二次函数的定义与性质

合集下载

二次函数的性质

二次函数的性质

二次函数的性质二次函数是高中数学中一个重要的概念,它是一种形如y=ax²+bx+c的函数,其中a、b、c是实数且a≠0。

在本文中,我将详细介绍二次函数的性质,包括定义、图像、顶点、对称轴、零点、判别式以及二次函数的分类。

一、二次函数的定义二次函数是一种多项式函数,它的最高次项是二次项,即x的平方项。

一般地,我们可以表示为y=ax²+bx+c,其中a、b、c为实数,且a≠0。

常见的二次函数包括抛物线、开口方向为上或下的曲线。

二、二次函数的图像二次函数的图像通常是一个U形或者倒U形的曲线,也即抛物线。

抛物线开口的方向取决于二次函数的系数a的正负。

1. 当a>0时,抛物线开口向上,图像在坐标系的正半轴上方;2. 当a<0时,抛物线开口向下,图像在坐标系的负半轴上方。

三、二次函数的顶点二次函数的顶点是抛物线的最低点(开口向上)或最高点(开口向下)。

顶点的横坐标可以通过用-b/2a求得,纵坐标可以通过将横坐标代入函数得出。

四、二次函数的对称轴二次函数的对称轴是指通过顶点并垂直于x轴的一条直线。

对称轴的方程为x=-b/2a。

五、二次函数的零点二次函数的零点是指使函数取值为零的x的值。

可以通过求解二次方程ax²+bx+c=0来得到零点。

根据一元二次方程的求根公式,可得x=(-b±√(b²-4ac))/(2a)。

当判别式b²-4ac>0时,方程有两个不相等的实根;当b²-4ac=0时,方程有两个相等的实根;当b²-4ac<0时,方程没有实根。

六、二次函数的判别式二次函数的判别式D=b²-4ac可以用来判断二次函数的图像和零点的性质。

1. 当D>0时,方程有两个不相等的实根,图像与x轴有两个交点;2. 当D=0时,方程有两个相等的实根,图像与x轴有一个交点;3. 当D<0时,方程没有实根,图像与x轴无交点。

