电力电子实验指导书
电力电子技术实验指导书

实验一单相半波可控整流电路实验一、实验目的(1)掌握单结晶体管触发电路的调试步骤和方法。
(2)掌握单相半波可控整流电路在电阻负载时的工作。
二、实验所需挂件及附件三、实验线路及原理将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。
二极管VD1和开关S1均在DJK06挂件上,电感Ld在DJK02面板上,有100mH、200mH、700mH三档可供选择,本实验中选用700mH。
直流电压表及直流电流表从DJK02挂件上得到。
四、实验内容(1)单结晶体管触发电路的调试。
(2)单结晶体管触发电路各点电压波形的观察并记录。
(3)单相半波整流电路带电阻性负载时Ud/U2= f(α)特性的测定。
五、预习要求(1)阅读电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。
(2)复习单相半波可控整流电路的有关内容,掌握单相半波可控整流电路接电阻性负载时的工作波形。
(3)掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。
六、思考题(1)单结晶体管触发电路的振荡频率与电路中电容C1 的数值有什么关系?(2)单相半波可控整流电路接电感性负载时会出现什么现象?如何解决?七、实验方法(1)单结晶体管触发电路的调试将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。
调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30°~170范围内移动?图1-1 单相半波可控整流电路(2)单相半波可控整流电路接电阻性负载触发电路调试正常后,按图1-1电路图接线。
电力电子实验指导书--

电力电子学实验指导书河北科技师范学院欧美学院机电系第一章挂箱介绍和使用说明一.MCL一31面板MCL一31由G(给定),零速封锁器(DZS),速度变换器(FBS)。
转速调节器(ASR),电流调节器(ACR)、仪表组成,1.G(给定):原理图如图1—1。
它的作用是得到下列几个阶跃的给定信号:(1)0V突跳到正电压,正电压突跳到0V;(2)0V突跳到负电压,负电压突跳到0V;(3)正电压突跳到负电压,负电压突跳到正电压。
正负电压可分别由RP1、RP2两多圈电位器调节大小(调节范围为0—±13V左右)。
数值由面板右边的数显窗读出。
只要依次扳动S1、S2的不同位置即能达到上述要求。
(1)若S1放在“正给定”位,扳动S2由“零”位到“给定”位即能获得0V突跳到正电压的信号,再由“给定”位板到“零”位能获得正电压到0V的突跳;(2)若S1放在“负给定”位,扳动S2,能得到0V到负电压及负电压到0V的突跳;(3)S2放在“给定”位,扳动S1,能得到正电压到负电压及负电压到正电压的突跳。
由脉冲控制及移相、双脉冲观察孔、一组可控硅、二组可控硅及二极管、RC吸收回路、平波电抗器L组成。
1.脉冲控制及移相:本实验台输出相位差为60O,经过调制的“双窄”脉冲(调制频率大约为3-10kHz),触发脉冲分别由两路功放进行放大,分别由U b1r和U blf进行控制。
当U blf接地时,第一组脉冲放大电路进行放大。
当U b1r接地时,第二组脉冲放大电路进行工作,脉冲移相由U ct端的输入电压进行控制,当U Ct端输入正信号时,脉冲前移,U Ct 端输入负信号时,脉冲后移,移相范围为10O~160O。
偏移电压调节电位器RP调节脉冲的初始相位,不同的实验初始相位要求不一样。
2.双脉冲及同步电压观察孔。
双脉冲观察孔输出经过调制的双脉冲。
同步电压观察孔输出相电压为30V左右的同步电压,用双踪示波器分别观察同步电压和双脉冲,可比较双脉冲的相位。
电力电子技术实训指导书

实验一单结晶体管触发电路实验一、实验目的1 熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。
2 掌握单结晶体管触发电路的调试步骤和方法。
二、实验所需挂件及附件利用单结晶体管(又称双基极二极管)的负阻特性和RC的充放电特性,可组成频率可调的自激振荡电路,如图3-1所示。
图中V6为单结晶体管,其常用的型号有BT33和BT35两种,由等效电阻V5和C1组成组成RC充电回路,由C1-V6-脉冲变压器组成电容放电回路,调节RP1即可改变C1充电回路中的等效电阻。
