八年级数学(上)期末试题(A)
人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列四个图案中,是轴对称图形的是()A .B .C .D .2.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是()A .1∶2∶4B .2∶3∶4C .3∶4∶7D .1∶3∶43.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 4.下列运算中,正确的是()A .22a a a ⋅=B .224()a a =C .236a a a ⋅=D .2323()a b a b =⋅5.如图,点P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,垂足为D ,若PD =2,则点P 到边OB 的距离是()A .4B C .2D .16.若分式13x +有意义,则x 的取值范围是()A .x >3B .x <3C .x ≠-3D .x =37.如图,在△ABC 中,∠A =80°,∠C =60°,则外角∠ABD 的度数是()A .100°B .120°C .140°D .160°8.下列各式是完全平方式的是()A .214x x -+B .21x +C .22x xy y -+D .221a a +-9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④B.②③④C.①③④D.①②③二、填空题11.点()2,1M-关于y轴的对称点的坐标为______.12.如果多边形的每个内角都等于150︒,则它的边数为______.13.如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是_____cm.14.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=_____.15.已知13aa+=,则221+=aa_____________________;16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.三、解答题17.解方程:21133xx x-=---.18.先化简,再求值:(3x+2)(3x﹣2)﹣10x(x﹣1)+(x﹣1)2,其中x=﹣1.19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.21.甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?22.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.23.如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.24.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?25.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?参考答案1.C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项进行判断找出不是轴对称图形即可.【详解】A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选:C .【点睛】考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析求解.【详解】A 、1+2<4,不能组成三角形;B 、2+3>4,能组成三角形;C 、3+4=7,不能够组成三角形;D 、1+3=4,不能组成三角形.故选B .【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法4.B【解析】【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A 选项:23a a a ⋅=,故是错误的;B选项:()224a a=,故是正确的;C选项:235a a a⋅=,故是错误的;D选项:()3243=⋅,故是错误的;a b a b故选:B.【点睛】考查了同底数幂乘法和幂的乘方,解题关键是运用了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.5.C【分析】根据角平分线的性质解答.【详解】解:如图,作PE⊥OB于E,∵点P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2,故选C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C【解析】【分析】考查分式有意义的条件:分母≠0,即x+3≠0,解得x的取值范围.【详解】∵x+3≠0,∴x≠-3.故选:C.考查的是分式有意义的条件:当分母不为0时,分式有意义.7.C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,∠ABD=∠A+∠C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.A【解析】【分析】根据完全平方式(a2+2ab+b2和a2-2ab+b2)进行判断.【详解】A、是完全平方式,故本选项正确;B、不是完全平方式,故本选项错误;C、不是完全平方式,故本选项错误;D、不是完全平方式,故本选项错误;故选:A.【点睛】考查了对完全平方式的应用,主要考查学生的判断能力.9.D【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.11.()2,1【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.12.12【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n =360°÷30°=12.故答案为12.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.13.7【解析】【分析】根据△ABC ≌△DCB 可证明△AOB ≌△DOC ,从而根据已知线段即可求出OC 的长.【详解】∵△ABC ≌△DCB ,∴AB=DC ,∠A=∠D ,又∵∠AOB=∠DOC (对顶角相等),∴△AOB ≌△DOC ,∴OC=BO=BD-DO=AC-DO=7.故答案是:7.【点睛】考查了全等三角形的性质解题的关键是注意掌握全等三角形的对应边相等,注意对应关系.14.15°.【分析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE =∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD ,∠BDE =∠ADE ,∵∠ADE =40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB =AC ,∴∠ABC=150652︒-︒=︒,∴∠DBC =∠ABC-∠ABD=15︒.故答案为15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.15.7【分析】把已知条件平方,然后求出所要求式子的值.【详解】∵13a a +=,∴219a a ⎛⎫+= ⎪⎝⎭,∴2212+a a +=9,∴221+=a a =7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.16.240°【详解】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.17.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21133x x x -=---2-x=x-3-1-2x=-3-1-2x=3当x=3时,x-3=0,所以原分式方程无解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.8x -3,-11【解析】【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【详解】原式=9x 2-4-10x 2+10x+x 2+1-2x=8x-3当x=-1时,原式=-8-3=-11.【点睛】考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握运算法则是解本题的关键.19.见解析【分析】先作CD的垂直平分线和∠AOB的平分线,它们的交点为P点,则根据线段垂直平分线的性质和角平分线的性质得到PC=PD,且P到∠AOB两边的距离相等.【详解】解:如图,点P为所作.【点睛】本复考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.50°【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【详解】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.【点睛】此题主要考查了平行线的性质,邻补角的定义,三角形内角和定理,求出∠CBD=70°是解本题的关键.21.甲需8天,乙需4天【解析】【分析】根据乙队先单独做1天后,再由两队合作2天就完成了全部工程则等量关系为:乙一天的工作量+甲乙合作2天的工作量=1,再设未知数列方程,解方程即可.【详解】设乙队单独完成所需天数x天,则甲队单独完成需2x天,1112(1++=2x x x解得:x=4,当x=4时,分式方程有意义,所以x=4是分式方程的解,所以甲、乙两队单独完成工程各需8天和4天.答:甲、乙两队单独完成工程各需8天和4天.【点睛】考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.证明见解析【详解】试题分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.试题解析:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D.∴∠ABC=2∠D.又∵∠C=∠ABC,∴∠C=2∠D.23.(1)见解析;(2)6【分析】(1)根据DB ⊥BC ,CF ⊥AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明△DBC ≌△ECA ,即可得证;(2)由(1)可得△DBC ≌△ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案.【详解】证明:(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△DBC ≌△ECA (AAS ).∴AE =CD ;(2)由(1)可得△DBC ≌△ECA∴CE=BD ,∵BC=AC=12cm AE 是BC 的中线,∴162CE BC cm ==,∴BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC ≌△ECA 解题关键.24.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+ ,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.25.(1)全等;(2)当点Q 的运动速度为54厘米/秒时,能够使△BPD 与△CQP 全等.【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度.【详解】(1)因为t =3秒,所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点,所以BD =5厘米.又因为PC =BC BP -,BC =8厘米,所以PC =835-=(厘米),所以PC =BD .因为AB =AC ,所以∠B=∠C,所以△BPD≌△CQP(SAS).(2)因为P v≠Q v,所以BP≠CQ,当△BPD≌△CPQ时,因为∠B=∠C,AB=10厘米,BC=8厘米,所以BP=PC=4厘米,CQ=BD=5厘米,所以点P,点Q运动的时间为4秒,所以54Qv 厘米/秒,即当点Q的运动速度为54厘米/秒时,能够使△BPD与△CQP全等.【点睛】考查了全等三角形的判定,等腰三角形的性质.解题时,主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。
人教版数学八年级上册期末考试试卷有答案

人教版数学八年级上册期末考试试题一、单选题(本大题共16小题,共48分)1.若一个三角形的两边长分别是3和4,则第三边的长可能是A.8B.7C.2D.12.下列图形中具有不稳定性的是( )A.长方形B.等腰三角形C.直角三角形D.锐角三角形3.如图,平移ΔABC得到ΔDEF,若∠DEF=35°,∠ACB=50°,则∠A的度数是A.65°B.75°C.95°D.105°4.探究多边形的内角和时,需要把多边形分割成若干个三角形.在分割六边形时,所分三角形的个数不可能的是A.3个B.4个C.5个D.6个5.如图,在RtΔABC中,∠ABC=90°,BD是高,E是ΔABC外一点,BE=BA,∠E=∠C,若DE=23BD,AD=95,BD=125,则ΔBDE的面积为A.2725B.1825C.3625D.54256.剪纸是我国古老的民间艺术.下列四个剪纸图案为轴对称图形的是A. B. C. D.7.如图,在等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,若∠BEC= 90°,则∠ACE的度数A.60°B.45°C.30°D.15°8.下列式子不能用“两数和乘以这两数差的公式”计算的是A.(3b−a)(3b+a)B.(3b−a)(−3b−a)C.(3b−a)(6b+2a)D.(3b−a)(a−3b)9.下列多项式相乘,能用平方差公式计算的是A.(5x+2y)(3x−2y)B.(2x−y)(2x+y)C.(−m+n)(m−n)D.(a−2b)(2a+b)10.如图是小明的作业,那么小明做对的题数为A.2B.3C.4D.511.下列从左边到右边的变形中,是因式分解的是A.a2−9=(a−3)(a+3)B.(x−y)2=x2−y2C.x2−4+4x=(x+2)(x−2)+4xD.x2+3x+1=x(x+3+1x)12.如果多项式x2−5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是A.2B.3C.4D.513.下列分式中属于最简分式的是( )A.x+2y+2B.1−x2x−2C.2x+2y6x−6yD.x2−9x+314.如果把分式2x2−3y2x−y中的x和y的值都变为原来的2倍,那么分式的值A.不变B.缩小为原来的12C.变为原来的2倍D.变为原来的4倍15.假期正是读书的好时候,小颖同学到重庆图书馆借了一本书,共280页,要在两周借期内读完,当她读了一半时,发现平均每天要多读21页才能在借期内读完,她读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是A.140x+140x−21=14B.280x+280x+21=14C.140140101016.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是A.40×1.25x−40x=800 B.800x−8002.25x=40C.800x−8001.25x=40D.8001.25x−800x=40二、填空题(本大题共6小题,共18分)17.一个正多边形的每个内角都等于120°,那么它的内角和是______.18.如图,BD是ΔABC的角平分线,DE⊥AB于点E.ΔABC的面积为20,AB=12,BC=8,则DE的长为______.19.两位同学将同一个二次三项式进行因式分解时,一位同学因看错了一次项系数而分解成(x−1)(x−9);另一位同学因看错了常数项而分解成(x−2)(x−4),则原多项式因式分解的正确结果是:______.20.如图,在ΔABC中,BC边的垂直平分线交BC于D,交AB于E.若CE平分∠ACB,∠B=42°,则∠A=______.21.某校九年级学生去距学校6千米的地铁站参观,一部分同学们步行先走,过了40分钟后,其余学生乘坐公共汽车出发,结果他们同时到达,已知公共汽车的速度的步行学生速度的3倍,求步行学生的速度.若设步行学生的速度为x km/h,则可列方程______.22.化简:(1x−4−8x2−16)⋅(x+4)=______.三、计算、画图、解答题(本大题共6小题,共48分)23.如图,∠B=∠E,BF=EC,AB=DE.求证:AC//DF.24.在如图所示的网格(每个小正方形的边长为1)中,ΔABC的顶点A的坐标为(−2,1),顶点B的坐标为(−1,2). (1)在网格图中画出两条坐标轴,并标出坐标原点; (2)作ΔA'B'C'关于x轴对称的图形ΔA''B''C''; (3)求ΔABB''的面积.25.因式分解(1)3a2−6ab+3b2. (2)m2(m−2)+4(2−m).26.先化简再求值: (1)y(x+y)+(x+y)(x−y)−x2,其中x=−2,y=12. 27.(2)2(a−3)(a+2)−(3+a)(3−a),其中a=−2.27.已知分式y−a y+b,当y=−3时无意义,当y=2时分式的值为0,求当y=−7时分式的值.28.为庆祝建党100周年,学校组织初二学生乘车前往距学校132千米的某革命根据地参观学习.二班因事耽搁,比一班晚半小时出发,为了赶上一班,平均车速是一班平均车速的1.2倍,结果和一班同时到达.求一班的平均车速是多少千米/时?答案和解析1.【答案】C;【解析】解:设第三边长x. 根据三角形的三边关系,得1<x<7. 故选:C. 根据三角形的三边关系求得第三边的取值范围解答即可. 此题主要考查三角形三边关系的知识点,此题比较简单,注意三角形的三边关系.2.【答案】A;【解析】解:等腰三角形,直角三角形,锐角三角形都具有稳定性, 长方形不具有稳定性. 故选:A. 根据三角形具有稳定性解答. 此题主要考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用.3.【答案】C;【解析】解:∵平移ΔABC得到ΔDEF,∠DEF=35°, ∴∠B=∠DEF=35°, ∵∠ACB=50°, ∴∠A=180°−∠B−∠ACB=95°. 故选:C. 由平移的性质可得∠B=∠DEF=35°,从而利用三角形的内角和定理即可求∠A的度数. 此题主要考查三角形的内角和定理,平移的性质,解答的关键是由平移的性质得到∠B=∠DEF.4.【答案】A;【解析】解:分割六边形,可以从一顶点连接对角线,分割成四个三角形,如图1; 可以在某条边上任取一点,连接这点和各顶点,分割成五个三角形,如图2; 可以在六边形内取任取一点,连接这点和各顶点,分割成六个三角形,如图3. 