二次函数与实际问题

二次函数与实际问题

二次函数与实际问题一、引言二次函数是高中数学中非常重要的一部分,它在实际生活中有着广泛的应用。

本文旨在介绍二次函数的基本概念、性质以及如何应用到实际问题中。

二、二次函数的定义与性质1. 二次函数的定义二次函数是形如y=ax²+bx+c(a≠0)的函数,其中a,b,c为常数,x,y为自变量和因变量。

2. 二次函数的图像特征(1)对称轴:x=-b/2a(2)顶点:(-b/2a, c-b²/4a)(3)开口方向:当a>0时,开口向上;当a<0时,开口向下。

(4)零点:即方程ax²+bx+c=0的解。

当b²-4ac>0时,有两个不相等实根;当b²-4ac=0时,有一个重根;当b²-4ac<0时,无实根。

3. 二次函数与一次函数、常数函数的比较(1)一次函数y=kx+b是一个斜率为k、截距为b的直线。

(2)常数函数y=c是一个水平直线,其值始终为c。

(3)与一次函数相比,二次函数具有更加复杂的图像特征;与常数函数相比,二次函数具有更加丰富的变化。

三、二次函数的应用1. 最值问题对于二次函数y=ax²+bx+c,当a>0时,其最小值为c-b²/4a,即顶点的纵坐标;当a<0时,其最大值为c-b²/4a。

2. 零点问题对于二次函数y=ax²+bx+c,求其零点即为求解方程ax²+bx+c=0的解。

可以使用求根公式或配方法等方式来求解。

3. 优化问题在实际生活中,很多问题都可以转化为求某个目标函数的最大值或最小值。

例如,在制作一个长方形纸箱时,如何使得纸箱的容积最大?假设纸箱长为x,宽为y,高为h,则容积V=xyh。

由于长和宽已知,因此我们只需要确定h的取值范围,并找出使得V最大的h即可。

由于纸箱需要稳定,在实际中我们还需要考虑其他因素(如纸板厚度等),从而确定出一个合适的取值范围。

二次函数的性质知识点

二次函数的性质知识点

二次函数的性质知识点二次函数是高中数学中的重要内容之一,它在代数学和几何学中都有广泛应用。

了解二次函数的性质是理解和掌握这一概念的关键,下面将介绍二次函数的一些基本性质知识点。

1. 二次函数的定义二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a≠0。

二次函数的图像是一个抛物线,开口方向由a的正负决定。

2. 顶点二次函数的图像是一个抛物线,其中的最高点或最低点称为顶点。

二次函数的顶点坐标可通过公式x = -b/2a和y = f(-b/2a)求得。

3. 对称轴二次函数的图像关于一条垂直于x轴的直线对称,这条直线称为对称轴。

对称轴的方程可通过公式x = -b/2a求得。

4. 开口方向当二次函数的参数a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

5. 零点和方程二次函数的零点是使得f(x) = 0的x值,可以通过解一元二次方程ax^2 + bx + c = 0来求得。

一元二次方程的解法可以使用因式分解、配方法、求根公式等方法。

6. 判别式对于一元二次方程ax^2 + bx + c = 0,判别式D = b^2 - 4ac可以用来判断方程的根的情况:- 当D > 0时,方程有两个不相等的实根;- 当D = 0时,方程有两个相等的实根;- 当D < 0时,方程无实根,但有两个共轭复根。

7. 函数的增减性和极值点二次函数的增减性与a的正负有关。

当a > 0时,函数在对称轴左侧增大,右侧减小;当a < 0时,函数在对称轴左侧减小,右侧增大。

函数的极值点即为顶点。

8. 函数的图像与平移通过调整二次函数的参数,可以实现图像的平移。

参数a决定抛物线的开口方向,参数b决定了对称轴的位置,参数c则决定了抛物线的顶点位置。

9. 辅助线与焦点二次函数的图像与抛物线相关的辅助线包括准线、焦点和准线上的直径。

焦点的横坐标是对称轴上顶点的横坐标的一半,纵坐标可以根据参数a的值求得。

二次函数的概念与性质

二次函数的概念与性质

二次函数的概念与性质二次函数是高中数学中的重要内容,它在实际生活中有广泛的应用。

本文将对二次函数的概念和性质进行详细的介绍,让我们一同探索二次函数的奥秘。

一、二次函数的概念二次函数是形如f(x) = ax² + bx + c的函数,其中a、b、c为常数且a ≠ 0。

其中,a决定了二次函数的开口方向和形状,b决定了二次函数的对称轴位置,c则表示二次函数的纵坐标偏移量。

二次函数的自变量x可以取任意实数。

二次函数的图像通常为一条平滑的曲线,这条曲线可以是开口朝上的“U”型曲线,也可以是开口朝下的“∩”型曲线。

根据a的正负性质,我们可以确定二次函数的开口方向。

二、二次函数的性质1. 零点及交点:二次函数的零点就是方程f(x) = 0的解,等于函数曲线与x轴的交点。

要确定二次函数的零点,可以通过解关于x的二次方程来求得。

若二次函数有零点,那么它的图像与x轴必有交点;反之,若无零点,则图像与x轴不相交。

2. 对称轴:二次函数的对称轴是其图像关于某一直线的对称轴。

对称轴的横坐标为x = -b/2a,纵坐标则由该点代入函数得到。

3. 最值点:二次函数的最值点是函数图像的顶点或底点,也就是函数曲线的极值点。

对于开口朝上的二次函数,顶点即为最小值点;对于开口朝下的二次函数,底点即为最大值点。

4. 单调性:二次函数的单调性与a的正负有关。

当a > 0时,二次函数呈现开口朝上的“U”型,并且在对称轴两侧是递增的;当a < 0时,二次函数呈现开口朝下的“∩”型,并且在对称轴两侧是递减的。

5. 范围:二次函数的范围即为函数图像在y轴上的取值范围。

对于开口朝上的二次函数,范围为y ≥ 最小值;对于开口朝下的二次函数,范围为y ≤ 最大值。

6. 判别式:二次函数的判别式Δ = b² - 4ac可以用来判断二次方程ax² + bx + c = 0的解的性质。

若Δ > 0,方程有两个不相等的实根;若Δ = 0,方程有两个相等的实根;若Δ < 0,方程无实根。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是初中数学的重要内容之一,也是中考数学的重点和难点。