图3-1 单结晶体管触发电路原理图工作原理简述如下:由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再由稳压管V1、V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压UP时,单结晶体管V6导通,电容通过脉冲变压器原边放电,脉冲变压器副边输出脉冲。
同时由于放电时间常数很小,C1两端的电压很快下降到单结晶体管的谷点电压Uv,使V6关断,C1再次充电,周而复始,在电容C1两端呈现锯齿波形,在脉冲变压器副边输出尖脉冲。
在一个梯形波周期内,V6可能导通、关断多次,但只有输出的第一个触发脉冲对晶闸管的触发时刻起作用。
充电时间常数由电容C1和等效电阻等决定,调节RP1改变C1的充电的时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。
单结晶体管触发电路的各点波形如图3-2所示。
电位器RP1已装在面板上,同步信号已在内部接好,所有的测试信号都在面板上引出。
图3-2 单结晶体管触发电路各点的电压波形(α=90º)四、实验内容1 单结晶体管触发电路的调试。
2 单结晶体管触发电路各点电压波形的观察。
五、预习要求阅读本教材1-3节及电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。
六、思考题1 单结晶体管触发电路的振荡频率与电路中C1的数值有什么关系?2 单结晶体管触发电路的移相范围能否达到180°?七、实验方法1 单结晶体管触发电路的观测。
电力电子实验指导书

实验一 三相桥式全控整流及有源逆变电路实验一.实验目的1.掌握三相桥式全控整流电路的工作原理及波形。
2.掌握三相桥式有源逆变的工作原理及波形。
二.实验内容1.三相桥式全控整流电路及不同触发角时的各点波形。
2.三相桥式有源逆变电路及不同逆变角时的各点波形。
三.实验线路及原理实验线路如图1-1所示。
主电路由三相全控变流电路及作为逆变直流电源的三相不控整流桥组成。
触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。
三相桥式有源逆变电路的工作原理可参见“电力电子技术”的有关教材。
四.实验设备及仪器1.MCL 系列教学实验台主控制屏 2.MCL -31低压控制电路及仪表组件 3.MCL -33触发电路及晶闸管主电路组件 4.MEL -03三相可调电阻器 5.二踪示波器 6.万用表五.实验方法1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。
(1)打开电源开关(钥匙开关),但不合主电源开关。
(2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。
(3)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1” 脉冲超前“2” 脉冲600,则相序正确,否则,应调整输入电源。
注:将面板上的U blf (当三相桥式全控变流电路使用I 组桥晶闸管VT1~VT6时)接地,将I 组桥式触发脉冲的六个开关均拨到“接通”。
(4)将给定器输出U g 接至MCL-33面板的U ct 端,调节偏移电压U b ,在U ct =0时,使α=150o 。
2.三相桥式全控整流电路按图1-1接线,S 拨向左边短接线端,将Rd 调至最大(450Ω),然后合上主电源。
调节Uct ,使α在30o~90o范围内,用示波器观察记录α=30O、60O、90O时,整流电压u d =f (t ),晶闸管两端电压u VT =f (t )的波形,并记录相应的Ud 和交流输入电压U 2数值。
αcos 35.12U U d =(其中2U 为线电压)3.三相桥式有源逆变电路按图1-1调整接线,R d 调至最大,确认无误后合上主电源。
(整理)电力电子实验指导书完全版

电力电子技术实验指导书目录实验一单相半波可控整流电路实验 (1)实验二三相桥式全控整流电路实验 (4)实验三单相交流调压电路实验 (7)实验四三相交流调压电路实验 (9)实验装置及控制组件介绍 (11)实验一单相半波可控整流电路实验一、实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用;2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析;3.了解续流二极管的作用;二、实验线路及原理熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。