故选:A. 分割六边形,可以从一顶点连接对角线,分割成四个三角形;可以在某条边上任取一点,连接这点和各顶点,分割成五个三角形;可以在六边形内取任取一点,连接这点和各顶点,分割成六个三角形. 此题主要考查了多边形内角和问题,解题关键是把多边形分割成若干三角形来研究.5.【答案】C;【解析】解:∵∠ABD=∠C=∠E,,AB=BE, 在BD上截取BF=DE, 在ΔABF与ΔBED中, AB=BE∠ABD=∠EBF=DE, ∴ΔABF≌ΔBED(SAS), ∴SΔBDE=SΔABF. ∴SΔABD=12BD⋅AD=12⋅125⋅95=5425. ∵DE=23BD, ∴BF=23BD, ∴SΔABF=23SΔABD=3625, ∴SΔBDE=3625. 故选:C. 根据SAS证明ΔABF与ΔBED全等,进而利用全等三角形的性质解答即可. 此题主要考查全等三角形的判定和性质,关键是根据SAS证明ΔABF与ΔBED全等.6.【答案】C;【解析】解:A、不是轴对称图形,本选项不符合题意; B、不是轴对称图形,本选项不符合题意; C、是轴对称图形,本选项符合题意; D、不是轴对称图形,本选项不符合题意. 故选:C. 根据轴对称图形的概念求解即可. 此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,7.【答案】D;【解析】解:∵等边三角形ABC中,AD⊥BC, ∴BD=CD,即:AD是BC的垂直平分线, ∴BE=CE, ∴∠EBC=∠ECB, ∵∠BEC=90°, ∴∠EBC=∠ECB=45°, ∵ΔABC是等边三角形, ∴∠ACB=60°, ∴∠ACE=∠ACB−∠ECB=15°, 故选:D. 先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论. 此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.8.【答案】D;【解析】解:A、(3b−a)(3b+a)=(3b)2−a2,故A不符合题意; B、(3b−a)(−3b−a)=−(3b−a)(3b+a)=−[(3b)2−a2],故B不符合题意; C、(3b−a)(6b+2a)=2(3b−a)(3b+a)=2[(3b)2−a2],故C不符合题意; D、(3b−a)(a−3b)=−(a−3b)(a−3b)=−(a−3b)2,故D符合题意; 故选:D. 根据平方差公式进行分析求解即可. 此题主要考查整式的混合运算,解答的关键是对平方差公式的掌握与应用.9.【答案】B;【解析】解:A、原式=15x2−10xy+6xy−4y2=15x2−4xy−4y2,不符合题意; B、原式=4x2−y2,符合题意; C、原式=−(m−n)2=−(m2−2mn+n2)=−m2+2mn−n2,不符合题意; D、原式=2a2+ab−4ab−2b2=2a2−3ab−2b2,不符合题意. 故选:B. 利用平方差公式的结构特征判断即可. 此题主要考查了平方差公式,熟练掌握平方差公式的结构特征是解本题的关键.10.【答案】A;【解析】解:(1)∵a m=3,a n=7, ∴a m+n=a m⋅a n=3×7=21,本小题正确; (2)原式=(−0.125)2020×82020×8 =(−0.125×8)2020×8 =(−1)2020×8 =1×8 =8,本小题正确; (3)原式=2a2b÷ab−ab÷ab (4)原式=(−2)3⋅a3 =−8a3,本小题错误; (5)原式=2x2+x−6x−3 =2x2−5x−3,本小题错误, 则小明做对的题数为2. 故选:A. (1)利用同底数幂的乘法法则计算得到结果,即可作出判断; (2)原式变形后,逆用积的乘方运算法则计算得到结果,即可作出判断; (3)原式利用多项式除以单项式法则计算得到结果,即可作出判断; (4)原式利用积的乘方运算法则计算得到结果,即可作出判断; (5)原式利用多项式乘多项式法则计算,合并得到结果,即可作出判断. 此题主要考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.11.【答案】A;【解析】解:A、符合因式分解的定义,故本选项符合题意; B、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意; C、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意; D、右边不是整式的积的形式(含有分式),不符合因式分解的定义,故本选项不符合题意. 故选:A. 多项式的因式分解是将多项式变形为几个整式的乘积形式,由此解答即可. 此题主要考查因式分解的定义.解答该题的关键是掌握因式分解的定义,属于基础题型.12.【答案】C;【解析】解:当c=4时, x2−5x+c =x2−5x+4 =(x−1)(x−4). 故选:C. ∵4=−1×(−4),−1+(−4)=−5,∴可以用十字相乘法因式分解. 此题主要考查了因式分解−十字相乘法,熟练掌握十字相乘法分解因式的方法是解题关键.13.【答案】A;【解析】解:A、x+2y+2是最简分式,故本选项符合题意; B、原式=−12,不是最简分式,故本选项不符合题意; C、原式=x+y3x−3y,不是最简分式,故本选项不符合题意; D、原式=x−3,该式子不是最简分式,故本选项不符合题意; 故选:A. 最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分. 此题主要考查了分式的基本性质和最简分式,能熟记分式的化简过程是解此题的关键,首先要把分子分母分解因式,然后进行约分.14.【答案】C;【解析】解:∵2.(2x)2−3.(2y)22x−2y=8x2−12y22x−2y=4(2x2−3y2)2(x−y)=2(2x2−3y2)x−y, ∴把分式2x2−3y2x−y中的x和y的值都变为原来的2倍,则分式的值变为原来的2倍. 故选:C. 根据分式的基本性质解决此题. 此题主要考查分式的基本性质,熟练掌握分式的基本性质是解决本题的关键.15.【答案】C;【解析】解:读前一半用的时间为:140x, 读后一半用的时间为:140x+21. 由题意得,140x+140x+21=14, 故选:C. 设读前一半时,平均每天读x页,关键描述语为:“在两周借期内读完”;等量关系为:读前一半用的时间+读后一半用的时间=14,据此列方程即可. 此题主要考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.16.【答案】C;【解析】解:小进跑800米用的时间为8001.25x秒,小俊跑800米用的时间为800x秒, ∵小进比小俊少用了40秒, 方程是800x−8001.25x=40, 故选:C. 先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可. 该题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.17.【答案】720°;【解析】解:设所求正多边形边数为n, ∵正n边形的每个内角都等于120°, ∴正n边形的每个外角都等于180°−120°=60°. 又因为多边形的外角和为360°, 即60°⋅n=360°, ∴n=6. 所以这个正多边形是正六边形. 所以内角和是120°×6=720°. 故答案为:720°. 设所求正多边形边数为n,根据内角与外角互为邻补角,可以求出外角的度数.根据任何多边形的外角和都是360度,由60°⋅n=360°,求解即可. 此题主要考查了多边形内角和外角的知识,解答本题的关键在于熟练掌握任何多边形的外角和都是360°并根据外角和求出正多边形的边数.18.【答案】2;【解析】解:作DF⊥BC于F, ∵BD是ΔABC的角平分线,DE⊥AB,DF⊥BC, ∴DF=DE, ∴12×AB×DE+12×BC×DF=20,即12×12×DE+12×8×DF=20, ∴DF=DE=2. 故答案为:2. 作DF⊥BC于F,根据角平分线的性质得到DF=DE,根据三角形面积公式计算即可. 此题主要考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解答该题的关键.19.【答案】(x-3)2;【解析】解:根据题意得:(x−1)(x−9)=x2−10x+9,(x−2)(x−4)=x2−6x+ 8, 原多项式为x2−6x+9=(x−3)2. 故答案为:(x−3)2. 根据两位同学的结果确定出原多项式,分解即可. 此题主要考查了因式分解−十字相乘法,熟练掌握因式分解的方法是解本题的关键.20.【答案】54°;【解析】解:∵E在线段BC的垂直平分线上, ∴BE=CE, ∵CE平分∠ACB, ∴∠ACD=2∠ECB=84°, 又∵∠A+∠B+∠ACB=180°, ∴∠A=180°−∠B−∠ACB=54°, 故答案为:54°. 由线段垂直平分线和角平分线的定义可得∠B=∠ECB=∠ACE=40°,在ΔABC中由三角形内角和定理可求得∠A. 此题主要考查线段垂直平分线的性质,掌握垂直平分线上的点到线段两端点的距离相等是解答该题的关键.21.【答案】6x−63x=23;【解析】解:设步行学生的速度为x km/h,则汽车的速度为3x km/h, 由题意得,6x−63x=23, 故答案为:6x−63x=23. 表示出汽车的速度,然后根据汽车行驶的时间等于步行行驶的时间减去时间差列方程即可. 此题主要考查了实际问题抽象出分式方程,读懂题目信息,理解两种行驶方式的时间的关系是解答该题的关键.22.【答案】1;【解析】解:(1x−4−8x2−16)⋅(x+4) =x+4−8(x+4)(x−4)⋅(x+4) =x−4(x+4)(x−4)⋅(x+4) =1, 故答案为:1. 先根据分式的减法法则算减法,再算乘法即可. 此题主要考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.23.【答案】证明:∵BF=EC, ∴BF+CF=EC+CF, ∴BC=EF, 在△ABC和△DEF中, BC=EF∠B=∠EAB=DE, ∴△ABC≌△DEF(SAS), ∴∠ACB=∠DFE, ∴AC∥DF.;【解析】 证明ΔABC≌ΔDEF(SAS),由全等三角形的性质得出∠ACB=∠DFE,由平行线的判定可得出结论. 此题主要考查了全等三角形的判定与性质、平行线的判定.解答该题的关键是证明ΔABC≌ΔDEF.24.【答案】解:(1)如图,平面直角坐标系如图所示: (2)如图,△A″B″C″即为所求; =3×4-12×1×1-12×3×3-12×2×4=3. (3)S△ABB″;【解析】 (1)根据A,B两点坐标确定平面直角坐标系即可; (2)利用轴对称的性质分别作出A',B',C'的对应点A'',B'',C''即可; (3)把三角形面积看成矩形面积减去周围三个三角形面积即可. 此题主要考查作图−轴对称变换,三角形的面积等知识,解答该题的关键是掌握轴对称变换的性质,学会用分割法求三角形面积.25.【答案】解:(1)原式=3(a2-2ab+b2) =3(a-b)2; (2)原式=m2(m-2)-4(m-2) =(m-2)(m2-4) =(m-2)(m-2)(m+2) =(m-2)2(m+2).;【解析】 (1)先提公因式3,再利用完全平方公式即可进行因式分解; (2)先提公因式(m−2),再利用平方差公式进行因式分解即可. 此题主要考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是解决问题的关键.26.【答案】解:(1)原式=xy+y2+x2-y2-x2 =xy, 当x=-2,y=12时, 原式=-2×12=-1; (2)原式=2(a2+2a-3a-6)-(9-a2) =2a2-2a-12-9+a2 =a2-2a-21, 当a=-2时,原式=(-2)2-2×(-2)-21 =4+4-21 =-13.;【解析】 (1)直接利用单项式乘多项式以及平方差公式化简,再合并同类项,最后把已知数据代入得出答案; (2)直接利用多项式乘多项式以及平方差公式化简,再合并同类项,最后把已知数据代入得出答案. 此题主要考查了整式的混合运算−化简求值,正确运用乘法公式计算是解题关键.27.【答案】解:∵当y=-3时无意义, ∴-3+b=0, ∴b=3. ∵当y=2时分式的值为0, ∴2-a=0,2+3≠0, ∴a=2. ∴该分式为y−2y+3, 当x=-7时, y−2y+3 =−7−2−7+3 =−9−4 =94. 答:当x=-7时分式的值为94.;【解析】 分式无意义的条件是分母等于0,分式等于0的条件是分子等于0,且分母不等于0. 此题主要考查分式无意义的条件和分式值为0的条件,解题时注意分式为0的条件是分子等于0,且分母不等于0.28.【答案】解:设一班的平均车速是x千米/时,则二班的平均车速是1.2x千米/时, 依题意得:132x-1321.2x=12, 解得:x=44, 经检验,x=44是原方程的解,且符合题意. 答:一班的平均车速是44千米/时.;【解析】 设一班的平均车速是x千米/时,则二班的平均车速是1.2x千米/时,利用时间=路程÷速度,结合二班比一班少用半小时,即可得出关于x的分式方程,解之经检验后即可得出一班的平均车速. 此题主要考查了分式方程的应用,找准等量关系,正确列出分式方程是解答该题的关键.。
四川省乐山市市中区2023-2024学年八年级上学期期末数学试题(解析版)

2023-2024学年四川省乐山市市中区八年级(上)期末数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.1. 下列各数中,是无理数的是( )A. B. 0 C. D. 【答案】D【解析】【分析】本题考查的是无理数的识别.根据无理数是无限不循环小数解答即可.【详解】解:A 、是整数,属于有理数,故本选项不符合题意;B 、0是整数,属于有理数,故本选项不符合题意;C,3是整数,属于有理数,故本选项不符合题意;D 、是无理数,故本选项符合题意;故选:D .2. 下列计算结果是a 5 的是( )A. a 2+a 3B. a 10÷a 2C. (a 2)3D. a 2·a 3【答案】D【解析】【分析】根据实数的运算依次计算即可选出正确答案.【详解】解:A .a 2与a 3不属于同类项,所以不能相加,故A 不符合题意;B .a 10÷a 2=a 10-2=a 8,故B 不符合题意;C .(a 2)3=a 6,故C 不符合题意;D .a 2•a 3=a 5,故D 符合题意;故选:D .【点睛】本题考查实数的运算,涉及同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方和积的乘方,熟练掌握计算法则,细心运算是解题关键.3. 计算的结果为( )A. 3B. C. D. 【答案】D【解析】3-π3-3=π10099133⎛⎫-⨯- ⎪⎝⎭3-1313-【分析】本题主要考查积的乘方公式,正确进行公式的变形是关键.逆用积的乘方公式即可求解.【详解】解:原式故选D .4. 下列命题是真命题的有( )①等边三角形3个内角都为;②斜边和一条直角边分别相等的两个直角三角形全等;③全等三角形对应边上的高相等;④三边长分别为5,12,13的三角形是直角三角形.A. 4个B. 3个C. 2个D. 1个【答案】A【解析】【分析】本题考查了真假命题的判断.根据全等三角形的性质,等腰三角形的性质以及勾股定理逆定理逐项判断即可作答.【详解】解:①等边三角形3个内角都为,本项是真命题;②斜边和一条直角边分别相等的两个直角三角形全等,本项是真命题;③全等三角形对应边上的高相等,本项是真命题;④∵,∴三边长分别为5,12,13的三角形是直角三角形,本项是真命题.综上,①②③④都是真命题;故选:A .5. 如图,要测量河岸相对的两点A 、B 间的距离,先在的垂线上取两点C 、D ,使,再定出的垂线,使点A 、C 、E 在同一条直线上,测量的长度就是的长,这里,其根据是( )A. B. C. D. 【答案】C 9999113()()33=-⨯-⨯-13=-60︒60︒22251213+=AB BF BC CD =BF DE DE AB ABC EDC △≌△S.A.SA.A.S A.S.A H.L【解析】【分析】本题主要考查全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键.根据全等三角形的判定方法进行证明即可.【详解】解:在和中,故选C .6. 如图,在数轴上,A 、B ,点A 是线段的中点,则点C 所对应的实数为( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查数轴上表示的数以及中点的定义,熟练掌握数轴上两点之间的距离计算是解题的关键.由点A 是线段的中点,得到,即可得到答案.【详解】解:设点C 所对应的实数为,点A 是线段的中点,,A 、B ,,,解得故选:D .7. 如图,中,,,,分别以它的三边为直径向上作三个半圆,则图中阴影部分的面积为( ),BF AB DE BD⊥⊥ 90ABC CDE \Ð=Ð=°ABC V EDC △90ABC EDC CB CDACB ECD ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩(ASA)ABC EDC ∴≌△△1-BC 11--22-BC AC AB =x BC ∴AC AB = 1-1,(1)1AC x AB ∴=--=--=+11x ∴--=+2x =-Rt ABC △90C ∠=︒6AC =8BC =A. B. C. 24 D. 【答案】C【解析】【分析】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键.先求出直角三角形的斜边,再进行计算即可.【详解】解: 中,,,,,,.故选C .8. 如图,中,,点O 是边垂直平分线的交点,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查了线段垂直平分线的性质,三角形内角和定理,等边对等角.连接,利用线段垂直平分线的性质结合等边对等角求得,,,再利用三角形内角和定理即可求解.【详解】解:连接,4.5π8π12.5πRt ABC △90C ∠=︒6AC =8BC=10AB ===2221111346852222S πππ=⨯+⨯+⨯⨯-⨯9258242422πππ=++-=ABC V 58A ∠=︒AB AC 、BCO ∠28︒32︒36︒40︒OA OB 、13∠=∠24∠∠=56∠=∠OA OB 、∵点O 是边垂直平分线的交点,∴,,∴,∴,,,∵,∴,,∴,∴,故选:B .9. 对于实数a 、b ,定义的含义为:当时,,当时,,例如:,已知,,,且x 和y 为两个连续正整数,则的算术平方根为( )A. 16B. 8C. 4D. 2【答案】D【解析】【分析】本题主要考查新定义,准确理解题意是解题的关键.根据题意求出的值即可得到答案.,由于x 和y 为两个连续正整数,,,的算术平方根为,故选D .10. 如图,中,,交于E ,C 为上一点,.