它不仅在数学领域有着广泛的应用,在物理、经济等其他学科中也经常出现。

下面我们来详细总结一下二次函数的相关知识点。

一、二次函数的定义一般地,形如\(y = ax^2 + bx + c\)(\(a\)、\(b\)、\(c\)是常数,\(a ≠ 0\))的函数,叫做二次函数。

其中\(x\)是自变量,\(a\)叫做二次项系数,\(b\)叫做一次项系数,\(c\)叫做常数项。

需要注意的是,二次函数的最高次必须是二次,并且二次项系数\(a\)不能为\(0\)。

如果\(a = 0\),那么函数就变成了一次函数。

二、二次函数的图象二次函数的图象是一条抛物线。

抛物线的形状由二次项系数\(a\)决定:1、当\(a > 0\)时,抛物线开口向上;当\(a < 0\)时,抛物线开口向下。

2、\(|a|\)越大,抛物线的开口越窄;\(|a|\)越小,抛物线的开口越宽。

抛物线是轴对称图形,对称轴为直线\(x =\frac{b}{2a}\)。

二次函数的顶点式为\(y = a(x h)^2 + k\),其中\((h, k)\)是抛物线的顶点坐标。

当抛物线的顶点坐标已知时,通常使用顶点式来表示二次函数,这样可以更方便地求出函数的最值等性质。

四、二次函数的一般式与顶点式的转化由一般式\(y = ax^2 + bx + c\)通过配方法可以转化为顶点式:\\begin{align}y&=ax^2 + bx + c\\&=a(x^2 +\frac{b}{a}x) + c\\&=a(x^2 +\frac{b}{a}x +\frac{b^2}{4a^2} \frac{b^2}{4a^2})+ c\\&=a(x +\frac{b}{2a})^2 \frac{b^2}{4a} + c\\&=a(x +\frac{b}{2a})^2 +\frac{4ac b^2}{4a}\end{align}\所以顶点坐标为\((\frac{b}{2a},\frac{4ac b^2}{4a})\)。

初中数学知识归纳二次函数的概念和性质

初中数学知识归纳二次函数的概念和性质

初中数学知识归纳二次函数的概念和性质二次函数是初中数学中重要的数学概念之一。

它是指函数的表达式中存在一个二次项,且其图像为开口朝上或开口朝下的抛物线。

本文将逐步介绍二次函数的概念和性质,以帮助读者更好地理解和应用该知识。

1. 二次函数的定义二次函数的定义是f(x)=ax^2+bx+c,其中a、b、c为常数,a≠0。

a 决定抛物线的开口方向,正值表示开口朝上,负值表示开口朝下。

常数b和c则分别决定了抛物线的位置和纵坐标的平移。

2. 二次函数的图像二次函数的图像为抛物线,其对称轴为直线x=-b/2a。

若a>0,抛物线开口朝上,最低点的纵坐标为-c+b^2/4a;若a<0,抛物线开口朝下,最高点的纵坐标为-c+b^2/4a。

3. 二次函数的零点零点是指函数取值为0的横坐标。

对于二次函数f(x)=ax^2+bx+c,可以通过求解方程ax^2+bx+c=0来确定其零点。

根据判别式Δ=b^2-4ac 的值,可以判断二次函数的零点个数和形式:(1) 当Δ>0时,二次函数有两个不同的实数根;(2) 当Δ=0时,二次函数有一个重根;(3) 当Δ<0时,二次函数无实数根,但可能存在虚数根。