将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。
图1-1 单结晶体管触发的单相半波可控整流电路三、实验内容1.单结晶体管触发电路的调试;2.单结晶体管触发电路各点电压波形的观察;=f(α)特性的测定;3.单相半波整流电路带电阻性负载时Ud/U24.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;四、实验设备1.电力电子实验台2.RTDL09实验箱3.RTDL08实验箱4.RTDL11实验箱5.RTDJ37实验箱6.示波器;7.万用表;五、预习要求1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱;2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,电路各部分的电压和电流波形;3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。
六、思考题1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决?七、实验方法1.单相半波可控整流电路接纯阻性负载调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形U VT,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、U VT,记录于下表1-1中。
波形,并测定直流输出电压Ud和电源电压U22.单结晶体管触发电路的调试RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。
电力电子实验指导书完全

电力电子技术实验指导书目录实验一单相半波可控整流电路实验 (1)实验二三相桥式全控整流电路实验 (4)实验三单相交流调压电路实验 (7)实验四三相交流调压电路实验 (9)实验装置及控制组件介绍 (11)实验一单相半波可控整流电路实验一、实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用;2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析;3.了解续流二极管的作用;二、实验线路及原理熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。
将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。
图1-1 单结晶体管触发的单相半波可控整流电路三、实验内容1.单结晶体管触发电路的调试;2.单结晶体管触发电路各点电压波形的观察;=f(α)特性的测定;3.单相半波整流电路带电阻性负载时Ud/U24.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;四、实验设备1.电力电子实验台2.RTDL09实验箱3.RTDL08实验箱4.RTDL11实验箱5.RTDJ37实验箱6.示波器;7.万用表;五、预习要求1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱;2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,电路各部分的电压和电流波形;3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。
六、思考题1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决?七、实验方法1.单相半波可控整流电路接纯阻性负载调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形UVT ,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、UVT波形,并测定直流输出电压Ud和电源电压U2,记录于下表1-1中。
2.单结晶体管触发电路的调试RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。
电力电子技术实验指导书最新版