若,AB AC、OA OB =OA OC =OA OB OC ==13∠=∠24∠∠=56∠=∠58A ∠=︒354618058122∠+∠+∠+∠=︒-︒=︒123458BAC ∠+∠=∠+∠=∠=︒561225864∠+∠=︒-︒=︒1664322BCO ∠=∠=⨯︒=︒{},min a b a b <,{}min a b a =a b >,{}b min a b =2}2{1,min =--}min x x =}min y =x y 、x >y <34<<3,4x y ∴==4==2ABD △45D ∠=︒BE AC ⊥AD BD AB AC =2BC =则的长为( )A. 1B. C. D. 2【答案】B【解析】【分析】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形的外角性质.作于点,作于点,求得,再求得,,从而求得,根据证明,据此求解即可.【详解】解:设,作于点,作于点,∵,∴,,∵,垂足为,∴,∴,∵,∴,∵是的一个外角,∴,而,∴,∴,∴,DEAF BC ⊥F EH BD ⊥H CAF BAF DBE α∠=∠=∠=45AEB α∠=︒+45BAE α∠=︒+BA BE =AAS BAF EBH ≌△△DBE α∠=AF BC ⊥F EH BD ⊥H AB AC =112BF CF BC ===BAF CAF ∠=∠BE AC ⊥G 90AFC BGC ∠=∠=︒90CAF BAF ACF DBE α∠=∠=︒-∠=∠=45D ∠=︒45DAF ∠=︒AEB ∠BED V 45AEB α∠=︒+45BAE DAF BAF AEB α∠=∠+∠=︒+=∠BA BE =()AAS BAF EBH V V ≌1EH BF ==∵,,∴是等腰直角三角形,∴,∴故选:B .二、填空题:本大题共6个小题,每小题3分,共18分.11. 计算:992+198+1=________.【答案】10000【解析】【分析】将992化为后利用完全平方公式计算,再将结果相加即可.【详解】解:原式===10000.故答案为:10000.【点睛】本题考查用完全平方公式简便运算.熟记完全平方公式并能对原式正确变形是解题关键.12 分解因式:______.【答案】【解析】【分析】首先提取公因式,再根据平方差公式计算,即可得到答案.【详解】故答案为:.【点睛】本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解.13. 如图,在中,,,D 为上一点,且,则_____..EH BD ⊥45D ∠=︒EHD △1DH EH ==DE ==2(1001)-2(1001)1981-++1000020011981-+++2xy x -=()()11x y y +-2xy x-()21x y =-()()11x y y =+-()()11x y y +-ABC V AB AC =108BAC ∠=︒BC AB BD =CAD ∠=【答案】##36度【解析】【分析】本题考查了等腰三角形的性质,三角形内角和定理.根据等边对等角结合三角形内角和定理求得和的度数,进一步计算即可求解.详解】解:∵,,∴,∵,∴,∴,故答案为:.14. 若,则__________.【答案】81【解析】【分析】根据,得到,再利用整体思想,代入求值即可.【详解】解:∵,∴,∴;故答案为:.【点睛】本题考查代数式求值,幂的乘方的逆用以及同底数幂的乘法,解题的关键是掌握相关运算法则,利用整体思想代入求值.15. 如图,在中,.按以下步骤作图:①以点C 为圆心,适当长为半径画弧,分别交于点M 、N ;②分别以M 、N为圆心,大于的长为半径画弧,两弧交于点F ;③作射线.若,E 为边的中点,D 为射线上一动点.则的最小值为 _____.【36︒B ∠BAD ∠AB AC =108BAC ∠=︒()1180362B C BAC ∠=∠=︒-∠=︒AB BD =()118036722BAD BDA ∠=∠=⨯︒-︒=︒36CAD BAC BAD ∠=∠-∠=︒36︒2340x y +-=927x y ⋅=2340x y +-=234x y +=2340x y +-=234x y +=()23234927333381x y x y x y +⋅=⋅===81Rt ABC △90ACB ∠=︒AC CB 、12MN CF 2BC =BC CF BD DE +【解析】【分析】本题考查了作图-基本作图,全等三角形的判定和性质,角平分线的性质和最短线段问题.利用基本作图得到得平分,作上截取,连接交于D ,根据证明得到,接着利用两点之间线段最短可判断此时的值最小,最小值为的长,然后利用勾股定理计算出即可.【详解】解:由作法得平分,作上截取,连接交于D ,如图,∵平分,∴,∵,,∴,∴,∴,∴此时的值最小,最小值为的长,∵,E 为边的中点,∴,在,,∴CF ACB ∠AC CG CE =BG CF SAS DCE DCG ≌△△DG DE =BD DE +BG BG CF ACB ∠AC CG CE =BG CF CF ACB ∠DCE DCG ∠=∠CD CD =CG CE =()SAS DCE DCG ≌△△DG DE =BD DE BD DG BG +=+=BD DE +BG 2BC =BC 1CG CE ==Rt BCG V BG ==BD DE +16. 南宋数学家杨辉在其著作《详解九章算法》中揭示了(n 为自然数)展开式的各项的次数和系数规律,后人也将此称为“杨辉三角”.如图,请你仔细观察这两个规律,写出展开式中的第二项 _____.【答案】【解析】【分析】本题主要考查杨辉三角,熟练掌握杨辉三角的规律即可得到答案.根据杨辉三角的规律即可解答.【详解】解:根据题意可得:展开式中的第二项为,即为.故答案为:.三、本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17. 计算:.【答案】【解析】【分析】本题主要考查立方根以及算术平方根的混合计算,熟练掌握运算法则是解题的关键.根据运算法则进行求解即可.【详解】解:原式.18. 因式分解:.【答案】【解析】()na b+202412x⎛⎫- ⎪⎝⎭20231012x -202412x ⎛⎫- ⎪⎝⎭2024112024(2x --20231012x -20231012x -23--16-934=---16=-322344x y x y xy -+()22xy x y -【分析】先提取公因式,再应用完全平方公式,即可求解,本题考查了因式分解,解题的关键是:熟练应用完全平方公式,进行因式分解.【详解】解:,故答案为:.19. 计算:.【答案】【解析】【分析】本题考查整式的混合运算.先利用完全平方公式、平方差公式以及单项式乘多项式的运算,再合并同类项,最后进行除法运算.【详解】解:.20. 如图,在△ABC 中,D 是边BC 的中点,过点C 画直线CE ∥AB ,交AD 的延长线于点E .求证:AD =ED .【答案】见解析【解析】【分析】由CE ∥AB ,得∠BAD =∠E ,由D 是边BC 的中点,得BD =CD ,证△ABD ≌△ECD (AAS ),即可得出结论.【详解】证明:∵CE ∥AB,xy 322344x y x y xy -+()2244xy x xy y =-+()22xy x y =-()22xy x y -()()()()()2222222x y x y x y x x y x -⎡⎤⎣+⎦-+--÷-g g x y+()()()()()2222222x y x y x y x x y x -⎡⎤⎣+⎦-+--÷-g g ()()22222444422x xy y x y x xy x =-++--+÷-()()2222x xy x =--÷-()()22222x x xy x --÷÷--=x y =+∴∠BAD =∠E ,∵D 是边BC 的中点,∴BD =CD ,在△ABD 和△ECD 中,,∴△ABD ≌△ECD (AAS ),∴AD =ED .【点睛】本题考查了全等三角形的判定与性质、平行线的性质等知识;熟练掌握全等三角形的判定与性质是解题的关键.21. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲!如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,斜边为c .(1)请利用“赵爽弦图”证明:;(2)若大正方形的面积为20,小正方形面积为4,求其中一个直角三角形的面积.【答案】(1)见解析(2)【解析】【分析】本题主要考查勾股定理,熟练掌握勾股定理以及完全平方公式是解题的关键.(1)根据小正方形的面积加上四个直角三角形的面积等于大正方形的面积即可证明;(2)根据(1)中得到的计算即可.【小问1详解】解:直角三角形较长直角边长为a ,较短直角边长为b ,斜边为c ,小正方形的面积四个直角三角形的面积大正方形的面积,,,BAD E ADB EDC BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩222+=a b c 4222+=a b c +=221()42a b ab c ∴-+⨯=22222a ab b ab c ∴-++=;【小问2详解】解:由题意可得:,即,,故一个直角三角形的面积为.22. 如图,在中,,点D 、E 、F 分别在AB 、BC 、AC 边上,且,.(1)求证:是等腰三角形;(2)当时,求的度数.【答案】22. 见解析23. 【解析】【分析】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理.(1)利用证明即可求证;(2)根据,结合全等三角形的性质即可求解.【小问1详解】证明:∵,,,,,,∴是等腰三角形;【小问2详解】∴222+=a b c 221()42a b ab c -+⨯=144202ab +⨯=142ab ∴=4ABC V AB AC =12∠=∠BE CF =DEF V 36A ∠=︒DEF ∠72DEF ∠=︒ASA DBE ECF V V ≌()180DEF FEC BED ∠=︒-∠+∠AB AC =B C ∴∠=∠12∠=∠ BE CF =()ASA DBE ECF ∴V V ≌DE EF ∴=DEF V解:∵,,,,,.23. 嘉州学校坚持“立德树人,五育并举”,为提高学生运动技能,计划利用课后服务时间开设以下五种体育课程:A .足球,B .篮球,C .排球,D .羽毛球,E .乒乓球.每名学生都必须且只能在这五种课程中选择一类自己最喜欢的课程,学校对学生选择的课程进行了一次随机抽样调查,并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)求本次抽样调查学生的人数;(2)在扇形统计图中,求“排球”所在扇形的圆心角的度数;(3)补全条形统计图;(4)根据以上统计分析,估计该校七年级440名学生中最喜爱“篮球”的人数.【答案】(1)本次抽样调查学生的人数为200名;(2)“排球”所在扇形的圆心角的度数为;(3)见解析(4)该校七年级440名学生中最喜爱“篮球”的人数约有120名.【解析】【分析】本题考查了条形统计图、扇形统计图的制作方法和统计图中各个数据之间的关系,正确识别统计图是解答问题的前提.(1)从两个统计图中可得喜欢“足球”的人数为40人,占调查人数的,可求出调查人数;(2)用乘以样本中“排球”所占的比即可;(3)计算出喜欢“乒乓球”和“篮球”人数,再补全条形统计图;36A ∠=︒18036722B ︒-︒∴∠==︒1108BDE ∴∠+∠=︒DBE ECF △≌△BDE FEC ∴∠=∠1108FEC ∴∠+∠=︒()180172DEF FEC ∴∠=︒-∠+∠=︒36︒20%360︒(4)根据样本估计总体即可求解.【小问1详解】解:本次抽样调查学生的人数为(名);【小问2详解】解:“排球”所在扇形的圆心角的度数为;【小问3详解】解:喜欢“乒乓球”的人数为(名),喜欢“篮球”人数为(名),补全条形统计图如图所示:;【小问4详解】解:(名).答:该校七年级440名学生中最喜爱“篮球”的人数约有120名.24. 我们把二次三项式恒等变形为(h 、k 为常数)的形式叫做配方.巧妙地运用配方法不仅可以将一个的多项式进行因式分解,也能求一个二次三项式的最值,还能结合非负数的意义来解决一些实际问题.例如,分解因式:.解:.请用配方法解答下列问题:(1)分解因式:①,②;(2)求多项式的最小值;(3)已知a 、b 、c 是的三边长,且满足.判断的形状.【答案】(1)①;②(2) 的4020%200÷=2036036200°´=°20025%50⨯=2004050302060----=60400120200⨯=2ax bx c ++()2a x h k ⋅++245x x +-()()()2222454492351x x x x x x x +-=++-=++-=-g 223x x +-2245a ab b +-2245x x -+ABC V 222a b c ab bc ca ++=++ABC V (3)(1)x x +-(5)()a b a b +-3(3)等边三角形【解析】【分析】本题主要考查因式分解的应用,关键是配方法的灵活运用.(1)根据题意进行分解即可;(2)分解因式再根据平方的非负性即可得到答案;(3)分解因式进行判定.【小问1详解】解:①原式;②原式;【小问2详解】解:原式,,故多项式的最小值为;【小问3详解】解:,,,,,,2214x x =++-2(1)4x =+-(12)(12)x x =+++-(3)(1)x x =+-222449a ab b b =++-22(2)9a b b =+-(23)(23)a b b a b b =+++-(5)()a b a b =+-22(21)25x x =-+-+22(1)3x =-+2(1)0x -≥ 2245x x -+3 222a b c ab bc ca ++=++2220ab bc c a c a b ∴--++=-2222222220a b c ab bc ca ∴++---=2222220222a b ab bc c b a c a c ∴-+--+++=+222()()()0a b b c c a ∴-+-+-=0,0,0a b b c c a ∴-=-=-=,即的形状为等边三角形.25. 【阅读下列材料】:若,,则,,∴.)∵,,∴.“称为“基本不等式”,利用它可求一些代数式的最值及解决一些实际问题.(a 、b 为正数;积定和最小;和定积最大;当时,取等号.)【例】:若,,,求的最小值.解:∵,, ∴,∴.∴时,的最小值为8.【解决问题】(1)用篱笆围成一个面积为的长方形菜园,当这个长方形的边长为多少时,所用篱笆最短?最短篱笆的长是多少;(2)用一段长为篱笆围成一个长方形菜园,当这个长方形的边长是多少时,菜园面积最大?最大面积是多少;(3)如图,四边形的对角线相交于点O ,、的面积分别为2和3,求四边形面积的最小值.【答案】(1)这个长方形的长、宽分别为米,米; (2)菜园的长为50m ,宽为m 时,面积最大为;(3)四边形面积的最小值为.【解析】【分析】本题主要考查完全平方公式的应用,二次根式的应用.的a b c ==∴ABC V 0a >0b >2a =2b =2a b =+-=20≥0a b +-≥a b +≥a b +≥a b =0a >0b >16ab =a b +0a >0b >16ab =0a b +-≥8a b +≥=4a b ==a b +2100m 100m ABCD AC BD 、AOD △BOC V ABCD 2521250m ABCD 5+(1)设这个长方形垂直于墙的一边的长为x 米,则平行于墙的一边为米,则,,所以所用篱笆的长为米,再根据材料提供的信息求出的最小值即可;(2)设垂直于墙的一边为x m ,利用矩形的面积公式得到菜园的面积关于x 的关系式,再利用非负数的性质求解即可;(3)设点B 到的距离为,点D 到的距离为,又、的面积分别是2和3,则,,,从而求得,然后根据材料提供的信息求出最小值即可.【小问1详解】解:设这个长方形垂直于墙的一边的长为x 米,则平行于墙的一边为米,则,∴,∴所用篱笆的长为米,∵当且仅当时,的值最小,最小值为,∴或(舍去).∴这个长方形的长、宽分别为米,米时,所用的篱笆最短,最短的篱笆是【小问2详解】解:设垂直于墙的一边为x m ,则平行于墙的一边长为m ,∴菜园的面积,又∵,∴当时,菜园的面积有最大值为1250,答:菜园的长为50m ,宽为m 时,面积最大为;【小问3详解】y 100xy =100y x =1002x x ⎛⎫+ ⎪⎝⎭1002x x ⎛⎫+ ⎪⎝⎭AC ()110h h >AC ()220h h >AOD △COB △24OA h =16OC h =1264AC OC OA h h =+=+ABCD S 四边形y 100xy =100y x=1002x x ⎛⎫+ ⎪⎝⎭1002x x +≥=1002x x =1002x x+x =x =-()1002x -()()22100221002251250x x x x x -=-+=--+()22250x --≤25x =2521250m解:设点B 到的距离为,点D 到的距离为,又∵、的面积分别是2和3,∴,,∴,∴∵.∴当且仅当时,取等号,即,∴四边形面积的最小值为.26.(1)【课本探究】如图1,小明将两个含全等的三角尺摆放在一起,可以得到为等边三角形,从而发现:,即:.请将小明的这个发现写成命题的形式;(2)【小试牛刀】①如图2,在中,,,平分,若,求的长;②如图3,在等边中,是边上的中线,点P 为上一动点,连结,若,求的最小值;(3)【拓展应用】如图4,在四边形中,,,,点M 从点B 出发,沿线段以每秒2个单位长度的速度向终点A 运动,过点M 作于点E ,作交延长线于点N ,交射线于点F ,点M 运动时间为.求t 为何值时,与全等,并说明理由.的AC ()110h h >AC ()220h h >AOD △COB △24OA h =16OC h =1264AC OC OA h h =+=+121122ABC ADC ABCD S S S AC h AC h =+=⋅+⋅V V 四边形()1212AC h h =+()211212123216452h h h h h h h h ⎛⎫=++=++ ⎪⎝⎭211232h h h h +≥=211232h h h h =211232h h h h +ABCD 5+30︒ABC V 1122BD CD BC AB ===12BD AB =Rt ABC △90ACB ∠=︒30B ∠=︒AD BAC ∠2CD =BC ABC V AD BC AD BP 4BC =12BP AP +ABCD AB CD ∥6AB BC ===60B ∠︒BA ME BC ⊥MN AB ⊥DC BC ()s t BME V CFN V【答案】(1)角所对的直角边等于斜边的一半;(2)①;②的最小值为;(3)秒或3秒时,与全等.【解析】【分析】(1)根据题意可得,角所对的直角边等于斜边的一半;(2)①在中,,推出,再证明,即可得答案;②过点P 作于点E ,过点B 作于点F ,求得,当点B 、P 、E 三点共线且时,的值最小,最小值为的长,据此即可求解;(3)分点在线段上或点在的延长线上,分别根据图形可得,从而解决问题.【详解】解:(1)根据题意可得,角所对的直角边等于斜边的一半;(2)①如图2,在中,, ,,平分,∴,∴,,,∴,,;②如图3,过点P 作于点E ,过点B 作于点F,30︒6BC =12BP AP+1t =BME V CFN V 30︒Rt ABC △30CAD ∠=︒24AD CD ==4AD DB ==PE AC ⊥BF AC ⊥12PE AP =BF AC ⊥BP PE +BF F BC F BC 2BF BM =30︒Rt ABC △90ACB ∠=︒30B ∠=︒60CAB ∴∠=︒AD BAC ∠1302CAD DAB CAB ∠=∠=∠=︒24AD CD ==30B DAB ∠=∠=︒4AD DB ∴==6BC CD DB =+= 2CD =6BC ∴=PE AC ⊥BF AC ⊥是等边三角形,∴,,,,,∴,∴∵,当点B 、P 、E 三点共线且时,的值最小,最小值为的长,∴的最小值为;(3)当点在线段上时,∵,,,,,,,ABC V 60BAC ∠=︒30DAC DAB ∴∠=∠=︒12PE AP ∴=60ABC ∠=︒ 30ABF ∴∠=︒122AF AB ==BF ==12BP AP BP PE +=+∴BF AC ⊥BP PE +BF 12BP AP +F BC AB CD ∥MN AB ⊥90N ∴∠=︒BME CFN ≌△△2CF BM t ∴==60B ∠=︒ 30BME ∠=︒∴,,;当点在的延长线上时,,,同理得,,,;综上:或3时,与全等.【点睛】本题主要考查了全等三角形的性质,等边三角形的性质,平行线的性质,含角所对的直角边等于斜边的一半,勾股定理,垂线段最短等知识,熟练掌握全等三角形的性质进行分类讨论是解题的关键.24BF BM t ∴==246t t ∴+=1t ∴=F BC BME CFN ≌△△BM CF ∴=4BF t =26BC t ∴==3t ∴=1t =BME V CFN V 30︒。