4. 二次函数的顶点顶点是指二次函数抛物线的最高点或最低点。

对于二次函数f(x)=ax^2+bx+c,其顶点的横坐标为-xv=b/2a,纵坐标为-f(xv)=-Δ/4a。

顶点是抛物线的对称中心,对称轴经过顶点。

5. 二次函数的增减性和极值对于二次函数f(x)=ax^2+bx+c,当a>0时,函数在对称轴左侧呈减少趋势,在对称轴右侧呈增长趋势;当a<0时,则相反。

当抛物线开口朝上时,最低点为函数的最小值;当抛物线开口朝下时,最高点为函数的最大值。

6. 平移与二次函数对于二次函数f(x)=ax^2+bx+c,平移是指将抛物线沿横轴或纵轴方向移动。

平移的规律如下:(1) 向左平移:f(x+a)的图像沿x轴正方向移动a个单位;(2) 向右平移:f(x-a)的图像沿x轴负方向移动a个单位;(3) 向上平移:f(x)+a的图像沿y轴正方向移动a个单位;(4) 向下平移:f(x)-a的图像沿y轴负方向移动a个单位。

二次函数的概念和性质

二次函数的概念和性质二次函数是数学中常见的一种函数形式,它的一般形式为f(x) =ax^2 + bx + c,其中a、b、c为实数且a ≠ 0。

二次函数是由二次方程演变而来的,其图像呈现出特殊的形状,同时具有一些独特的性质。

本文将介绍二次函数的概念和性质,并分析其在数学和实际问题中的应用。

一、二次函数的概念二次函数是指函数表达式中的最高次项为二次的函数。

在二次函数的一般形式中,ax^2代表二次项,bx代表一次项,c代表常数项。

二次函数的变量x可以取任意实数值,并对应一个唯一的函数值f(x)。

当二次函数的系数a、b、c满足一定条件时,其图像呈现出不同的特征,如开口向上或向下、对称轴等。

二、二次函数的性质1. 平移性:二次函数的图像可以通过平移来变换位置。

当二次函数的表达式中添加或减去一个常数h时,图像向左或向右平移h个单位;当表达式中添加或减去一个常数k时,图像向上或向下平移k个单位。

2. 对称性:二次函数的图像关于对称轴对称。

对称轴是通过顶点的垂直线,其方程可以通过计算 x = -b/(2a) 得到。

3. 开口方向:二次函数的图像具有开口向上或向下的特征。

当a>0时,图像开口向上;当a<0时,图像开口向下。

a的绝对值决定了图像的开口程度。

4. 零点:二次函数的零点是函数图像与x轴的交点,即f(x) = 0的解。

零点可以通过解一元二次方程来求得,或者利用配方法化简二次函数的一般形式。

5. 最值:二次函数的最值即函数的最大值或最小值。

当二次函数的开口向上时,没有最小值;当二次函数的开口向下时,没有最大值。

最值的出现位置与顶点的坐标有关,顶点坐标可以通过计算 x = -b/(2a) 得到。

三、二次函数的应用二次函数在数学和实际问题中都具有广泛的应用。

在数学中,研究二次函数可以深入理解函数的性质、变化规律和图像特征。

在实际问题中,二次函数可以用来描述和解决与二次关系相关的各类问题,如自由落体运动、抛物线轨迹、经济增长模型等。

二次函数图像的性质与解析

二次函数图像的性质与解析一、二次函数的定义与标准形式1.二次函数的定义:一般地,形如y=ax^2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数。