电力电子技术实验指导书第一章概述一、电力电子技术实验内容与基本实验方法电力电子技术是20世纪后半叶诞生和发展的一门新技术,广泛应用于工业领域、交通运输、电力系统、通讯系统、计算机系统、能源系统及家电、科研领域。
电力电子技术课程既是一门技术基础课程,也是一门实用性很强的应用型课程,因此实验在教学中占有十分重要的位置。
电力电子技术实验课的主要内容为:电力电子器件的特性研究,重点是开关特性的研究;电力电子变换电路的研究,包括:三相桥式全控整流电路(AC/DC 变换)、SPWM逆变电路(DC/AC变换)、直流斩波电路(DC/DC变换)、单相交流调压电路(AC/AC变换)四大类基本变流电路。
电力电子技术实验借助于现代化的测试仪器与仪表,使学生在实验的同时熟悉各种仪器的使用,以进一步提高实验技能。
波形测试方法是电力电子技术实验中基本的、常用的实验方法,电力电子器件的开关特性依据波形测试而确定器件的工作状态及相应的参数;电力电子变换电路依据波形测试来分析电路中各种物理量的关系,确定电路的工作状态,判断各个器件的正常与否。
因此,掌握不同器件、不同电路的波形测试方法,可以使学生进一步掌握电力电子电路的工作原理以及工程实践的方法。
本讲义参考理论课的内容顺序编排而成,按照学生掌握知识的规律循序渐进,旨在加强学生实验基本技能的训练、实现方法的掌握;培养和提高学生的工程设计与应用能力。
由于编者水平有限,难免有疏漏之处,恳请各位读者提出批评与改进意见。
二、实验挂箱介绍与使用方法(一)MCL—07挂箱电力电子器件的特性及驱动电路MCL—07挂箱由GTR驱动电路、MOSFET驱动电路、IGBT驱动电路、PWM 发生器、主电路等部分组成。
1、GTR驱动电路:内含光电耦合器、比较器、贝克箝位电路、GTR功率器件、串并联缓冲电路、保护电路等。
可对光耦特性(延迟时间、上升时间、下降时间),贝克电路对GTR导通关断特性的影响,不同的串、并联电路对GTR开关特性的影响以及保护电路的工作原理进行分析和研究。
电力电子实验指导书
实验一三相半波整流电路研究一实验目的1 熟悉晶闸管触发电路的工作原理、接线和各元件的作用。
2 观察并并理解掌握三相半波可控整流电路在电阻负载和电感负载的作用情况。
3 理解续流二极管的作用二实验电路见图1三实验设备同步变压器220V/60V灯板滑动变阻器电抗器示波器万用表四实验内容及步骤1 断开S1,接上电阻负载后,再闭合S1。
当触发角为0°时观测u d i d u vt波形并记录。
2同理,当触发角为60°时观测u d i d u vt 波形并记录。
3接上电感负载观察触发角为60°时观测u d i d u vt 波形并记录。
4电阻负载共阴极接法触发角为60°时观测u d i d u v 波形并记录。
五 参考文献 六思考题对比三种负载在触发角为60°时电压、电流波形。
分析波形异同的原因。
电感负载,考虑两倍的安全裕量,如何确定晶闸管的额定电压和额定电流。
如果00=α,A 相的触发脉冲消失。
绘制电阻负载下整流电压d u 的波形,并对波形加以文字描述实验二单相半波可控整流电路研究一实验目的1 熟悉晶闸管触发电路的工作原理、接线和各元件的作用。
2 观察并并理解掌握单相半波可控整流电路在电阻负载和电感负载的作用情况。
3 理解续流二极管的作用二实验电路见图2三实验设备同步变压器220V/60V灯板滑动变阻器电抗器示波器万用表四实验内容及步骤1 断开S1,接上电阻负载后,再闭合S1。
当触发角为0°时观测u d i d u vt波形并记录。
2同理,当触发角为60°时观测u d i d u vt波形并记录。
3当触发角为90°时观测u d i d u vt波形并记录。
4 接上电感负载观察触发角为0°90°时观测u d i d u vt波形并记录。
5接上电感负载与续流二极管观察触发角为0°90°时观测u d i d u vt波形并记录。
电力电子技术实验指导书
实验一 功率场效应晶体管(MOSFET)特性与驱动电路研究一.实验目的:1.熟悉MOSFET 主要参数的测量方法 2.掌握MOSEET 对驱动电路的要求3.掌握一个实用驱动电路的工作原理与调试方法三.实验设备和仪器1. NMCL-07电力电子实验箱中的MOSFET 与PWM 波形发生器部分 2.双踪示波器3.安培表(实验箱自带)4.电压表(使用万用表的直流电压档)图2-2 MOSFET实验电路五.实验方法1.MOSFET主要参数测试(1)开启阀值电压V GS(th)测试开启阀值电压简称开启电压,是指器件流过一定量的漏极电流时(通常取漏极电流I D=1mA)的最小栅源极电压。