八年级(上)期末数学试卷附答案解析

八年级(上)期末数学试卷一、选择题:每空3分,共30分.1.函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠12.下列长度的三条线段,哪一组不能构成三角形()A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,93.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.4.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形5.如图,每个小正方形的边长为1,△ABC的三边a、b、c的大小关系式正确的是()A.c<a<b B.a<b<c C.a<c<b D.c<b<a6.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°7.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°8.如图,在△ABC中,∠B=42°,AD⊥BC于点D,点E是BD上一点,EF⊥AB 于点F,若ED=EF,则∠AEC的度数为()A.60°B.62°C.64°D.66°9.(2x)n﹣81分解因式后得(4x2+9)(2x+3)(2x﹣3),则n等于()A.2 B.4 C.6 D.810.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是()A.B.C.D.二、填空题:每空3分,共18分.11.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=.12.当x=时,2x﹣3与的值互为倒数.13.如图,已知△ABC的三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,若∠BAC=80°,则∠BOD的度数为.14.因式分解:(x2+4)2﹣16x2=.15.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠CPD的度数是°.16.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是.三、解答题:第17-21题各8分,第22-23题各10分,第24题12分,共72分。
哈尔滨市第一0七中学校2023-2024学年八年级上学期期末考试数学试卷(含答案)

2023—2024学年度上学期期末测试八年级数学学科测试题一、选择题(每题3分,共30分)1. 下列各式中,属于分式的有()个A. 4B. 3C. 2D. 12. 下列计算结果正确是()A. B. C. D.3. 下列出版社的商标图案中,是轴对称图形的为()A. B. C. D.4. 下列二次根式中,属于最简二次根式的是()A. B. C. D.5. 下列计算正确的是()A. B. C. D.6. 等腰三角形的顶角是,则此等腰三角形的底角度数为()A. B. C. 或 D.7. 如果把分式中的x和y的值同时扩大为原来的3倍,那么分式的值()A. 扩大为原来的3倍B. 缩小为原来的C. 不变D. 无法判断8. 某校八年级学生去距离学校的游览区游览,一部分学生乘慢车先行,出发后,另一部分学生乘快车前往,结果他们同时到达.已知快车的速度是慢车速度的倍,求慢车的速度,设慢车的速度是,所列方程正确的是( )A. B. C. D.9. 下列说法正确的是()A. 等腰三角形的角平分线、中线、高线互相重合;B. 三角形三边垂直平分线交点到三边的距离相等;C. 有一个角是的等腰三角形是等边三角形;D. 如果两个三角形全等,那么它们必是关于某条直线成轴对称的图形.10. 如图,点C为线段上一动点(不与A、E重合),在同侧分别作等边和等边,与交于点O,与交于点P,与交于点Q,连接,以下四个结论①;②;③平分;④,下面的结论正确的有()个A. 1B. 2C. 3D. 4二、填空题(每题3分,共30分)11. 将用科学记数法表示为__________.12. 分解因式:______.13. 要使分式有意义,则的取值范围是__.14. 如图,在三角形纸片中,,点是边上的动点,将三角形纸片沿对折,使点落在点处,当时,的度数为___________.15. 如图,等腰三角形的底边长为4,面积是20,腰的垂直平分线分别交、边于E、F点.若D为边的中点,点M为线段上一动点,则周长的最小值是___________.16. 若是一个关于x的完全平方式,那么k的值是__________.17. 若,,则______.18. 在边长为的等边三角形中,于点,点在直线上,且,则的长为_____.19 如果,那么________________.20. 如图,在等腰三角形中,,为上一点,为延长线上一点,连接,且,,的平分线交于点,若,,则__________.三、解答题(21-22每题7分:23-24每题8分:25-27每题10分,共60分)21. 计算:(1);(2).22. 先化简,再求值:,其中23. 如图,在平面直角坐标系中,已知的三个顶点坐标分别是(1)将向上平移4个单位,再向右平移1个单位,得到,请画出,并写出的坐标;(2)请画出关于y轴对称的,并写出的坐标.24. 已知:为等边三角形,点D,E分别在上,且,连接交于点F,在延长线上取点G,使得,连接.(1)如图1,求证:为等边三角形;(2)如图2,当点D为的中点时,在不添加任何辅助线的情况下,请直接写出图2中四条线段,使每一条线段的长度都等于线段的长度的2倍.25. 某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A、B两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款和用400元购进B款的文化衫的数量相同.(1)求A款文化衫和B款文化衫每件各多少元?(2)已知毕业班的同学一共有300人,学校计划用不多于14800元购买文化衫,最多可购买多少件A款文化衫?26. 教科书中这样写道:“形如的式子称为完全平方式“,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值、最小值等问题.例如:分解因式:.解:原式再如:求代数式的最小值.解:,可知当时,有最小值,最小值是.根据阅读材料,用配方法解决下列问题:(1)分解因式:________.(直接写出结果)(2)当x为何值时,多项式有最大值?并求出这个最大值.(3)利用配方法,尝试求出等式中a,b值.27. 已知,如图1所示,为等边三角形,D是边上一点,,且,连接、.(1)求证:;(2)如图2,延长交于点F,连接,求证:平分;(3)如图3,在(2)的条件下,过点E作于H,若,,求的长.2023—2024学年度上学期期末测试八年级数学学科测试题一、选择题(每题3分,共30分)【1题答案】C【2题答案】B【3题答案】A【4题答案】A【5题答案】C【6题答案】B【7题答案】A【8题答案】B【9题答案】C【10题答案】D二、填空题(每题3分,共30分)【11题答案】【12题答案】【14题答案】或【15题答案】12【16题答案】【17题答案】【18题答案】或【19题答案】【20题答案】三、解答题(21-22每题7分:23-24每题8分:25-27每题10分,共60分)【21题答案】(1)(2)【22题答案】,【23题答案】(1)见解析;;(2)见解析;(1)见解析(2)【25题答案】(1)A款文化衫每件元,B款文化衫每件元;(2)最多可购买280件A款文化衫【26题答案】(1)(2)当时,多项式有最大值,最大值是7;(3),.【27题答案】(1)见解析(2)见解析(3)。
人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.下列文字中,是轴对称图形的是()A .我B .爱C .中D .国2.用科学记数法表示0.0000003是()A .60.310-⨯B .70.310-⨯C .6310-⨯D .7310-⨯3.等腰三角形的两边长为2cm ,5cm ,则该等腰三角形的周长为()A .9cmB .12cmC .9cm 或12cmD .6cm 或12cm4.下列各式运算正确的是()A .326a a a ⨯=B .()428=a aC .()220a a -+=D .()23622a a =5.点A (-2,3)向右平移3个单位后得到点B ,那么点B 关于x 轴对称的点的坐标是A .(1,-3)B .(1,3)C .(-1,3)D .(-1,-3)6.如图,在△ABC 与△ADC 中,若BAC DAC ∠=∠,则下列条件不能判定△ABC 与△ADC 全等的是()A .B D∠=∠B .BCA DCA ∠=∠C .BC DC =D .AB AD =7.已知()()222x m x x x +-=--,那么m 的值是()A .1B .-1C .2D .-28.如图,在Rt △ABC 中,90C = ∠,AD 平分∠BAC ,交BC 于点D ,若20AB =,△ABD 的面积为60,则CD 长()A .12B .10C .6D .49.如图,在△ABC 中,AB AC =,BD CD =,边AB 的垂直平分线交AC 于点E ,连接BE ,交AD 于点F ,若66C ∠=︒,则∠AFE 的度数为()A .60B .62°C .66D .7210.如图,数轴上点A 、B 、C 、D 分别表示数0、1、2、3,若x 为整数(0x ≠),则分式21x x -表示的点落在哪条线段上?()A .ACB .BC C .BD D .CD11.如图,把一块等腰直角三角尺放在直角坐标系中,直角顶点A 落在第二象限,锐角顶点B 、C 分别落在x 轴、y 轴上,已知点A (-2,2)、C (0,-3),则点B 的坐标为()A .(-4,0)B .(-5,0)C .(-7,0)D .(-8,0)12.如图,有10个形状大小一样的小长方形①,将其中的3个小长方形①放入正方形②中,剩余的7个小长方形①放入长方形③中,其中正方形②中的阴影部分面积为21,长方形③中的阴影部分面积为93,那么一个小长方形①的面积为()A .5B .6C .9D .10二、填空题13.分解因式26m m +=_________.14.计算:3242a b ab ÷=______.15.已知:26910a a b -+++=,那么22a b +=______.16.当=a ___________时,关于x 的方程12325x a x a +-=-+的解为零.17.如图,点D 、A 、B 、C 是正十边形依次相邻的顶点,分别连接AC 、BD 相交于点P ,则∠DPC =______度.18.等腰直角三角形ABC 中,AB AC =,90BAC ∠= ,且△ABC 的面积为16,过点B 作直线EF AC ∥,点G 是直线EF 上的一个动点,连接AG ,将AG 绕点A 顺时针旋转90 ,得到线段AH ,连接BH ,则线段BH 的最小值为______.19.如图,已知AE =BE ,DE 是AB 的垂线,F 为DE 上一点,BF =11cm ,CF =3cm ,则AC =_______.20.如图,在等腰△ABC 中,AB=AC=13,BC=10,D 是BC 边上的中点,M 、N 分别是AD 和AB 上的动点.则BM+MN 的最小值是_________________.三、解答题21.计算:(1)02312020222--++⨯(2)()()()22a b a b a b +--+22.化简求值:2222m n mn n m m m ⎛⎫--÷- ⎪⎝⎭,其中3,1m n ==-.23.解分式方程:2231022x x x x-=+-24.如图,四边形ABED 中,90B E ACD ∠=∠=∠= ,BC DE =.(1)求证:ABC CED ∆=∆.(2)发现:若AB a =,BC b =,AC c =,请用两种方法计算四边形ABCD 的面积,并探究a 、b 、c 之间有什么数量关系?(3)应用:①根据(2)中的发现,当8AB =,6BC =时,AC 的长为___;②如图,若30P ∠= ,4PM =,7PN =,点F 在PN 上,点G 在射线PM 上连接FM 、FG 、NG ,求MF FG GN ++的最小值.25.为了进一步丰富校园文体活动,学校准备购进一批篮球和足球,已知每个篮球的进价比每个足球的进价多20元,用1800元购进篮球的数量是用700元购进足球的数量的2倍,求每个篮球和足球的进价各是多少元?26.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E .(1)求证:ACD CBE △△≌;(2)试探究线段AD ,DE ,BE 之间有什么样的数量关系,请说明理由.27.如图,Rt △ABC 与Rt △DEF 中,点B 、E 、C 、F 在一条直线上,AC 与DE 相交于点O ,90BAC EDF ∠=∠=︒,AB DE =,BE CF =,则:(1)求证:AC DE ⊥;(2)连接AD 、AE 、DC ,若12,5AC AB ==,求四边形AECD 的面积.28.如图是33⨯的网格,网格中每个小正方形的顶点叫做格点,当三角形的三个顶点是格点时,这个三角形叫做格点三角形,图中阴影部分的三角形就是格点三角形.(1)请在图一、图二中分别作出与阴影部分成轴对称的格点三角形,要求所作格点三角形在33⨯的网格内且位置不同;(2)思考:在33⨯的网格内一共可以作___个符合(1)中要求的格点三角形.参考答案1.C2.D3.B4.B5.A6.C7.A8.C9.D10.C11.C12.Am m+13.(6)14.22a b15.1016.1517.144【详解】解:∵DAB ∠和ABC ∠是正十边形的两个内角,∴(102)18014410DAB ABC -⨯︒∠=∠==︒,DA AB BC ==,∴180********,22DAB ABD ︒-∠︒-︒∠===︒1801801441822ABC BCA ︒-∠︒-︒∠===︒,∴14418126PBC ABC ABD ∠=∠-∠=︒-︒=︒,∴12618144DPC PBC PCB ∠=∠+∠=︒+︒=︒,故答案为:144【点睛】可不是主要考查了正多边形内角和问题,解题的关键是熟练掌握基本知识.18.【分析】如图所示:连接CG .由旋转的性质可知AG AH =,90GAH ∠=︒,再由90BAC ∠=︒,可知HAB CAG ∠=∠.可证ABH ACG ≅ .可得BH CG =.BH 最小转化成求CG 最小.只需CG BG ⊥就可以了.由此可得四边形ABGC 是正方形.由ABC 的面积是16,可求BH 的值为【详解】如图所示:连接CG .由旋转的性质可知:AG AH =,90GAH ∠=︒.∵90BAC ∠=︒∴BAC BAG GAH BAG ∠-∠=∠-∠,即HAB CAH ∠=∠.在ABH 和ACG 中,AB AC HAB CAH AH AG =⎧⎪∠=∠⎨⎪=⎩ABH ACG≅ ∴BH CG=要让BH 最小,也就是要CG 最小,∴CG BG ⊥时,CG 最小.∵EF AC ∥,90BAC ∠=︒,∴90ABG BAC ∠=∠=︒∵CG BG⊥∴四边形ABGC 时矩形,∵AB AC=∴矩形ABGC 是正方形.∴AB BG CG AC ===.∵△ABC 的面积为16,∴•162AB AC =,解得:AB AC ==.∴AB AC CG BH ====故答案为:【点睛】本题考查了全等三角形的性质和判定定理、矩形的性质和判定定理、正方形的性质和判定定理、等腰直角三角形的性质等知识.证得三角形全等,由求BH 转化成求CG ,和让CG BG ⊥时,CG 最短是解决本题的关键.19.14cm【分析】由AE =BE ,DE 是AB 的垂线得出DE 是AB 的中线,进而可得DE 是AB 的垂直平分线,由此即可得到AF =BF ,再根据线段的和差即可得解.【详解】解:∵AE =BE ,DE 是AB 的垂线,∴DE 是AB 的中线,∴DE是AB的垂直平分线,∵F为DE上一点,∴AF=BF,∴AC=AF+CF=BF+CF,∵BF=11cm,CF=3cm,∴AC=14cm,故答案为:14cm.【点睛】此题考查了等腰三角形的三线合一以及垂直平分线的性质,熟练掌握等腰三角形的三线合一以及垂直平分线的性质是解此题的关键.20.120 13【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,然后根据轴对称的性质可知BM′+M′N′为所求的最小值.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AB=AC,D是BC边上的中点,∴AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=AC=13,BC=10,D是BC边上的中点,∴AD⊥BC,∴AD=12,∵S△ABC=12AC×BH=12BC×AD,∴13×BH=10×12,解得:BH=120 13;故答案为12013.21.(1)2(2)233ab b --【分析】(1)根据零次幂、负指数幂可进行求解;(2)根据完全平方公式及多项式乘以多项式可进行求解.(1)解:原式=111428++⨯11122=++=2;(2)解:原式=()222222a ab b a ab b ---++=222222a ab b a ab b -----=233ab b --.22.2m n -;12【分析】先根据分式混合运算法则进行化简,然后再代入求值即可.