,满分18分)17.计算:+6﹣2×(﹣)18.已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.19.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.四、解答题(二)(共3小题,满分21分)20.已知a=2+,b=2﹣,试求的值.21.如图,是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.(1)计算这些车的平均速度;(2)车速的众数是多少?(3)车速的中位数是多少?22.如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)五、解答题(三)(共3小题,满分27分)23.如图,D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC内的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)24.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.(1)有月租费的收费方式是(填①或②),月租费是元;(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.25.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.2014-2015学年广东省汕头市潮南区两英镇八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.函数y=中,自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤5考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x﹣5≥0,解得x≥5.故选:C.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,3考点:勾股定理的逆定理.专题:计算题.分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.解答:解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故B选项正确;C、22+32=13≠42,不可以构成直角三角形,故C选项错误;D、12+()2=3≠32,不可以构成直角三角形,故D选项错误.故选:B.点评:本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.边长为3cm的菱形的周长是()A.6cm B.9cm C.12cm D.15cm考点:菱形的性质.分析:利用菱形的各边长相等,进而求出周长即可.解答:解:∵菱形的各边长相等,∴边长为3cm的菱形的周长是:3×4=12(cm).故选:C.点评:此题主要考查了菱形的性质,利用菱形各边长相等得出是解题关键.4.下列二次根式中,不能与合并的是()A.B.C.D.考点:同类二次根式.专题:常规题型.分析:根据二次根式的乘除法,可化简二次根式,根据最简二次根式的被开方数相同,可得答案.解答:解:A、,故A能与合并;B、,故B能与合并;C、,故C不能与合并;D、,故D能与合并;故选:C.点评:本题考查了同类二次根式,被开方数相同的最简二次根式是同类二次根式.5.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.专题:数形结合.分析:先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.解答:解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.6.下列计算错误的是()A.•=B.+=C.÷=2 D.=2考点:二次根式的混合运算.分析:利用二次根式的运算方法逐一算出结果,比较得出答案即可.解答:解:A、•=,计算正确;B、+,不能合并,原题计算错误;C、÷==2,计算正确;D、=2,计算正确.故选:B.点评:此题考查二次根式的运算方法和化简,掌握计算和化简的方法是解决问题的关键.7.为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5、10.9,则下列说法正确的是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐考点:方差.分析:方差反映一组数据的波动大小,方差越大,波动性越大,反之也成立,即可得出答案.解答:解:∵甲、乙方差分别是3.5、10.9,∴S2甲<S2乙,∴甲秧苗出苗更整齐;故选A.点评:本题考查方差的意义,它表示一组数据的波动大小,方差越大,波动性越大,反之也成立.8.如图,要使平行四边形ABCD变为矩形,需要添加的条件是()A.AC=BD B.AD=BC C.AB=CD D.AB=BC考点:矩形的判定.分析:由矩形的判定定理知,只需添加条件是对角线相等.解答:解:可添加AC=BD,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选:A.点评:此题主要考查了矩形的判定,关键是矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.9.