在主回路的“1”端与MOS 管的“25”端之间串入毫安表(箱上自带的数字安培表表头),测量漏极电流I D,将主回路的“3”与“4”端分别与MOS管的“24”与“23”相连,再在“24”与“23”端间接入电压表, 测量MOS管的栅源电压Vgs,并将主回路电位器RP左旋到底,使Vgs=0。
将电位器RP逐渐向右旋转,边旋转边监视毫安表的读数,当漏极电流I D=1mA时的栅源电压值即为开启阀值电压V GS(th)。
读取6—7组I D、Vgs,其中I D=1mA必测,填入下表中。
★注意mosfet刚开启时的漏极电流距离完全开通时的漏极电流相差很远,因此在1mA之后的四个点之间的距离需要取大一些,这样才能测量出较为完整的特性曲线。
此步骤所测得的特性曲线又称为mosfet的转移特性曲线,完整的转移特性曲线示意图如下所示(2)跨导g FS测试双极型晶体管(GTR)通常用h FE(β)表示其增益,功率MOSFET器件以跨导g FS表示其增益。
跨导的定义为漏极电流的小变化与相应的栅源电压小变化量之比,即g FS=△I D/△V GS。
★注意典型的跨导额定值是在1/2额定漏极电流和V DS=15V下测得,受条件限制,实验中只能测到1/5额定漏极电流值,因此重点是掌握跨导的测量及计算方法。
电力电子技术实验指导书V10.docx
电力电子技术实验装置简介................................................. -2 -电力电子技术实验的基本要求和安全操作说明 (6)第一章晶闸管部分 (8)实验一正弦波同步移相触发电路实验 (8)实验二锯齿波同步移相触发电路实验 (10)实验三单相半波整流电路实验 ............................................ -12 -实验四单相桥式半控整流电路实验 (75)实验五单相桥式全控整流及有源逆变电路实验 ........................... -18 -实验六三相半波可控整流电路实验 ...................................... -22 -实验七三相桥式半控整流电路实验 ...................................... -25 -实验八三相桥式全控整流及有源逆变电路实验 . (28)实验九单相并联逆变电路实验 (33)实验十单相交流调压电路的性能研究 (36)实验^一三相交流调压电路实验 (39)第二章全控型器件特性部分 (42)实验十二SCR、GTO、MOSFET、GTR、IGBT特性实验 (42)实验十三GTO、MOSFET、GTR、IGBT驱动与保护电路实验 (45)第三章控型器件典型线路部分 (48)实验十四单相交直交变频电路原理 (48)(单相正眩波脉宽调制(SPWM)逆变实验) (48)实验十五半桥型开关稳压电源的性能研究 (51)实验十八单相交流调功电路的性能研究 (65)电力电子技术实验装置简介一、概述:1、特点:1)实验装置采用挂件式结构,可根据不同的实验内容进行自由组合,故结构紧凑、使用方便灵活,并且可随着功能的扩展只需增加挂件即可.2)装置布局合理,外型美观,面板示意图明确、、清晰、直观,学生可通过面板的示意查寻故障,分析工作原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力电子技术实验指导书郑 州 轻 工 业 学 院电气工程实验中心2006年3月目录BZT—Ⅲ B型变流、交直流调速实验装置简介及实验操作注意事项 (2)实验一 单相半控桥可控整流电路的研究 (5)实验二 三相桥式全控整流电路的研究 (8)实验三 单相交流调压电路的研究 (13)实验四 IGBT直流斩波电路的研究 (17)实验五 DC/AC单相半桥SPWM逆变电路性能研究 (21)BZT—Ⅲ B型变流、交直流调速实验装置简介及实验操作注意事项一、概述BZT—Ⅲ B型变流、交直流调速实验装置是华中师范大学机电厂研制生产的教学实验设备,该装置功能齐全,结构可靠,采用模块化设计,移动组合方便,面板布局直观。
测试点用专门的接线端子引至面板,便于接线调试,测量及显示仪表全部采用三位半数显表。
该装置供电力电子变流技术实验和交直流调速实验,也可供学生课程设计、毕业设计和有关科研使用。
二、总体结构本装置外形尺寸为1550×800×780。
实验桌上带有滑轮导轨的三个抽屉,分别装有实验所需的交直流电源、变压器、开关、熔断器及各种保护电路。
各路交直流电源的输出端子都引到控制面板接线柱及台阶插座上,控制开关及可调旋纽也全部安装在面板上,并画有各个独立环节的电路原理图。