【详解】解:原式22222m n m mn n m m m ⎛⎫--=÷- ⎝⎭22222m n m mn n m m--+=÷()()22m n mm m n -=⋅-2m n=-把m=3,n=−1代入得:原式()231=--231=+24=12=23.4x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】2231022x x x x-=+-解:方程可变为:()()31022x x x x -=+-,方程两边同乘以x (x+2)(x ﹣2)得:3(x ﹣2)﹣(x+2)=0,解得,x =4,检验:当x =4时,x (x+2)(x ﹣2)≠0,所以,原分式方程的解为x =4.24.(1)见解析;(2)第一种方法:S 四边形ABCD=2ab +22c ,第二种方法:22222a b ab ++;a 、b 、c 之间的数量关系是222+=a b c ;(3)①10【分析】(1)根据BAC ECD ∠=∠,B E ∠=∠,BC ED =即可证明两个三角形全等;(2)第一种面积求法直接是S △ABC+S △ACD ,代入表示即可;第二种面积表示用S 梯形ABED-S △CED 来表示,就可以得到a 、b 、c 之间的数量关系;(3)①根据(2)中的结论,代入数值即可计算;②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小,代入(2)中的结论,即可算出这个最小值;【详解】(1)∵∠B=∠E=∠ACD=90°,∴∠DCE+∠ACB=90°,∠ACB+∠BAC=90°,∴∠BAC=∠DCE ,在△ABC 和△CED 中,BAC ECD B E BC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CED ;(2)第一种方法:S 四边形ABCD=S △ABC+S △ACD=2ab +22c ,第二种方法:由(1)可知,△ABC ≌△CED ,∴CD=c ,DE=b ,CE=a ,S 四边形ABCD =S 梯形ABED-S △CED=22a b a b ab ++-()(),=22222a b ab ++,∴2ab +22c =22222a b ab ++,∴222+=a b c ,即a 、b 、c 之间的数量关系是222+=a b c ;(3)①∵AB=8,BC=6,∴22268AC =+=100,∴AC=10,②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小;如图所示:∵点M 与1M 关于PN 对称,点N 与1N 关于PM 对称,∴1M F=MF ,PM=P 1M =4,∴GN=G 1N ,PN=P 1N =7,∠1M PF=∠FPM=∠MP 1N =30°,∴∠11M PN =3×30°=90°∴MF+FG+GN=M 1F+FG+N 1G≥M 1N 1,当点M 1、F 、G 、N 1四点共线时最短,在△11M PN 中,∠11M PN =90°,PM=4,P 1N =7,∴由(2)可知,211M N =2247+=65,∴11M N∴MF FG GN ++25.每个足球的进价是70元,每个篮球的进价是90元【详解】解:设每个足球的进价是x 元,则每个篮球的进价是()20x +元.由题意得:1800700220x x=⨯+.解得:70x =.检验:当70x =时,()200x x +≠,所以,原方程的解为70x =.∴2090x +=.答:每个足球的进价是70元,每个篮球的进价是90元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)见解析(2)BE DE AD +=,见解析【分析】(1)由“AAS”可证ACD CBE △△≌;(2)由全等三角形的性质可得CD BE =,AD CE =,即可求解.【详解】(1)证明:∵AD CE ⊥,BE CE ⊥,∴90E ADC ∠=∠=︒,∴1290∠+∠=︒,∵90ACB ∠=︒,∴3290∠+∠=︒,∴13∠=∠,在ACD 和CBE △中,13ADC E AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD CBE △△≌(AAS ).(2)解:BE DE AD +=,理由如下:∵ACD CBE △△≌,∴CD BE =,AD CE =.∵CD DE CE +=,∴BE DE AD +=.27.(1)见详解(2)四边形AECD 的面积为30【分析】(1)由题意易得BC EF =,然后根据“HL”可证ABC DEF ≌△△,则有//AB DE ,进而问题可求证;(2)由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,然后根据勾股定理可得BC=13,进而问题可求解.(1)证明:∵BE CF =,∴BE EC CF EC +=+,即BC EF =,∵90BAC EDF ∠=∠=︒,AB DE =,∴ABC DEF ≌△△(HL ),∴B DEF ∠=∠,∴//AB DE ,∴90EOC A ∠=∠=︒,∴AC DE ⊥;(2)解:由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,//AD EC ,∴四边形AECD 是梯形,∵12,5AC AB ==,90BAC ∠=︒,∴13BC ==,设△ABC 边BC 上的高为h ,∴6013AB AC h BC ⋅==,∴()()1111601330222213AECD S AD EC h BE EC h BC h =+=+=⋅=⨯⨯=四边形.【点睛】本题主要考查勾股定理、平移的性质及全等三角形的性质与判定,勾股定理、平移的性质及全等三角形的性质与判定是解题的关键.28.(1)见解析(2)3【分析】(1)根据轴对称图形的性质作出轴对称图形即可;(2)作出所有轴对称图形即可得到答案.(1)如图一、二,即为所作图形,(虚线为对称轴)(2)可以作出3个符合(1)中要求的格点三角形.第3个如图所示,故答案为:3。
人教版八年级上册数学期末考试试卷及答案
人教版八年级上册数学期末考试试题一、单选题1.下列计算正确的是()A .a 2•a 3=a 6B .2ab+3ab =5a 2b 2C .a 8÷a 4=a 2D .(a 3)2=a 62.到三角形三条边距离相等的点是此三角形()A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边中垂线的交点3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为()A .140°B .160°C .170°D .150°4.如图,在△ABC 中,已知点D ,E ,F 分别为BC ,AD ,AE 的中点,且S △ABC =12cm 2,则阴影部分面积S =()cm 2.A .1B .2C .3D .45.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是()A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22(2)()2a b a b a ab b +-=+-6.202020214(0.25)-⨯的值为()A .4B .4-C .0.25D .0.25-7.若2x y +=,1xy =-,则()()1212x y --的值是()A .7-B .3-C .1D .98.如图,在△ABC 中,BC=10,CD 是∠ACB 的平分线.若P ,Q 分别是CD 和AC 上的动点,且△ABC 的面积为24,则PA+PQ 的最小值是()A .125B .4C .245D .59.已知,,a b c 满足22227,-21,617a b b c c a +==--=-,则a b c +-的值为()A .1B .-5C .-6D .-710.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S ,若AQ=PQ ,PR=PS ,下面四个结论:①AS=AR ;②QP ∥AR ;③△BRP ≌△QSP ;④AP 垂直平分RS ,其中正确结论的序号是()A .①②B .①②③C .①②④D .①②③④二、填空题11.因式分解:225x y y -=______.12.am =6,an =3,则am﹣2n =__.13.如图,△ABC ≌△DBC ,∠A =45°,∠DCB =43°,则∠ABC =______.14.如图,ABC 的三边AB BC CA 、、的长分别为405060、、,其三条角平分线交于点O ,则::ABOBCO CAOS S S =______.15.一位工人师傅加工1500个零件后,把工作效率提高到原来的2.5倍,因此再加工1500个零件时,较前提早了18个小时完工,问这位工人师傅提高工作效率的前后每小时各加工多少个零件?设提高工作效率前每小时加工x 个零件,则根据题意可列方程为________.16.若x 4y 1+=,则xy 的最大值为_____.17.如图,已知△ABC 的面积为1,分别倍长(延长一倍)边AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长边A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2…按此规律,倍长2021次后得到的△A 2021B 2021C 2021的面积为_________.18.如图,△ABC ≌△ADE ,∠B=70°,∠C=30°,∠DAC=20°,则∠EAC 的度数为______.19.如图,在ABC ∆中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD .若4AC cm =,ADC ∆的周长为11cm ,则BC 的长为__________cm .三、解答题20.解分式方程:21133x x+=--21.化简求值:2(2)(1)(1)a a a +-+-,其中3=2a 22.先化简,再求值:22241---÷+a a a a a请从-2,-1,0,1,2中选择一个合适的数,求此分式的值.23.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD=CD ,(1)求证:△ABD ≌△CFD ;(2)已知BC=7,AD=5,求AF 的长.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y )2+2(x+y )+1.解:将“x+y”看成整体,令x+y=A ,则原式=A 2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x-3y )+(2x-3y )2.(2)因式分解:(a+b )(a+b-4)+4;25.在汕头市“创文”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a 天完成,乙做另一部分用了y 天完成.若乙工程队还有其它工作任务,最多只能做52天.求甲工程队至少应做多少天?26.如图,在ABC 中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.27.已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与点B ,点C 重合).以AD 为边作等边三角形ADE ,连接CE .(1)如图1,当点D 在边BC 上时.①求证:△ABD ≌△ACE ;②直接判断结论BC=DC+CE 是否成立(不需证明);(2)如图2,当点D 在边BC 的延长线上时,其他条件不变,请写出BC ,DC ,CE 之间存在的数量关系,并写出证明过程.28.如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.易得:AD=BD.(1)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD;(2)如图3,在四边形ABDE中,AB=10,DE=2,BD=6,C为BD边中点.若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.参考答案1.D【分析】利用合并同类项的法则,幂的乘方的法则,同底数幂的乘法的法则,同底数幂的除法的法则对各项进行运算即可.【详解】解:A、a2•a3=a5,故该选项不符合题意;B、2ab+3ab=5ab,故该选项不符合题意;C、a8÷a4=a4,故该选项不符合题意;D、(a3)2=a6,故该选项符合题意;故选:D.【点睛】本题主要考查了合并同类项,幂的乘方,同底数幂的乘法,同底数幂的除法,解答的关键对相应的运算法则的掌握.2.A【分析】根据角平分线的性质进行解答即可.【详解】解: 角平分线上任意一点,到角两边的距离相等,到三角形三条边距离相等的点是三角形三个内角的平分线的交点,故选:A.3.B【详解】解:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.故选B.4.C【分析】根据三角形面积公式由点D为BC的中点得到S△ABD=S△ADC=12S△ABC=6,同理得到S△EBD=S△EDC=12S△ABD=3,则S△BEC=6,然后再由点F为EC的中点得到S△BEF=12S△BEC=3.【详解】解:∵点D为BC的中点,∴S△ABD=S△ADC=12S△ABC=6,∵点E为AD的中点,∴S△EBD =S△EDC=12S△ABD=3,∴S△EBC=S△EBD+S△EDC=6,∵点F为EC的中点,∴S△BEF =12S△BEC=3,即阴影部分的面积为3cm2.故选:C.【点睛】本题考查三角形的中线有关的面积计算问题.三角形的一条中线把原三角形分成两个等底同高的三角形,因此分得的两个三角形面积相等,利用这一特点可以求解有关的面积问题.5.A【分析】左图中阴影部分的面积=a2−b2,右图中矩形面积=(a+b)(a−b),根据二者面积相等,即可解答.【详解】解:由题意可得:a2−b2=(a−b)(a+b).故选:A.【点睛】此题主要考查了乘法的平方差公式,属于基础题型.6.D【分析】直接利用积的乘方把式子变形计算即可.【详解】202020214(0.25)-⨯=202020204(0.25)(0.25)⨯⨯--=20202020[4(0.25)2)](0.5--⨯⨯=2020[4(0.25)(0.25)]⨯⨯--=2020(1)(0.25)⨯--=1(0.25)-⨯=0.25-故选:D 7.A【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7;故选:A .【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.C【分析】过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,当A 、P 、G 三点共线时,AP+PQ 的值最小,求出AG 的长即为所求.【详解】解:过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,∵CD 是∠ACB 的平分线,∴PG=PQ ,∴PA+PQ=AP+PG≥AG ,∴当A 、P 、G 三点共线时,AP+PQ 的值最小,∵BC=10,△ABC 的面积为24,∴AG=245,∴AP+PQ 的最小值为245,故选:C .9.A【详解】解:∵22227,-21,617a b b c c a +==--=-,∴(a 2+2b )+(b 2-2c )+(c 2-6a )=7+(-1)+(-17),∴a 2+2b+b 2-2c+c 2-6a=-11∴(a 2-6a+9)+(b 2+2b+1)+(c 2-2c+1)=0,∴(a-3)2+(b+1)2+(c-1)2=0∴a-3=0,b+1=0,c-1=0,∴a+b-c=3-1-1=1.故选:A .10.C【分析】连接AP ,RS ,证明Rt APR ≌Rt APS ,即可判断①,根据等边对等角可得QAP QPA ∠=∠,根据角平分线的性质可得BAP CAP ∠=∠,等量代换可得QPA BAP ∠=∠,进而即可判定QP ∥AR ,即可判断②,假设③成立,可得到BC AC =,与已知矛盾,进而可判断③,根据垂直平分线的判定定理即可判断④.【详解】连接AP ,RS ,如图,PR ⊥AB ,PS ⊥AC ,PR=PS ,AP ∴是BAC ∠的角平分线,BAP CAP∴∠=∠在Rt APR 与Rt APSPS PR PA PA=⎧⎨=⎩∴Rt APR ≌Rt APSAS AR∴=故①正确;AQ PQ= QAP QPA ∴∠=∠QPA BAP ∴∠=∠AR QP∴∥故②正确;假设△BRP ≌△QSP ;则SQ RB =,PBR PQS∠=∠ AR QP∥PQS BAC∠∠∴=BC AC∴=而题中没有说明BC AC =,故③不正确;,AR AS PR PS== ∴AP 是RS 是垂直平分线,故④正确故正确的有①②④故选C11.()()55y x x -+【详解】先提取公因式y ,再利用平方差公式,可得()()22555x y y y x x -=-+.故答案是()()55y x x -+.12.23【分析】直接利用同底数幂的除法运算法则结合幂的乘方运算法则进而将原式变形得出答案.【详解】∵am =6,an =3,∴am﹣2n=am÷(an)2=6÷32=23.故答案为:2 3.13.92°【分析】根据全等三角形的性质和三角形的内角和定理即可得到结论.【详解】解:∵△ABC≌△DBC,∴∠ACB=∠DCB=43°,∵∠A=45°,∴∠ABC=180°﹣∠A﹣∠ACB=92°,故答案为:92°.14.4:5:6【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC 的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【详解】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO :S△BCO:S△CAO=(12AB•OD):(12BC•OF):(12AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.15.1500x−18=15002.5x【分析】关键描述语为:“较前提早了18个小时完工”;本题的等量关系为:原来加工1500个零件所用时间-18=现在加工1500个零件所用时间,把相应数值代入即可求解.【详解】解:原来加工1500个零件所用时间为:1500x,现在加工1500个零件所用时间为:15002.5x ,∴根据题意可列方程为1500x −18=15002.5x 故答案为:1500x −18=15002.5x .16.116【分析】利用完全平方公式列出关于xy 的不等式.求不等式的解,根据不等式的解,即可求得xy 的最大值.【详解】解:22(4)(4)160x y x y xy -=+-≥.41x y += ,1160xy ∴-≥,116xy ∴≤.故答案为:116.17.20217【分析】根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A 1B 1C 1的面积是△ABC 的面积的7倍,依此规律可得结论.