2.二次函数的标准形式:y=a(x-h)2+k,其中顶点式y=a(x-h)2+k的图像为抛物线,a为抛物线的开口方向和大小,h、k为顶点坐标。

二、二次函数图像的性质1.开口方向:由a的符号决定,a>0时,开口向上;a<0时,开口向下。

2.对称性:二次函数图像关于y轴对称,即若点(x,y)在图像上,则点(-x,y)也在图像上。

3.顶点:二次函数图像的顶点为抛物线的最高点或最低点,顶点式y=a(x-h)^2+k中,(h,k)为顶点坐标。

4.轴:二次函数图像与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。

5.增减性:当a>0时,二次函数图像在顶点左侧单调递减,在顶点右侧单调递增;当a<0时,二次函数图像在顶点左侧单调递增,在顶点右侧单调递减。

三、二次函数图像的解析1.求顶点:根据顶点式y=a(x-h)^2+k,直接得出顶点坐标为(h,k)。

2.求对称轴:对称轴为x=h。

3.求开口大小:开口大小由a的绝对值决定,绝对值越大,开口越大。

4.求与坐标轴的交点:与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。

5.判断增减性:根据a的符号,判断二次函数图像在顶点两侧的单调性。

四、二次函数图像的应用1.实际问题:利用二次函数图像解决实际问题,如抛物线与坐标轴的交点问题、最值问题等。

2.几何问题:利用二次函数图像研究几何图形的性质,如求解三角形面积、距离等问题。

3.物理问题:利用二次函数图像研究物理现象,如抛物线运动、振动等。

五、二次函数图像的变换1.横向变换:对二次函数y=ax2+bx+c进行横向变换,如向左平移h个单位,得到y=a(x+h)2+k;向右平移h个单位,得到y=a(x-h)^2+k。

二次函数的性质及图像分析

二次函数的性质及图像分析引言:二次函数是高中数学中一个重要的概念,它在数学和实际问题中都有广泛的应用。

本文将介绍二次函数的性质及图像分析,帮助读者更好地理解和应用二次函数。

一、二次函数的定义与一般形式二次函数是指形如y=ax^2+bx+c的函数,其中a、b、c为实数且a≠0。

其中,a决定了二次函数的开口方向和开口的大小,b决定了二次函数的对称轴位置,c决定了二次函数的纵轴截距。

二、二次函数的图像特点1. 开口方向:当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。

2. 对称轴:二次函数的对称轴是一个垂直于x轴的直线,其方程为x=-b/2a。

3. 零点:二次函数与x轴的交点称为零点,即使y=0的解,可以通过求解二次方程ax^2+bx+c=0得到。

4. 极值点:当二次函数开口向上时,函数的最小值称为极值点;当二次函数开口向下时,函数的最大值称为极值点。

5. 函数增减性:二次函数的增减性与a的正负有关,当a>0时,二次函数在对称轴两侧递增;当a<0时,二次函数在对称轴两侧递减。

三、二次函数图像的分析与应用1. 开口方向的影响:二次函数的开口方向决定了函数的增减性和极值点的位置。

在实际问题中,可以通过二次函数的开口方向来判断某一现象的趋势,例如物体的抛射运动中,开口向上的二次函数可以表示物体上升的高度,开口向下的二次函数可以表示物体下降的高度。

2. 对称轴的作用:二次函数的对称轴决定了函数图像的对称性。

在实际问题中,对称轴可以帮助我们找到函数图像的关键点,例如求解二次函数的最值、求解二次函数与其他图像的交点等。

3. 零点的意义:二次函数的零点表示函数与x轴的交点,即函数的解。

在实际问题中,零点可以帮助我们求解方程,解决实际问题,例如求解二次方程来确定某一物体的位置、时间等。

4. 极值点的应用:二次函数的极值点表示函数的最值,可以帮助我们求解最优解问题。

在实际问题中,可以通过求解二次函数的极值点来确定某一问题的最优解,例如求解最短路径、最大利润等。

二次函数的函数性质和二次函数定义

二次函数的函数性质和二次函数定义定义:一般地,自变量x和因变量y之间存在如下关系:一般式:y=ax^2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。

顶点式:y=a(x-h)^2+k;交点式(与x轴):y=a(x-x1)(x-x2).函数性质:1.二次函数是抛物线,但抛物线不一定是二次函数。

开口向上或者向下的抛物线才是二次函数。

抛物线是轴对称图形。

对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y 轴(即直线x=0)2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)6.抛物线与x轴交点个数:Δ= b^2-4ac>0时,抛物线与x 轴有2个交点。

Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

当Δ= b^2-4ac<0时,抛物线与x轴没有交点。

X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变;当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0).7.定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b-√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重点、难点:
用描点法画出二次函数的图象,从图象上认识二次函数的性质.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题.
重点、难点解析:
二次函数是描述现实世界变量之间关系的重要的数学模型,也是某些单变量最优化问题的数学模型.二次函数也是一种非常基本的初等函数,它作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,对二次函数的研究将为进一步学习函数、体会函数的思想奠定基础和积累经验.在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学习函数知识的过程中的一个重要环节,起到承上启下的作用,为进入高中后进一步学习函数知识奠定基础.
一、二次函数的定义和性质
1.二次函数的定义:
形如(a≠0,a,b,c为常数)的函数为二次函数.
2.二次函数的性质:
(1)二次函数y=ax2 (a≠0)的图象是一条抛物线,
其顶点是原点,对称轴是y轴;当a>0时,抛物线开口向上,顶点是最低点;当a <0时,抛物线开
口向下,顶点是最高点;a越小,抛物线开口越大.
(2)二次函数的图象是一条抛物线.顶点为(-,),对称轴

当a>0时,抛物线开口向上,图象有最低点,且x>-,y随x的增大而增大,x<-,
y随x的增大而减小;当a<0时,抛物线开口向下,图象有最高点,且x>-,y随x的增大而减小,
x<-,y随x的增大而增大.
(3)当a>0时,当时,函数有最小值;当a<0时,当时,函数有最大值
.
3.二次函数y=ax2+bx+c(a≠0)的各项系数a、b、c对其图象的影响
(1)a决定抛物线的开口方向和开口大小:a>0,开口向上;a<0,开口向下. |a|的越大,开口越小.
|a|相等,抛物线全等.
(2)a与b决定抛物线对称轴的位置:a、b同号,抛物线的对称轴(即直线)或顶点在y轴左侧;
a、b异号,抛物线的对称轴(即直线)或顶点在y轴右侧;b=0时,抛物线的对称轴是y轴.
a,b都相同的抛物线是以顶点为动点的且沿对称轴平移而得到的一组抛物线系.
(3)c决定抛物线与y轴交点(0,c)的位置:c>0,抛物线与y轴交于正半轴;c<0,抛物线与y轴交于负
半轴;c=0,抛物线与y轴交点是坐标原点. c相同的抛物线都过点(0,c).这些内容应该能够由数得
形、依形判数.
典型例题:
1.已知抛物线的部分图象(如图),图象再次与x轴相交时的坐标是( )
(A)(5,0) (B)(6,0)
(C)(7,0) (D)(8,0)
解:C
分析:由,可知其对称轴为x=4,
而图象与x轴已交于(1,0),则与x轴的另一交点为(7,
0).
2.函数y=x2-4的图象与y轴的交点坐标是( )
A.(2,0)
B.(-2,0)
C.(0,4)
D.(0,-4)
解:D
分析:函数y= x2-4的图象与 y轴的交点的横坐标为0,x=0时,y=-4,故选D.
3.已知二次函数的图象如图所示,则a、b、c满足( )
A.a<0,b<0,c>0
B.a<0,b<0,c<0
C.a<0,b>0,c>0
D.a>0,b<0,c>0
解:A
分析:由抛物线开口向下可知a<0;与y轴交于正半轴可知c>0;抛物线的对称轴在y轴左侧,可知-<0.则b<0.故选A.
4.抛物线y=4(x+2)2+5的对称轴是______.
解:x=-2
分析:抛物线y=a(x-h)2+k的对称轴为x=h.
5.y=ax2+bx+c(a≠0)的图象如图所示,则点M(a,bc)在( ).
A.第一象限
B.第二象限
C.第三象限
D.第四象限
分析:由图可知:
抛物线开口向上a>0.
bc>0.
∴点M(a,bc)在第一象限.