实验电路全部画在各个模块面板上,接线柱、电位器也安装在电路相应的位置上,测试孔位置清晰、直观,通过模块和电源等共同构成相应的实验系统。
三、主要技术指标(1)输入电源:三相四线 380V 50Hz(2)装置容量:10KVA(3)实验电源:提供(a)三项四线制 380V交流电源。
(b)直流可调电源0―250V、8A。
(c)直流可调电源0―230V、8A。
(d)单相220V工作电源。
(e)直流稳压电源5V,1A;±15V,1A;30V,500mA(4)绝缘电阻:>5MΩ(5)漏电保护:漏电动作电流≥30mΑ四、面板操作功能及操作方法(1)面板操作功能说明:1、漏电保护开关。
2、总电源开。
3、总电源关。
4、单相调压手柄。
5、三相电源(主电路)开。
6、三相电源(主电路)关。
7、三相电路指示灯。
8、三相电路输出指示灯。
9、交流0―300V数字显示表。
10、直流0―300V数字显示表。
11、工作220V电源插座。
12、交流380V/220V输出接线柱。
13、急停开关。
14、交流0―220V输出接线柱。
15、直流0―220V输出接线柱。
16、交直流可调电压输出开关。
17、保险座(保险丝为10A)。
18、直流40V数字显示表。
19、直流电压5V,±15V,30V输出台阶插座。
20、保险座(保险丝为2A)。
21、直流电压开关。
22、转换开关。
23、逆变变压器输入端子。
24、逆变变压器输出接线柱。
25、斩波变压器输出接线柱。
26、三相同步电压52V输出端子。
27、供实验主电路电源380V/220V输出接线柱。
28、输出U、V、W电源指示灯。
29、同步变压器引出端子。
(2)操作方法:投入电源后应注意以下各点。
1.将[1]的扳把向上扳起,[7]指示灯全亮,[11]有220V电源。
2.按下[2],[8]指示灯全亮,[12]有380V/220V电压。
3.打开[16],[9][10]显示为零,顺时针调节[3],[14][15]有电压输出,[9][10]有相应的显示。
4.打开[21],[19]有直流电压输出,转换[22],[18]有相应的显示。
5.按下[5],[28]指示灯全亮,[27]有380V/220V电压输出,[26]有三相52V同步电压输出。
6.按下[6],[28]指示灯灭,[26] ,[27]无输出电压。
7.关掉[21],[18]对应的输出与显示全无。
8.按下[13]或[16],[8]指示灯灭,[12]无输出电压。
9.将[1]扳把朝下,[7] 指示灯灭,[11]无输出电压。
五、实验操作注意事项(1)实验前一定要预习有关实验内容,了解实验目的、方法和要求,熟悉本装置电源电路图的工作原理及正确使用方法。
(2)实验电路接线应合理,导线粗细长短适当,自锁紧插件松紧适宜,保证接线良好。
(3)接完线后应仔细检查并经指导老师确认无误后方可合闸通电。
(4)做实验时,人体不可接触带电线路。
接线或折线都必须在切断电源的情况下进行。
在做电机实验时,电动机励磁电源给定后,不允许在实验过场中调节,以防失磁非车。
(5)在实验过程中,若发现电网突然停电或发生异常情况,须立即切断全部电源开关。
若实验中接线偶然脱落,也应及时切断电源后才能把导线接回原处。
(6)实验结束后,应将实验台上的仪表、模块及各类设备、导线、工具等整理好。
实验一 单相半控桥可控整流电路的研究一、实验目的1.熟悉单结管触发电路的工作原理,掌握调试步骤和方法。
2.研究分析单相半控桥可控整流电路在电阻及电阻电感性负载下的工作状态。
3.明确续流二极管的作用。
二、实验电路三、实验主要设备1.BZT—Ⅲ B 型变流、交直流调速实验装置 1台2.双踪示波器 1台3.电阻器(灯板) 1台4.电抗器(单相自耦调压器代) 1台5.万用表 1块四、实验内容及步骤1.接线根据实验电路(图1—1)把线连接好。
注意电阻负载为外接灯板,电抗器为外接单相调压器。
2.单结晶体管触发电路的调试(单结晶体管触发电路原理见附录一)闭合S,触发电路电源接通,主电路电源先不接通。
用示波器分别观察并记录触发电路中整流输出A点、削波B点、锯齿波C点、单结晶体管D点及脉冲变压器输出脉冲波形。
调节移相电位器R P,观察锯齿波电压U c的变化情况及脉冲的移相情况,估计触发电路移相范围。
并将测量结果填入表1内:表13.电阻负载的研究接通主电路电源,将单相调压器调到0位,用示波器观察负载电压U d,晶闸管两端电压Uv T的波形,调节移相电位器Rp,观察不同α角时U d波形的变化情况,并记录U d值,填入表2内,作出U d=f(α)的曲线。