【详解】解:连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,1117A B C ABC S S = ,同理222111277A B C A B C ABC S S S == ,依此类推,△A 2021B 2021C 2021的面积为=72021S △ABC ,∵△ABC 的面积为1,∴△A 2021B 2021C 2021的面积=72021.故答案为:72021.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.18.60°【分析】根据三角形内角和定理求出∠BAC ,根据全等三角形的性质计算即可.【详解】解:∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵△ABC ≌△ADE ,∴∠DAE=∠BAC=80°,∴∠EAC=∠DAE-∠DAC=60°,故答案为60°.19.7【分析】由AB 的垂直平分线交AB 于E ,交BC 于D ,根据线段垂直平分线的性质,可得AD=BD ,又由△ADC 的周长为11cm ,即可求得AC +BC=11cm ,然后由AC=4cm ,即可求得BC 的长.【详解】解:∵AB 的垂直平分线交AB 于E ,交BC 于D ,∴AD=BD ,∵△ADC 的周长为11cm ,∴AC +CD +AD=AC +CD +BD=AC +BC=11cm ,∵AC=4cm ,∴BC=7cm .故答案为:7.20.x=4【分析】两边都乘以x-3化为整式方程求解,然后验根即可.【详解】解:两边都乘以x-3,得2-1=x-3,解得x=4,检验:当x=4时,x-3≠0,∴x=4是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.21.45a +,11【分析】先利用完全平方公式和平方差公式进行化简,再代值运算即可.【详解】解:2(2)(1)(1)a a a +-+-22441a a a =++-+45a =+把3=2a 代入得:345112⨯+=【点睛】本题主要考查了整式的化简求值,熟悉掌握完全平方公式和平方差公式是解题的关键.22.12a +,13【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的a 的值代入计算可得.【详解】解:22241---÷+a a a a a2(1)1(2)(2)a a a a a a -+=-⨯+-112a a +=-+12a =+,∵a≠0且a≠±2,a≠-1,∴a=1,则原式=11123=+.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.(1)证明见解析;(2)3.【分析】(1)利用ASA ,可证△ABD ≌△CFD ;(2)由△ABD ≌△CFD ,得BD=DF ,所以BD=BC ﹣CD=2,所以AF=AD ﹣DF=5﹣2.【详解】(1)证明:∵AD ⊥BC ,CE ⊥AB ,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠ECD ,在△ABD 和CFD 中,ADB CDF BAD DCF AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CFD (AAS ),(2)∵△ABD ≌△CFD ,∴BD=DF ,∵BC=7,AD=DC=5,∴BD=BC ﹣CD=2,∴AF=AD ﹣DF=5﹣2=3.24.(1)(1+2x-3y )2;(2)(a+b-2)2.【分析】(1)将(2x-3y )看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b ,代入后因式分解,再代入即可将原式因式分解.【详解】解:(1)原式=(1+2x-3y )2.(2)令A=a+b ,则原式变为A (A-4)+4=A 2-4A+4=(A-2)2,故:(a+b )(a+b-4)+4=(a+b-2)2.故答案为(1)(1+2x-3y )2;(2)(a+b-2)2.25.(1)乙工程队单独做需要80天完成(2)甲工程队至少应做42天.【分析】(1)设乙工程队单独完成这项工作需要x 天,由题意列出分式方程,求出x 的值即可;(2)首先根据题意列出a 和y 的关系式,进而求出a 的取值范围,结合a 和y 都是正整数,即可求出a 的值.【详解】(1)设乙工程队单独完成这项工作需要x 天,由题意得:3011361120120x ⎛⎫++⨯= ⎪⎝⎭解得:x=80,经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.(2)因为甲工程队做其中一部分用了a 天,乙工程队做另一部分用了y 天,依题意得:112080a y +=,∴2803y a =-.∵52y ≤,∴280523a -≤,解得:42a ≥.答:甲工程队至少应做42天.26.∠B =77°,∠C =38.5︒【分析】根据等腰三角形的性质及三角形内角和定理可求出∠B 和∠ADB 的度数,利用三角形外角性质即可求出∠C 的度数.【详解】解:∵AB =AD ,26BAD ∠=︒∴∠B =∠ADB =12×(180°﹣26°)=77°,∵AD =DC ,∴∠C=∠DAC ,∴∠C =12∠ADB =12×77°=38.5︒.27.(1)①见解析;②成立;(2)BC+CD=CE【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ;②由△ABD ≌△ACE 就可以得出BC=DC+CE ;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ,就可以得出BC+CD=CE .【详解】解:(1)①证明:∵△ABC 是等边三角形∴AB=AC ∠BAC=60°∵△ADE 是等边三角形∴AD=AE ∠DAE=60°∴∠BAC -∠DAC=∠DAE -∠DAC ∴∠BAD=∠CAE ∴△ABD ≌△ACE②成立∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC是等边三角形∴AB=AC∠BAC=60°∵△ADE是等边三角形∴AD=AE∠DAE=60°∴∠BAC+∠DAC=∠DAE+∠DAC∴∠BAD=∠CAE∴△ABD≌△ACE∴BD=CE∵BC=BD-CD∴BC=CE-CD.28.(1)见解析;(2)15.【分析】(1)证△ECD≌△ACD(SAS),得EC=AC,DE=AD,∠CED=∠A=60°,再证BE=DE,则BE=AD,即可得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,证△ACB≌△ACF(SAS),得CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证△CGE≌△CDE (SAS),得CG=CD=3,GE=DE=2,∠DCE=∠GCE,再证△CFG是等边三角形,得FG=CG=3,即可求解.【详解】(1)证明:在CB上截取CE=AE,连接DE,如图所示:∵CD平分∠ACB,∴∠BCD=∠ACD,又∵CD=CD,∴△ECD≌△ACD(SAS),∴EC=AC,DE=AD,∠CED=∠A=60°,∵∠ACB=90°,∠A=60°,∴∠B=30°,又∵∠CED=∠EDB+∠B,∴∠EDB=60°-30°=30°,∴∠EDB=∠B,∴BE=DE,∴BE=AD,∵BC=EC+BE,∴BC=AC+AD;(2)解:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,如图所示:∵C是BD边的中点,BD=6,∴CB=CD=12BD=3,∵AC平分∠BAE,∴∠BAC=∠FAC,又∵AC=AC,∴△ACB≌△ACF(SAS),∴CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证:△CGE≌△CDE(SAS),∴CG=CD=3,GE=DE=2,∠DCE=∠GCE,∵CB=CD,∴CG=CF,∵∠ACE=120°,∴∠BCA+∠DCE=180°-120°=60°,∴∠FCA+∠GCE=60°,∴∠FCG=180°-60°-60°=60°,∴△FGC是等边三角形,∴FG=FC=3,∴AE=AF+GE+FG=10+2+3=15.。
人教版数学八年级上册期末考试试卷含答案
人教版数学八年级上册期末考试试题一、选择题(每小题3分,共8小题,满分24分)1.分式25-+x x 的值是零,则x 的值为()A.2B.5C.-2D.-52.下列计算正确的是()A.(a 2)4=a 6B.a 8÷a 4=a 2C.(ab 2)3=ab 6D.a 2·a 3=a 53.已知一个多边形的内角和是1260°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形4.如图,已知直线l 1∥l 2,点A ,D 和点B ,C ,E ,F 分别在直线l 1,l 2上,△ABC 和△DEF 的面积之比为1∶4,边EF 比边BC 长27cm ,则BC 等于()A.3cmB.9cmC.12cmD.18cm5.如图,D 是AB 上一点,DF 交AC 于点E ,FC ∥AB ,则下列结论错误的是()A.若AE=CE ,则DE=FE B.若DE=FE ,则AE=CE C.若BC=CF ,则AD=CFD.若AD=CF ,则DE=FE6.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是()A.40×1.25x-40x=800B.x 800-x25.2800=40C.x 800-x25.1800=40 D.x 25.1800-x800=407.如图,I 为△ABC 角平分线的交点,AB=8,AC=6,BC=4,将∠ACB 平移使其顶点C 与I 重合,则图中阴影部分的周长为()A.9B.8C.6D.48.如图,是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2cm 时,这个六边形的周长为()A.30cmB.40cmC.50cmD.60cm二、填空题(每小题3分,共6小题,满分18分)9.甲骨文是我国的一种古代文字,是汉字的早期形式,下表给出了部分现代汉字与甲骨文字的对应关系.其中属于轴对称的甲骨文字个数是个.10.小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0.000326毫米,用科学计数法表示为.11.因式分解:9x 3-4x=.12.已知a 1-b 1=3,则32322ba ab b a =.13.如图,BD ∥CE ,∠1=80°,∠2=40°,则∠A=.14.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =.三、解答题(共9小题,满分58分)15.(5分)解方程23-x x +x-24=1.16.(5分)计算:(2+1)(22+1)(24+1)…(216+1)+1.17.(6分)先化简,再求值:⎪⎭⎫⎝⎛+-+÷+-1111222x x x x x ,其中x=2.18.(6分)如图,在△ABD 和△ACD 中,已知AB=AC ,∠B=∠C.求证:AD 是∠BAC 的平分线.19.(6分)请在网格中完成下列问题:(1)如图1,网格中的△ABC 与△DEF 为轴对称图形,请用所学轴对称的知识作出△ABC 与△DEF 的对称轴l ;(2)如图2,请在图中作出△ABC 关于直线MN 轴对称的图形△A′B′C′.20.(6分)如图所示,在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC,延长BE交AC于点F,求证:AF=EF.21.(7分)如图,在四边形ABCD中,∠C=90°,连接BD,∠ABD=45°,且∠ADB=∠CDB,过A点作AE⊥BD于点E,交BC于点F,求证:AD=BF.22.(8分)开学初,小芳和小亮去学校商店购买学习用品,小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价格少2元.(1)求每支钢笔和每本笔记本各是多少元;(2)学校运动会后,班主任再次购买上述价格的钢笔和笔记本共50件作为奖品,奖励给校运动会中表现突出的同学,总费用不超过200元.请问至少要买多少支钢笔?23.(9分)如图,△COB是由△AOB经过某种变换得到,观察点A与点C坐标之间的关系,回答下列问题:(1)若点M的坐标为(x,y),则它的对应点N的坐标为(x,-y);(2)若点P(a ,2)与点Q(-3,b)关于x 轴对称,求ab 1+()()111--b a +()()221--b a +…+()()10101--b a 的值.参考答案一、选择题(每小题3分,共8小题,满分24分)1.分式25-+x x 的值是零,则x 的值为(D )A.2B.5C.-2D.-52.下列计算正确的是(D )A.(a 2)4=a 6B.a 8÷a 4=a 2C.(ab 2)3=ab 6D.a 2·a 3=a 53.已知一个多边形的内角和是1260°,则这个多边形是(C)A.七边形B.八边形C.九边形D.十边形4.如图,已知直线l 1∥l 2,点A ,D 和点B ,C ,E ,F 分别在直线l 1,l 2上,△ABC 和△DEF 的面积之比为1∶4,边EF 比边BC 长27cm ,则BC 等于(B)A.3cmB.9cmC.12cmD.18cm5.如图,D 是AB 上一点,DF 交AC 于点E ,FC ∥AB ,则下列结论错误的是(C )A.若AE=CE ,则DE=FEB.若DE=FE ,则AE=CEC.若BC=CF ,则AD=CFD.若AD=CF ,则DE=FE6.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是(C)A.40×1.25x-40x=800B.x 800-x25.2800=40C.x 800-x25.1800=40 D.x 25.1800-x800=407.如图,I 为△ABC 角平分线的交点,AB=8,AC=6,BC=4,将∠ACB 平移使其顶点C 与I 重合,则图中阴影部分的周长为(B)A.9B.8C.6D.48.如图,是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2cm 时,这个六边形的周长为(D )A.30cmB.40cmC.50cmD.60cm二、填空题(每小题3分,共6小题,满分18分)9.甲骨文是我国的一种古代文字,是汉字的早期形式,下表给出了部分现代汉字与甲骨文字的对应关系.其中属于轴对称的甲骨文字个数是7个.10.小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0.000326毫米,用科学计数法表示为3.26×10-4.11.因式分解:9x 3-4x=x(3x+2)(3x-2).12.已知a 1-b 1=3,则32322b a ab b a -=-3.13.如图,BD ∥CE ,∠1=80°,∠2=40°,则∠A=40°.14.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =50°.三、解答题(共9小题,满分58分)15.(5分)解方程23-x x +x-24=1.解:方程两边乘(x-2),得3x-4=x-2.解得x=1.检验:当x=1时,x-2≠0.∴x=1是原分式方程的解.16.(5分)计算:(2+1)(22+1)(24+1)…(216+1)+1.解:原式=(22-1)(22+1)(24+1)…(216+1)+1=(24-1)(24+1)…(216+1)+1=232-1+1=232.17.(6分)先化简,再求值:⎪⎭⎫⎝⎛+-+÷+-1111222x x x x x ,其中x=2.解:原式=()⎪⎭⎫ ⎝⎛--+-÷-111112x x x x x=()xx x x112-⨯-=11-x .当x=2时,原式=1.18.(6分)如图,在△ABD 和△ACD 中,已知AB=AC ,∠B=∠C.求证:AD 是∠BAC 的平分线.证明:如图,连接BC.∵AB=AC ,∴∠ABC=∠ACB.∵∠ABD=∠ACD ,∴∠ABC -∠ABD=∠ACB -∠ACD ,即∠DBC=∠DCB.∴BD=CD.在△ADB 和△ADC 中,⎪⎩⎪⎨⎧===,,,AD AD AC AB CD BD ∴△ADB ≌△ADC (SSS ).∴∠BAD=∠CAD ,即AD 是∠BAC 的平分线.19.(6分)请在网格中完成下列问题:(1)如图1,网格中的△ABC与△DEF为轴对称图形,请用所学轴对称的知识作出△ABC与△DEF的对称轴l;(2)如图2,请在图中作出△ABC关于直线MN轴对称的图形△A′B′C′.解:(1)如图1,直线l即为所求;(2)如图2,△A′B′C′即为所求.20.(6分)如图所示,在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于点F,求证:AF=EF.解:如图,延长AD至点G,使DG=AD,连接BG.∵AD是BC边上的中线,∴BD=CD.在△ADC 和△GDB 中,⎪⎩⎪⎨⎧=∠=∠=,,,BD CD GDB ADC GD AD ∴△ADC ≌△GDB (SAS ).∴AC=GB ,∠G=∠CAD.∵BE=AC ,∴BE=BG.∴∠BED=∠G.又∵∠BED=∠AEF ,∴∠AEF=∠G=∠CAD.∴AF=EF.21.(7分)如图,在四边形ABCD 中,∠C=90°,连接BD,∠ABD=45°,且∠ADB=∠CDB,过A 点作AE ⊥BD 于点E,交BC 于点F,求证:AD =BF.证明:∵AE ⊥BD,∴∠AEB =∠AED =∠BEF =90°.∴∠DAE +∠ADE=90°.∵∠ABD =45°,∴∠BAE=90°-∠ABD=45°=∠ABE.∴AE=BE.∵∠C=90°,∴∠BDC+∠DBC=90°.∵∠BDC=∠ADB,∴∠DBC=∠DAE.在△AED 和△BEF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,,FBE DAE BE AE BEF AED ∴△AED ≌△BEF(ASA).∴AD=BF.22.(8分)开学初,小芳和小亮去学校商店购买学习用品,小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价格少2元.(1)求每支钢笔和每本笔记本各是多少元;(2)学校运动会后,班主任再次购买上述价格的钢笔和笔记本共50件作为奖品,奖励给校运动会中表现突出的同学,总费用不超过200元.请问至少要买多少支钢笔?解:(1)设每支钢笔x 元,则每本笔记本(x+2)元.根据题意,得x 30=2×225+x .解得x=3.经检验,x=3是所列分式方程的解,且符合题意,∴x+2=5.答:每支钢笔3元,每本笔记本5元;(2)设要买m 支钢笔,则要买(50-m )本笔记本.根据题意,得3m+5(50-m )≤200.解得m≥25.答:至少要买25支钢笔.23.(9分)如图,△COB 是由△AOB 经过某种变换得到,观察点A 与点C 坐标之间的关系,回答下列问题:(1)若点M 的坐标为(x ,y),则它的对应点N 的坐标为(x ,-y );(2)若点P(a ,2)与点Q(-3,b)关于x 轴对称,求ab 1+()()111--b a +()()221--b a +…+()()10101--b a 的值.(2)解:∵点P(a ,2)与点Q(-3,b)关于x 轴对称,∴a=-3,b=-2,∴ab 1+()()111--b a +()()221--b a +…+()()10101--b a =()231-⨯-+()341-⨯-+()451-⨯-+…+()12131-⨯-=231⨯+341⨯+451⨯+…+12131⨯=21-31+31-41+41-51+…+121-131=21-131=2611.。