答案:A.
点评:本题主要考查由抛物线图象会确定a、b、c的符号.
6.已知一次函数y=ax+c,二次函数y=ax2+bx+c(a≠0),它们在同一坐标系中的大致图象是( ).
分析:一次函数y=ax+c,当a>0时,图象过一、三象限;当a<0时,图象过二、四象限;c>0时,直线交y轴于正半轴;当c<0时,直线交y轴于负半轴;
对于二次函数y=ax2+bx+c(a≠0)来讲:
解:可用排除法,设当a>0时,二次函数y=ax2+bx+c的开口向上,而一次函数y=ax+c 应过一、三象限,故排除C;当a<0时,用同样方法可排除A;c决定直线与y轴交点;也在抛物线中决定抛物线与y轴交点,本题中c相同则两函数图象在y轴上有相同的交点,故排除B.
答案:D.
二、图象的平移
抛物线y=ax2抛物线y=a(x-h)2+k
当h>0,k>0时,把抛物线y=ax2向右平移h个单位,再向上平移k个单位,得到抛物线y=a(x-h)2+k;
当h>0,k<0时,把抛物线y=ax2向右平移h个单位,再向下平移|k|个单位,得到抛物线y=a(x-h)2+k;
当h<0,k>0时,把抛物线y=ax2向左平移|h|个单位,再向上平移k个单位,得到抛物线y=a(x-h)2+k;
当h<0,k<0时,把抛物线y=ax2向左平移|h|个单位,再向下平移|k|个单位,得到抛物线y=a(x-h)2+k.
在学习中,不要死记这些结论,在观察中发现,函数图象的平移就是顶点的平移(也可以是其它关键点的平移,这是由于函数图象的平移是整体的平移,每个点都做相同的变换),还可以引申到直线、双曲线的平移.在解题时,一定分清移动谁,不妨画草图.
典型例题
下面看几个考查平移的问题
1.(湖南长沙)把抛物线y=-2x2向上平移1个单位,得到的抛物线是( )
A. y=-2(x+1)2
B. y=-2(x-1)2
C. y=-2x2+1
D. y=-2x2-1
提示:这个题很基本,把顶点从原点处移至(0,1)处,选C.
2.(山西省)抛物线经过平移得到,平移方法是( )
A.向左平移1个单位,再向下平移3个单位
B.向左平移1个单位,再向上平移3个单位
C.向右平移1个单位,再向下平移3个单位
D.向右平移1个单位,再向上平移3个单位
提示:此题要注意被移动的是抛物线=-2(x+1)2-3,即把顶点从(-1,-3)处移至原点处,因此写平移时需注意方向.选D.
3.(湖北荆门)把抛物线y=x+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-3x+5,则( )
A.b=3,c=7
B.b=6,c=3
C.b=-9,c=-5
D.b=-9,c=21
答案:A
提示:此题两种方法:法一:先求出y=x2-3x+5的顶点,按平移过程求出原图象顶点,从而求出解析式,确定b、c的值;
法二:先求出图象与y轴交点(0,5)按平移过程得原图象上一点(-3,7),再求y=x2-3x+5上点(3,5),按平移过程得原图象上一点(0,7)…
4.(资阳市) 在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是 ( )
A.y=2(x-2)2+2
B.y=2(x+2)2-2
C.y=2(x-2)2-2
D.y=2(x+2)2+2
提示:这是移轴的问题,需将它转化为移图象的问题——把图象向下、向左平移2个单位.可以先画图,总结规律.选B.
三、二次函数的作图
典型例题
1.通过配方,确定抛物线的开口方向、对称轴和顶点坐标,再描点画图.
解:
因此,抛物线开口向下,对称轴是直线x=1,顶点坐标为(1,8).
描点、连线,如图所示.
回顾与反思:
(1)列表时选值,应以对称轴x=1为中心,函数值可由对称性得到.
(2)描点画图时,要根据已知抛物线的特点,一般先找出顶点,并用虚线画对称轴,然后再对称描点,
最后用平滑曲线顺次连结各点.
探索:对于二次函数,你能用配方法求出它的对称轴和顶点坐标吗?请你完成填空:对称轴__________,顶点坐标__________.
2.已知抛物线的顶点在坐标轴上,求的值.
分析:顶点在坐标轴上有两种可能:(1)顶点在x轴上,则顶点的纵坐标等于0;(2)顶点在y轴上,则顶点的横坐标等于0.
解:,
则抛物线的顶点坐标是.
当顶点在y轴上时,有,
解得.
当顶点在x轴上时,有,
解得或.
所以,当抛物线的顶点在坐标轴上时,有三个值,分别是–2,4,-8.。

相关文档
最新文档