已知点M(1,a)和点N(2,b)是一次函数y=3x﹣1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.以上都不对考点:一次函数图象上点的坐标特征.分析:根据一次函数的增减性,k=3>0,y随x的增大而增大解答.解答:解:∵k=3>0,∴y随x的增大而增大,∵1<2,∴a<b.故选:C.点评:本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.10.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系.分析:先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.解答:解:∵+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.点评:本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.二、填空题(共6小题,每小题4分,满分24分)11.的值为4.考点:二次根式的性质与化简.分析:根据二次根式的性质:=a,(a≥0),可得答案.解答:解:==4,故答案为:4.点评:本题考查了二次根式的性质,熟记二次根式的性质是阶梯关键.12.一次函数y=2x+4的图象与y轴交点的坐标是(0,4).考点:一次函数图象上点的坐标特征.分析:令•1x=0,求出y的值即可.解答:解:∵令x=0,则y=4,∴一次函数y=2x+4的图象与y轴交点的坐标是(0,4).故答案为:(0,4).点评:本题考查的是一次函数图象上点的坐标特点,熟知y轴上点的坐标特点是解答此题的关键.13.已知一组数据:0,2,x,4,5的众数是4,那么这组数据的中位数是4.考点:中位数;众数.分析:根据众数为4,可得x=4,然后把这组数据按照从小到大的顺序排列,找出中位数.解答:解:∵数据0,2,x,4,5的众数是4,∴x=4,这组数据按照从小到大的顺序排列为:0,2,4,4,5,则中位数为:4.故答案为:4.点评:本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14.已知直角三角形的两条直角边长为6,8,那么斜边上的中线长是5.考点:直角三角形斜边上的中线;勾股定理.分析:利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.解答:解:由勾股定理得,斜边==10,所以,斜边上的中线长=×10=5.故答案为:5.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.15.如图,△ABC中,D、E分别是AB、AC的中点,若BC=4cm,则DE=2cm.考点:三角形中位线定理.专题:常规题型.分析:根据三角形的中位线得出DE=BC,代入求出即可.解答:解:∵点D、E分别为△ABC的边AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC.又∵BC=4cm,∴DE=2cm.故答案为:2.点评:本题主要考查对三角形的中位线定理的理解和掌握,能熟练地运用性质进行计算是解此题的关键.16.正方形ABCD的边长为acm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是cm2.考点:正方形的性质.专题:几何图形问题.分析:连接BD,可看出阴影部分的面积等于正方形的面积+一个三角形的面积,用相似求出三角形的面积,阴影部分的面积可证.解答:解:连接BD,EF.∵阴影部分的面积=△ABD的面积+△BDG的面积(G为BF与DE的交点),∴△ABD的面积=正方形ABCD的面积=a2.∵△BCD中EF为中位线,∴EF∥BD,EF=BD,∴△GEF∽△GBD,∴DG=2GE,∴△BDE的面积=△BCD的面积.∴△BDG的面积=△BDE的面积=△BCD的面积=•a2=a2.∴阴影部分的面积=a2+a2=a2.故答案为:a2.点评:本题考查正方形的性质,正方形的四个边长相等,关键是连接BD,把阴影部分分成两部分计算.三、解答题(一)(共3小题,满分18分)17.计算:+6﹣2×(﹣)考点:二次根式的混合运算.专题:计算题.分析:先把各二次根式化为最简二次根式,然后去括号后合并即可.解答:解:原式=2+6﹣2(3﹣)=2+6﹣6+2=4.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.考点:一次函数与一元一次不等式.专题:计算题.分析:把点(1,﹣1)代入直线y=2x﹣b得到b的值,再解不等式.解答:解:把点(1,﹣1)代入直线y=2x﹣b得,﹣1=2﹣b,解得,b=3.函数解析式为y=2x﹣3解2x﹣3≥0得x≥.点评:本题考查了一次函数与一元一次不等式,要知道,点的坐标符合函数解析式.19.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.考点:平行四边形的性质;平行线的性质;全等三角形的判定与性质.专题:证明题.分析:根据平行四边形性质求出AD∥BC,且AD=BC,推出∠ADE=∠CBF,求出DE=BF,证△ADE≌△CBF,推出∠DAE=∠BCF即可.解答:证明:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,∴∠ADE=∠CBF又∵BE=DF,∴BF=DE,∵在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠DAE=∠BCF.点评:本题考查了平行四边形性质,平行线性质,全等三角形的性质和判定的应用,关键是求出证出△ADE和△CBF全等的三个条件,主要考查学生的推理能力.四、解答题(二)(共3小题,满分21分)20.已知a=2+,b=2﹣,试求的值.考点:二次根式的化简求值;分式的化简求值.专题:计算题.分析:对要求的代数式通分后,发现只需求得a,b的和、差、积即可代入计算.解答:解:∵a=2+,b=2﹣,∴a+b=4,a﹣b=2,ab=1.而=,∴===8.点评:掌握此类题的简便计算方法.21.如图,是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.(1)计算这些车的平均速度;(2)车速的众数是多少?(3)车速的中位数是多少?考点:条形统计图;加权平均数;中位数;众数.专题:图表型.分析:(1)根据平均数的计算公式列式计算即可;(2)根据众数的定义即一组数据中出现次数最多的数,即可得出答案;(3)根据中位数的定义即可得出答案.解答:解:(1)这些车的平均速度是:(40×2+50×3+60×4+70×5+80×1)÷15=60(千米/时);(2)70千米/时出现的次数最多,则这些车的车速的众数70千米/时;(3)共有15个,最中间的数是第8个数,则中位数是60千米/时.点评:此题考查了频数(率)分布直方图,中位数、众数和平均数,掌握中位数、众数和平均数的计算公式是解本题的关键.22.如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)考点:勾股定理的应用.专题:几何图形问题.分析:首先证明△BCD是等腰直角三角形,再根据勾股定理可得CD2+BC2=BD2,然后再代入BD=800米进行计算即可.解答:解:∵CD⊥AC,∴∠ACD=90°,∵∠ABD=135°,∴∠DBC=45°,∴∠D=45°,∴CB=CD,在Rt△DCB中:CD2+BC2=BD2,2CD2=8002,CD=400≈566(米),答:直线L上距离D点566米的C处开挖.点评:此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.五、解答题(三)(共3小题,满分27分)23.如图,D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC内的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)考点:三角形中位线定理;平行四边形的判定与性质;菱形的判定.分析:(1)首先利用三角形中位线的性质得出DE∥BC,DE=BC,同理,GF∥BC,GF=BC,即可得出DE∥GF,DE=GF即可得出四边形DGFE是平行四边形;(2)OA=BC时四边形DGFE是菱形,利用(1)中所求,只要邻边再相等即可得出答案.解答:(1)证明:∵D、E分别是边AB、AC的中点.∴DE∥BC,DE=BC.同理,GF∥BC,GF=BC.∴DE∥GF,DE=GF.∴四边形DEFG是平行四边形;(2)OA=BC时四边形DGFE是菱形,理由如下:连接OA.由(1)得出四边形DEFG是平行四边形,∴AO=BC,∴GD=AO,GF=BC,∴DG=GE,∴平行四边形DEFG是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及平行四边形与菱形的关系,熟记的定理和性质是解题的关键.24.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.(1)有月租费的收费方式是①(填①或②),月租费是30元;(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.考点:一次函数的应用.专题:应用题.分析:(1)根据当通讯时间为零的时候的函数值可以得到哪种方式有月租,哪种方式没有,有多少;(2)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;(3)求出当两种收费方式费用相同的时候自变量的值,以此值为界说明消费方式即可.解答:解:(1)①;30;(2)设y1=k1x+30,y2=k2x,由题意得:将(500,80),(500,100)分别代入即可:500k1+30=80,∴k1=0.1,500k2=100,∴k2=0.2故所求的解析式为y1=0.1x+30;y2=0.2x;(3)当通讯时间相同时y1=y2,得0.2x=0.1x+30,解得x=300;当x=300时,y=60.故由图可知当通话时间在300分钟内,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间在300分钟时,选择通话方式①、②一样实惠.点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.25.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.考点:矩形的判定;平行线的性质;等腰三角形的判定与性质;直角三角形斜边上的中线.专题:压轴题.分析:(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO 的长;(3)根据平行四边形的判定以及矩形的判定得出即可.解答:(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.点评:此题主要考查了矩形的判定、平行四边形的判定和直角三角形的判定等知识,根据已知得出∠ECF=90°是解题关键.。

相关文档
最新文档