四川成都2023-2024学年八年级上学期期末数学试题(原卷版)
2023—2024学年度(上)期末考试八年级数学试题注意事项:1.全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2.在作答前,考生务必将自己的姓名、班级写在答题卡上,并检查条形码信息.考试结束,监考人员将答题卡收回.3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 9的算术平方根是( )A. 3±B.C. 3D. 3−2. 在平面直角坐标系中,点()3,2A 关于原点对称的点的坐标是( )A. ()3,2B. ()3,2−C. ()3,2−D. ()3,2−− 3. 下列计算正确的是( )A.B. −C. D. 2÷=4. 下列各组数为勾股数的是( ) A. 61213,, B. 51213,, C. 81516,,D. 347,, 5. 为响应“双减”政策,进一步落实“立德树人、五育并举”的思想主张,深圳某学校积极推进学生综合素质评价改革,小芳在本学期德、智、体、美、劳的评价得分如图所示,其各项的得分分别为9,8,10,8,7,则该同学这五项评价得分的众数,中位数,平均数分别为( )A. 8,8,8B. 7,8,7.8C. 8,8,8.7D. 8,8,8.46. 《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问:几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问:多久后甲、乙相逢?设甲出发x 日,乙出发y 日后甲、乙相逢,则所列方程组正确的是( ) A. 211175x y x y −= += B. 211175x y x y += += C. 211157x y x y −= += D. 211157x y x y += += 7. 已知点()11,y −,()23,y 在一次函数31y x =−的图象上,则1y ,2y 的大小关系是( ) A. 12y y <B. 12y y =C. 12y y >D. 不能确定 8. 关于一次函数122y x =+,下列结论正确的是( ) A 图象不经过第二象限B. 图象与x 轴的交点是()0,2C. 将一次函数122y x =+图象向上平移1个单位长度后,所得图象的函数表达式为132y x =+ D. 点()11,x y 和()22,x y 在一次函数122y x =+的图象上,若12x x <,则12y y > 第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.比较大小: ______4−.10. 若3x >=________. 11. 在某次赛制为“12进4”且当场公布分数的舞蹈比赛中,小华所在的队伍当第10支队伍分数公布后仍排名第二而欢呼,请问她们判定自己已进入下一轮比赛的依据与________(从平均数、众数、中位数、方差中选择)有关..的12. 已知一次函数4(0)y kx k =+≠和3y x b =−+的图象交于点()3,2A −,则关于x ,y 的二元一次方程组43y kx y x b =+ =−+ 的解是________. 13. 如图,在ABC 中,按以下步骤作图:①以点C 为圆心,任意长为半径作弧,分别交AC ,BC 于点D 和E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;③作射线CF 交AB 于点H ;④过点H 作GH BC ∥交AC 于点G ,若40BCH ∠=°,则CGH ∠的度数是________.三、解答题(本大题共6个小题,共48分,解答过程写在答题卡上)14. (10|2|(2024)π−−+;(2)计算:22)1)−+−−;15. 解方程组(1)解方程组32725x y x y −= +=; (2)解方程组222312y x x y −= +=. 16. 如图,DE AC ⊥,AGF ABC ∠=∠,35BFG ∠=°,145EDB ∠=°.(1)试判断BF 与AC 的位置关系,并说明理由;(2)若GF GB =,求A ∠的度数.17. 漏刻是中国古代的一种计时工具.中国最早的漏刻出现在夏朝时期,在宋朝时期,中国漏刻的发展达到了巅峰,其精确度和稳定性得到了极大的提高.漏刻的工作原理是利用均匀水流导致的水位变化来显示时间.水从上面漏壶源源不断地补充给下面的漏壶,再均匀地流入最下方的箭壶,使得壶中有刻度的小棍匀速升高,从而取得比较精确的时刻.某学习小组复制了一个漏刻模型,研究中发现小棍露出的部分y (厘米)是时间x (分钟)的一次函数,且当时间0x =分钟时,2y =厘米.表中是小明记录的部分数据,其中有一个y 的值记录错误. x (分钟) …… 10 20 30 40y (厘米) …… 2.6 3.2 3.6 4.4(1)你认为y 的值记录错误的数据是________;(2)利用正确的数据确定函数表达式;(3)当小棍露出部分为8厘米时,对应时间为多少?18. 如图,在平面直角坐标系中,直线36y x =+与x 轴,y 轴分别交于点A ,C ,经过点C 的直线与x 轴交于点B ,45CBO ∠=°.(1)求直线BC 的解析式;(2)点G 是线段BC 上一动点,若直线AG 把ABC 的面积分成1:2的两部分,请求点G 的坐标; (3)已知D 为AC 的中点,点P 是x 轴上一点,当BDP △是等腰三角形时,求出点P 的坐标.的B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19. 若一次函数37y x =−的图象过点m n (,),则32n m +=-_________. 20. 有一块直角三角形纸片,两直角边分别为:6cm AC =,8cm BC =,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,CD =______cm .21. 剪纸是各种民俗活动重要组成部分,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,将其放在平面直角坐标系中,其中点E 坐标是()2,3−,现将图形进行变换,第一次关于y 轴对称,第二次关于x 轴对称,第三次关于y 轴对称,第四次关于x 轴对称,以此类推……,则经过第2023次变换后点E 的对应点的坐标为________22. 若关于x ,y 的方程组452x y ax by −= +=和398x y bx ay += += 的解相同,则a b +=________. 23. 如图,在ABC 中,90BAC ∠=°,AB AC =,D 为ABC 外一点,连接AD ,BD ,CD ,发现4=AD ,2CD =且=45ADC ∠°,则BD =______.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24. 随着新能源电动车的逐渐普及,人们在购车时经常会面临一个问题:应该选择传统燃油车还是新能源电动车呢?某校的项目式学习小组开展了《选电动车还是燃油车呢?》的研究,发现用车费用包含购车费用和耗能费用,其中A 型电动车每百公里耗电15度电,每度电0.6元,B 型燃油车每百公里耗油8L,每升的油8块钱.(1)根据提供信息,填写下列表格:购车费用(万元) 每公里耗能费用(元)A 型电动车13.5 ________B 型燃油车8 ________(2)分别求出A 型电动车1y (万元),B 型燃油车用车费用2y (万元)与行驶公里数x (万公里)之间的函数关系式;在同一坐标系中画出1y ,2y 的草图并给出你的选择结论;(3)小明爸爸计划购买一辆A 型电动车进行网约车工作,相关法律规定网约车限制经营年限为8年或行驶公里数不超过60万公里.于是项目组同学继续调查:网约车每年平均行程10万公里,A 型电动车每年还需要保险费5000元,每1万公里保养费120元.请你帮小明爸爸计算购买A 型电动车进行网约车工作共需投入多少费用.25. 【基础模型】如图,等腰直角三角形ABC 中90ACB ∠=°,CB CA =,直线ED 经过点C ,过点A 作AD ED ⊥于点D ,过点B 作BE ED ⊥于点E ,易证明BEC CDA △△≌,我们将这个模型称为“K 形图”.【模型应用】(1)如图1所示,已知()0,3B ,()2,0C ,连接BC ,以BC 为直角边,点C 为直角顶点作等腰直角三角形ABC ,点A 在第一象限,则点A 的坐标为________;的【模型构建】(2)如图2,在平面直角坐标系中,直线24y x =+与x 轴,y 轴分别交于点A ,B ,BC AB ⊥交x 轴于点C .①请求出直线BC ②P 为x 轴上一点,连接BP ,若45ABP ∠=°,求P 坐标. 26. 在Rt ABC △中,90ACB ∠=°,点D 为边AB 上的动点,连接CD ,将ACD 沿直线CD 翻折,得到对应的A CD ′△,CA ′与AB 所在的直线交于点E .(1)如图1,当A D AD ′⊥时,求证:CE CB =; (2)若30A ∠=°,2BC =. ①如图2,当E 与B 重合时,求AD 的长; ②连接A B ′,当A BD ′ 是以BD 为直角边的直角三角形时,求AD 的长.。
八年级(上)期末数学试卷(附答案解析)
八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.下面四个交通标志图中为轴对称图形的是()A.B.C.D.2.使分式有意义的x的取值范围为()A.x>0 B.x≠﹣1 C.x≠1 D.任意实数3.下列计算正确的是()A.3a×2b=5ab B.﹣a2×a=﹣a2C.(﹣x)9÷(﹣x)3=x3D.(﹣2a3)2=4a6 4.已知△ABC中,AB=7,BC=4,那么边长AC的长不可能是()A.11 B.9 C.7 D.45.若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形7.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.4 D.58.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°9.如图,在等边三角形ABC中,BC边上的高AD=6,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,存在EB+EF的最小值,则这个最小值是()A.5 B.6 C.7 D.810.A、B两地相距80km,已知乙的速度是甲的1.5倍,甲先由A去B,1小时后,乙再从A地出发去追甲,追到B地时,甲已早到20分钟,则甲的速度为()A.40km/h B.45km/h C.50km/h D.60km/h二、填空题(每小题3分,共24分)11.计算:(π﹣2)0=.12.多项式3x2﹣6x的公因式为.13.若a2﹣b2=,a﹣b=,则a+b的值为.14.如图,已知△ABC的周长为27cm,AC=9cm,BC边上中线AD=6cm,△ABD 周长为19cm,AB=.15.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后来客户要求提前5天交货,为保证按时完成任务,则每天应多做件.16.已知关于x的分式方程的解是非负数,则m的取值范围是.17.若m为正实数,且m2﹣m﹣1=0,则m2+=.18.如图,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,B′为AC延长线上一点,A′是B′B延长线上一点,且△A′B′C≌△ABC,则∠BCA′:∠BCB′=.三、解答题(共66分)19.分解因式:(1)4a2﹣36(2)(x﹣2y)2+8xy.20.先化简,再求值:÷(x+1+),其中x=2018.21.解方程:(1)﹣=1(2)=﹣1.22.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AB=DE.23.如图,已知△ABC的三个顶点的坐标为A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).(1)请在图中作出△ABC关于y轴对称的△A′B′C′;(2)分别写出点A′、B′、C′的坐标.24.2015年5月,某县突降暴雨,造成山林滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区,现有甲、乙两种货车,乙知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用的车辆与乙车货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两辆汽车各有多少辆?25.如图,△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°,(1)当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;(3)当D点在如图的位置时,直接写出DA,DC,DB的数量关系,不必证明.26.在平面直角坐标系中,点A(0,a)、B(b,0)且a>|b|.(1)若a、b满足a2+b2﹣8a﹣4b+20=0.①求a、b的值;②如图1,在①的条件下,第一象限内以AB为斜边作等腰Rt△ABC,请求四边形AOBC的面积S;(2)如图2,若将线段AB沿x轴向正方向移动a个单位得到线段DE(D对应A,E对应B)连接DO,作EF⊥DO于F,连接AF、BF,判断AF与BF的关系,并说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.下面四个交通标志图中为轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选B.2.使分式有意义的x的取值范围为()A.x>0 B.x≠﹣1 C.x≠1 D.任意实数【考点】62:分式有意义的条件.【分析】直接利用分式有意义则分母不为零,进而得出答案.【解答】解:要使分式有意义,则x﹣1≠0,解得:x≠1.故选:C.3.下列计算正确的是()A.3a×2b=5ab B.﹣a2×a=﹣a2C.(﹣x)9÷(﹣x)3=x3D.(﹣2a3)2=4a6【考点】49:单项式乘单项式;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据单项式的乘法,同底数幂的除法,积的乘方,可得答案.【解答】解:A、3a×2b=6ab,故A不符合题意;B、﹣a2×a=﹣a3,故B不符合题意;C、(﹣x)9÷(﹣x)3=(﹣x)3,故C不符合题意;D、积的乘方等于乘方的积,故D符合题意;故选:D.4.已知△ABC中,AB=7,BC=4,那么边长AC的长不可能是()A.11 B.9 C.7 D.4【考点】K6:三角形三边关系.【分析】根据三角形的三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边可得AC的取值范围,即可求解.【解答】解:根据三角形的三边关系定理可得:7﹣4<AC<7+4,即3<AC<11,故选:A.5.若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°【考点】KH:等腰三角形的性质.【分析】根据等腰三角形的性质和三角形内角和定理可直接求出其底角的度数.【解答】解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:D.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及多边形的外角和等于360°列方程求出边数,从而得解.【解答】解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选C.7.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.4 D.5【考点】KA:全等三角形的性质.【分析】根据全等三角形的对应边相等解答即可.【解答】解:∵△ABE≌△ACF,∴AC=AB=5,∴EC=AC﹣AE=3,故选:B.8.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【考点】KB:全等三角形的判定.【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.9.如图,在等边三角形ABC中,BC边上的高AD=6,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,存在EB+EF的最小值,则这个最小值是()A.5 B.6 C.7 D.8【考点】PA:轴对称﹣最短路线问题;KK:等边三角形的性质.【分析】先连接CF,再根据EB=EC,将FE+EB转化为FE+CE,最后根据两点之间线段最短,求得CF的长,即为FE+EB的最小值.【解答】解:连接CF,∵等边△ABC中,AD是BC边上的中线∴AD是BC边上的高线,即AD垂直平分BC∴EB=EC,当B、F、E三点共线时,EF+EC=EF+BE=CF,∵等边△ABC中,F是AB边的中点,∴AD=CF=6,∴EF+BE的最小值为6,故选B10.A、B两地相距80km,已知乙的速度是甲的1.5倍,甲先由A去B,1小时后,乙再从A地出发去追甲,追到B地时,甲已早到20分钟,则甲的速度为()A.40km/h B.45km/h C.50km/h D.60km/h【考点】B7:分式方程的应用.【分析】设甲的速度是x千米/小时,B的速度是1.5x千米/小时,根据甲、乙行使相等距离而时间不同可列分式方程求解.【解答】解:设甲的速度是x千米/小时,B的速度是1.5x千米/小时,﹣1+=,x=40,经检验x=40是分式方程的解.答:甲的速度40千米/小时.二、填空题(每小题3分,共24分)11.计算:(π﹣2)0=1.【考点】6E:零指数幂.【分析】根据非零的零次幂等于,可得答案.【解答】解:(π﹣2)0=1,故答案为:1.12.多项式3x2﹣6x的公因式为3x.【考点】52:公因式.【分析】根据因式分解,可得答案.【解答】解:3x2﹣6x=3x(x﹣2),公因式是3x,故答案为:3x.13.若a2﹣b2=,a﹣b=,则a+b的值为.【考点】4F:平方差公式.【分析】已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.【解答】解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案为:.14.如图,已知△ABC的周长为27cm,AC=9cm,BC边上中线AD=6cm,△ABD 周长为19cm,AB=8cm.