(α值可用示波器测算)表23.电阻电感性负载的研究将单相调压器顺时针调到最大位置。
观察在不同控制角下的输出电压U d和输出电流Id 的波形。
改变电感量L d的大小,观察Id波形的变化情况。
4.研究续流二极管的作用在电感性负载时,不接续流二极管,模拟触发电路故障,(可将控制角突然调到180°或将触发电路脉冲Ug的引线断开)使触发脉冲突然消失,观察失控现象并记录U d波形。
接上续流二极管(可将面板上二极管V2接在输出负载两端),重复上述步骤,观察输出电压波形,与不加续流二极管的结果进行比较。
五、实验报告要求1.说明单结管触发电路的工作原理和调试方法,分析各点波形。
2.分析电阻负载和电阻电感性负载下的输出电压和电流的波形,作出U d=f(α)的控制特性曲线。
3.分析失控现象和续流二极管的作用。
附录一单结晶体管触发电路单结晶体管触发电路原理如图1—2所示。
电源接通,从电源变压器输出60V交流电压经V1—V4二极管桥式整流,再经稳压管削波得到梯形波电压。
这些梯形波电压与主回路的交流电压同步,又是单结管的电源。
由单结晶体管V U和电容C、电阻R4、R5、脉冲变压器及三极管V2组成张弛振荡器,以产生触发脉冲。
三极管V2相当于一个可变电阻Rv2,它的等效电阻阻值随基极电位的改变而变化,改变基极电位V b2就相当于调整这个可变电阻。
V1、V2管构成复合放大,因此,调节Rp 即可改变可变电阻Rv2的值,电容通过R4、Rv2充电。
当C上所充电压U c很小(U c<Up)时,单结管e-b1间,处于截止状态,呈现高阻抗,没有脉冲输出。
随着C的继续充电,上升到U c≥Up时,单结管e-b1间变为导通。
由于导通时e-b1间呈低阻状态,C上所充的电压就通过e-b1、脉冲变压器原边线圈很快放电,故在脉冲变压器副边线圈就输出一个正向脉冲。
随着C的放电,U c迅速降低,当下降到U c<Uv时,单结管又截止,电容C又重新充电,重复上述过程。
电容C的如此循环充放电,使电容C上的电压波形为连续不断的锯齿波。
放电时通过脉冲变压器产生脉冲信号,因此对应于锯齿波的放电后沿,产生一连串的输出尖脉冲。
注:Up为单结晶体管的峰点为电压,Uv为谷点电压。
单结晶体管触发电路由于结构简单、易于调试,在实际中仍然得到较多应用。
但其缺点是输出功率较小、脉冲较窄,移相范围小。
实验二 三相桥式全控整流电路的研究一、实验目的熟悉KC04集成触发电路的工作原理、接线,掌握其调试方法。
熟悉三相全控整流电路的接线,观察电阻负载、电阻电感性负载和反电势负载下电路的输出电压和电流的波形。
2、实验电路三、实验设备BZT-Ⅲ B型变流、交直流调速实验装置 1台直流电动机—发电机组 1台三相整流变压器 1台电抗器 1台电阻器(灯板) 1台双踪示波器 1台万用表 1块四、实验内容及步骤1.首先测定三相电源的相序,然后按图2-1把主电路和触发电路接好(通往主电路的电源连线可先断开)。
相序的测量方法可以采用双踪示波器,也可采用相序灯法或相序鉴别器。
2.闭合Q(即分别先后按装置电源箱面板上总电源及主电源“开”按纽),接通触发电路电源,用示波器观察1A—1E、2A—2E、3A—3E及-A、+A、–B、+B、-C、+C各点波形。
如锯齿波斜率不一致,可通过调节斜率电位器R P1—R P3使其一致,并将各点波形记录于下表。
3.电阻性负载按起动按纽,主电路接通电源。
调节移相电位器R P,用示波器观察输出电压U d的波形及晶闸管VT1两端的电压波形,并记录触发角α分别为0°,30°,60°,90°,120°时的U d值。
如若R P调到零位时,输出电压值不为零,可调节偏移电位器R P0使其为零。
人为颠倒三相电源(即U、V、W)的相序,观察输出电压波形是否正常。
4.电阻电感性负载按停止按纽,主电路断电,在d1、d2端换接上电阻电感性负载。
按起动按纽,接通主回路电源,观察不同α角时U d、Id的波形,记录α=0°,30°,60°,90°时U d值于表中。
改变R d的数值,观察Id波形的脉动情况。
3.反电动势负载按停止按纽,按图在d1、d2端换接上电动机负载,接通主电路电源,调节移相电位器R P,使U d值由0逐渐上升到额定值,用示波器观察U d的波形。
短接平波电抗器,观察U d波形有何变化。
(注:接通主电路电源前,应先接通直流电动机组的的额定励磁电源。
并使移相电位器给定电压为零,即使U d为零)。
五、实验报告要求:1.总结三相桥式全控整流电路的调试步骤和方法。
2.整理实验中记录的波形,绘制电阻负载和电阻电感性负载时U d =f(α)的控制曲线。
3.不同负载时,不同α与φ时电流连续与断续的情况分析。