【考点】K2:三角形的角平分线、中线和高.【分析】设AB=xcm,BD=ycm,由三角形中线的定义得到BC=2BD=2ycm,再根据△ABC的周长为27cm,△ABD周长为19cm列出关于x、y方程组,解方程组即可.【解答】解:设AB=xcm,BD=ycm,∵AD是BC边的中线,∴BC=2BD=2ycm.由题意得,解得,所以AB=8cm.故答案为8cm.15.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后来客户要求提前5天交货,为保证按时完成任务,则每天应多做24件.【考点】B7:分式方程的应用.【分析】设每天应多做x件.根据实际所用的时间比原计划所用的时间提前5天列方程求解.【解答】解:设每天应多做x件,则依题意得:﹣=5,解得:x=24.经检验x=24是方程的根,答:每天应多做24件,故答案为24.16.已知关于x的分式方程的解是非负数,则m的取值范围是m ≥2且m≠3.【考点】B2:分式方程的解;C6:解一元一次不等式.【分析】解出分式方程,根据解是非负数求出m的取值范围,再根据x=1是分式方程的增根,求出此时m的值,得到答案.【解答】解:去分母得,m﹣3=x﹣1,解得x=m﹣2,由题意得,m﹣2≥0,解得,m≥2,x=1是分式方程的增根,所有当x=1时,方程无解,即m≠3,所以m的取值范围是m≥2且m≠3.故答案为:m≥2且m≠3.17.若m为正实数,且m2﹣m﹣1=0,则m2+=3.【考点】4C:完全平方公式.【分析】在m2﹣m﹣1=0同时除以m,得到,然后利用完全平方公式展开整理即可得解.【解答】解:在m2﹣m﹣1=0同时除以m,得:m﹣1﹣=0∴,=3,故答案为:3.18.如图,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,B′为AC延长线上一点,A′是B′B延长线上一点,且△A′B′C≌△ABC,则∠BCA′:∠BCB′=1:4.【考点】KA:全等三角形的性质.【分析】根据三角形的内角和定理分别求出,∠A、∠ABC、∠ACB,再根据全等三角形对应角相等求出∠B′,∠A′CB′,全等三角形对应边相等可得BC=B′C,再求出∠BC A′,∠BC B′,然后相比即可.【解答】解:∵∠A:∠ABC:∠ACB=3:5:10,∴∠A=30°,∠ABC=50°,∠ACB=100°,∵△A′B′C≌△ABC,∴∠B′=∠B=50°,∠A′CB′=∠C=100°,BC=B′C,∴∠BC B′=180°﹣2×50°=80°,∠BC A′=100°﹣80°=20°,∴∠BC A′:∠BC B′=1:4.故答案为:1:4三、解答题(共66分)19.分解因式:(1)4a2﹣36(2)(x﹣2y)2+8xy.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式提取4,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答】解:(1)原式=4(a2﹣9)=4(a+3)(a﹣3);(2)原式=x2﹣4xy+4y2+8xy=x2+4xy+4y2=(x+2y)2.20.先化简,再求值:÷(x+1+),其中x=2018.【考点】6D:分式的化简求值.【分析】根据分式的混合运算顺序和法则化简原式,再将x的值代入即可得.【解答】解:原式=÷(+)=•=,当x=2018时,原式=.21.解方程:(1)﹣=1(2)=﹣1.【考点】B3:解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2﹣2x+2=x2﹣x,移项合并得:﹣x=﹣2,解得:x=2,经检验x=2是分式方程的解;(2)去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.22.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AB=DE.【考点】KD:全等三角形的判定与性质.【分析】先证明BC=EF,然后依据AAS证明△ABC≌△DEF,最后依据全等三角形的性质进行证明即可.【解答】证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF.∴AB=DE.23.如图,已知△ABC的三个顶点的坐标为A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).(1)请在图中作出△ABC关于y轴对称的△A′B′C′;(2)分别写出点A′、B′、C′的坐标.【考点】P7:作图﹣轴对称变换.【分析】(1)直接利用关于y轴对称点的性质得出答案;(2)利用(1)中图形得出各点坐标.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)A′(1,2)、B′(4,1)、C′(2,﹣2).24.2015年5月,某县突降暴雨,造成山林滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区,现有甲、乙两种货车,乙知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用的车辆与乙车货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两辆汽车各有多少辆?【考点】B7:分式方程的应用;9A:二元一次方程组的应用.【分析】(1)可设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,根据等量关系:①甲种货车比乙种货车每辆车多装20件帐篷;②甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等;列出方程组求解即可;(2)可设甲种汽车有z辆,乙种汽车有(16﹣z)辆,根据等量关系:这批帐篷有1490件,列出方程求解即可.【解答】解:(1)设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,依题意有,解得,经检验,是原方程组的解.故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬;(2)设甲种汽车有z辆,乙种汽车有(16﹣z)辆,依题意有100z+80(16﹣z﹣1)+50=1490,解得z=12,16﹣z=16﹣12=4.故甲种汽车有12辆,乙种汽车有4辆.25.如图,△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°,(1)当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;(3)当D点在如图的位置时,直接写出DA,DC,DB的数量关系,不必证明.【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【分析】(1)根据线段垂直平分线和等边三角形的性质可得AD=DC,∠ABD=30°,再由正弦定理可以证明DA+DC=DB;(2)延长DA到E,使得∠EBD=60,由已知可知△EBD是一个等边三角形,再证明△EBD≌△CBD,得出EA=DC,从而证明BD=ED=EA+AD=DC+AD;(3)可直接得DA,DC,DB的数量关系.【解答】证明:(1)点D只能在AC的下边,容易得到BD是AC的中垂线,因此AD=DC,∠ABD=30°,在三角形内由正弦定理可以得到=,可以很快得到BD=2AD=AD+AC;(2)延长DA到E,使得ED=BD,又因为∠ADB=60°因此△EBD是一个等边三角形,所以BE=ED=BD,∠EBD=60°,又因为△ABC是等边三角形,所以AB=BC,∠ABC=60°,所以∠EBA=∠DBC,在△EBA与△DBC中,因为,所以△ABE≌△CBD(SAS),因此EA=DC,所以BD=ED=EA+AD=DC+AD;(3)DC<DA+DB.26.在平面直角坐标系中,点A(0,a)、B(b,0)且a>|b|.(1)若a、b满足a2+b2﹣8a﹣4b+20=0.①求a、b的值;②如图1,在①的条件下,第一象限内以AB为斜边作等腰Rt△ABC,请求四边形AOBC的面积S;(2)如图2,若将线段AB沿x轴向正方向移动a个单位得到线段DE(D对应A,E对应B)连接DO,作EF⊥DO于F,连接AF、BF,判断AF与BF的关系,并说明理由.【考点】KY:三角形综合题.【分析】(1)①根据非负数的性质列出算式,求出a、b的值;②根据等腰直角三角形的性质求出AC、BC,根据三角形的面积公式计算即可;(2)作FG⊥y轴,FH⊥x轴垂足分别为G、H,证明四边形FHOG是正方形,得到OG=FH,∠GFH=90°,证明△AFG≌△BFH,根据全等三角形的性质计算即可.【解答】解:(1)①∵a2+b2﹣8a﹣4b+20=0,∴(a﹣4)2+(b﹣2)2=0,∴a=4,b=2;②∵A(0,4),B(2,0),∴AB==2,∵△ABC是等腰直角三角形,∴AC=BC=,∴四边形AOBC的面积S=×OA×OB+×AC×BC=4+5=9;(2)结论:FA=FB,FA⊥FB,理由如下:如图2,作FG⊥y轴,FH⊥x轴垂足分别为G、H,∵A(0,a)向右平移a个单位到D,∴点D坐标为(a,a),点E坐标为(a+b,0),∴∠DOE=45°,∵EF⊥OD,∴∠OFE=90°,∠FOE=∠FEO=45°,∴FO=EF,∴FH=OH=HE=(a+b),∴点F坐标为(,),∴FG=FH,四边形FHOG是正方形,∴OG=FH=,∠GFH=90°,∴AG=AO﹣OG=a﹣=,BH=OH﹣OB=﹣b=,∴AG=BH,在△AFG和△BFH中,,∴△AFG≌△BFH,∴FA=FB,∠AFG=∠BFH,∴∠AFB=∠AFG+∠BFG=∠BFH+∠BFG=90°,∴FA=FB,FA⊥FB.第21页(共21页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学(上)期末试题(A )(满分150分,时间120分钟) 姓名:一.认真选一选(每小题4分,共48分)1生物学家发现一种病毒的长度约为0.0000043 mm ,用科学记数法表示这个数为( ) A .4.3×10-6 B .4.3×10-5 C .4.3×10 -4 D .43×106 2、小马虎在下面的计算中只作对了一道题,他做对的题目是 ( ) A 、x 3·x 3=x 6 B 、3x 2÷2x=x C 、(x 2)3=x 5 D 、(x+y 2)2=x 2+y 4 3、下列汽车标志中,是轴对称图形且有两条对称轴的是( )A .B .C .D .4.如图,把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( ) A 、115° B 、120° C 、145° D 、135° 5已知m 6x =,3nx =,则2m nx-的值为( )。
A 、9 B 、43 C 、12 D 、346.如图∠B=∠D=90°,BC=CD ,∠1=40°,则∠2=( )A 、40° B 、50° C 、45° D 、60° 7、以下各命题中,正确的命题是( )(1)等腰三角形的一边长4 cm ,一边长9 cm ,则它的周长为17 cm 或22 cm ;(2)三角形的一个外角,等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等;(4)等边三角形是轴对称图形;(5)三角形的一个外角平行线平行于三角形的一边,那么这个三角形是等腰三角形. (A )(1)(2)(3) (B )(1)(3)(5) (C )(2)(4)(5) (D )(4)(5) 8、如图所示,已知△ABC 中,∠BAC =90°,AB =AC ,∠BAD =30°,AD =AE ,则∠EDC 的度数为( )A 、10° B 、15° C 、20° D 、30°9、如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P ,2P 交OA于M ,交OB 于N ,若1P 2P =6,则△PMN 的周长为( )A 、4B 、5C 、6D 、710、把分式方程2x x -+2 =12x- 化为整式方程得( ) A .x+2=-1 B .x+2(x-2)=1; C .x+2(x-2)=-1 D .x+2=111、在平面直角坐标系xOy 中,已知点A (2,-2),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 有( ) A .1个 B .2个 C .3个 D .4个12、綦江区古南中学群文阅读,赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中, 列正确的是( )。
A 、1421140140=-+x x B 、1421140140=++x x C 、1211010=++x x D 、1421280280=++x x 二、细心填一填(简洁的结果,表达的是你敏锐的思维,需要的是细心!24分) 13 、计算:=⋅-)43()8(2b a ab 。
14、分解因式:⑴ 2a 2-2= ⑵ 32296y y x xy -+=15、要使()()22321ax xxx ---的展开式中不含3x 项,则a = .16、已知a 2-6a+9与│b-1│互为相反数,则式子(a b -ba)÷(a+b )的值为_____. 17、若关于x 的方程k 3+=1x -11-x的解为正数,则k 的取值范围是 18、观察以下等式:32﹣12=8,52﹣32=16,72﹣52=24,92﹣72=32,……按以上规律,可以得出第n(n 为正整数)个等式为 .三、解答题(本大题共两小题,每小题7分,共14分) 19、 计算: 4)2014()21(2022015)1(+-⨯-+----π 20、解分式方程:12322xx x=+-- 四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必的演算过程或推理步骤21、如图,已知△ABC 的三个顶点分别为A (2,3)、B (3,1)、C (-2,-2)。
(1)请在图中作出△ABC 关于直线x=-1的轴对称图形△DEF (A 、B 、C 的对应点分别是D 、E 、F ),并直接写出D 、E 、F 的坐标. (2)求四边形ABED 的面积.4题图6题图8题图9题图CD A FEBG22、已知 : 3,4==+ab b a 。
利用乘法公式计算:①22b a +的值;②b a -的值23、先化简,再求值: ()a a a a a a a a -+--++÷-+221444222,其中a 满足:0322=-+a a24、如图,△ABC 中,AC >AB ,D 是BA 延长线上一点,点E 是∠CAD 平分线上一点, EB =EC 过点E 作EF ⊥AC 于F ,EG ⊥AD 于G 。
⑴、请你在不添加辅助线的情况下找出一对你认为全等的三角形,并加以证明。
⑵、求证:AG =AF 、CF =GB⑶、若AB =3,AC =5,求AF 的长。
五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25、列方程解应用题: 通惠新城开发某工程准备招标,指挥部先接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成。
(1)求甲、乙两队单独完成这项工程各需要多少天? (2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元。
为缩短工期,拟安排甲乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由。
26.如图,已知△ABC 中,AB=AC= 10厘米,BC=8厘米,点D 为AB 的中点。
如果点P 在线段BC 上以3厘米/秒的速度由点B 向点C 运动,同时,点Q 在线段CA 上由C 点向A 点运动。
①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能使△BPD 与△CQP 全等?若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?八年级数学(上)期末试题答题卷(A )(满分150分,时间120分钟) 姓名:一.认真选一选(每小题4分,共48分)二、细心填一填(简洁的结果,表达的是你敏锐的思维,需要的是细心!24分) 13.________________________ 14. ________________,________________ 15.________________________ 16. _____________________________ 17.________________________ 18. _____________________________ 三、解答题(本大题共两小题,每小题7分,共14分) 19、 计算: 4)2014()21(2022015)1(+-⨯-+----π20、解分式方程:12322xx x=+--四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤21、如图,已知△ABC 的三个顶点分别为A (2,3)、B (3,1)、C (-2,-2)。
(1)请在图中作出△ABC 关于直线x=-1的轴对称图形△DEF (A 、B 、C 的对应点分别是D 、E 、F ),并直接写出D 、E 、F 的坐标. (2)求四边形ABED 的面积.22、已知 : 3,4==+ab b a 。
利用乘法公式计算:①22b a +的值;②b a -的值23、先化简,再求值: ()a a a a a a a a -+--++÷-+221444222,其中a 满足:0322=-+a aCD A FEG24、如图,△ABC 中,AC >AB ,D 是BA 延长线上一点,点E 是∠CAD 平分线上一点, EB =EC 过点E 作EF ⊥AC 于F ,EG ⊥AD 于G 。
⑴、请你在不添加辅助线的情况下找出一对你认为全等的三角形,并加以证明。
⑵、求证:AG =AF 、CF =GB⑶、若AB =3,AC =5,求AF 的长。
五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25、列方程解应用题通惠新城开发某工程准备招标,指挥部先接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成。
(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元。
为缩短工期,拟安排甲乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由。
26.如图,已知△ABC 中,AB=AC= 10厘米,BC=8厘米,点D 为AB 的中点。
(1)如果点P 在线段BC 上以3厘米/秒的速度由点B 向点C 运动,同时,点Q 在线段CA 上由C 点向A 点运动。
①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在 △ABC 的哪条边上相遇?。