2014年高考数学总复习教案:第五章 数列第1课时 数列的概念及其简单表示法

合集下载

高中数学必修5《数列的概念与简单表示法》教案

高中数学必修5《数列的概念与简单表示法》教案

高中数学必修5《数列的概念与简单表示法》教案教学准备
教学目标
理解数列的概念,掌握数列的运用
教学重难点
理解数列的概念,掌握数列的运用
教学过程
【知识点精讲】
1、数列:按照一定次序排列的一列数(与顺序有关)
2、通项公式:数列的第n项an与n之间的函数关系用一个公式来表示an=f(n)。

(通项公式不唯一)
3、数列的表示:
(1) 列举法:如1,3,5,7,9……;
(2) 图解法:由(n,an)点构成;
(3) 解析法:用通项公式表示,如an=2n+1
(4) 递推法:用前n项的值与它相邻的项之间的关系表示各项,如a1=1,an=1+2an-1
4、数列分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列
5、任意数列{an}的前n项和的性质
[点评]数列问题转化为解方程和不等式问题,注意正整数解
例4、有一数列{an},a1=a,由递推公式an+1=,写出这个数列的前4项,并根据前4项观察规律,写该数列的一个通项公式。

详见优化设计P37典例剖析之例2,解答过程略。

(理科班学生可要求通项公式的推导:倒数法)
变式:在数列{an},a1=1,an+1=,求an。

详见优化设计P37典例剖析之例1,解答过程略。

[点评]对递推公式,要求写出前几项,并猜想其通项公式,此外了解常用的处理办法,如:迭加、迭代、迭乘及变形后结合等差(比)数列公式,也很必要。

2014届高三数学总复习 5.1数列的概念及其简单表示法教案 新人教A版

2014届高三数学总复习 5.1数列的概念及其简单表示法教案 新人教A版

2014届高三数学总复习 5.1数列的概念及其简单表示法教案新人教A 版1. (必修5P 32习题1改编)一个数列的前四项为-1,12,-13,14,则它的一个通项公式是________.答案:a n =(-1)n 1n2. (必修5P 31练习2改编)已知数列{a n }的通项公式是a n =n +12n +3,则这个数列的第5项是________.答案:a 5=6133. (必修5P 44习题8改编)若数列{a n }的前n 项和S n =n 2+3n ,则a 6+a 7+a 8=________. 答案:48解析:a 6+a 7+a 8=S 8-S 5=88-40=48.4. (必修5P 32习题6改编)已知数列{a n }的通项公式是a n =n 2-8n +5,这个数列的最小项是________.答案:-11解析:由a n =(n -4)2-11,知n =4时,a n 取最小值为-11.1. 数列的概念按照一定顺序排列的一列数. 2. 数列的分类项数有限的数列叫做有穷数列. 项数无限的数列叫做无穷数列. 3. 数列与函数的关系 从函数观点看,数列可以看成是以正整数为定义域的函数a n =f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.反过来,对于函数y =f(x),如果f(i)(i =1,2,3,…)有意义,那么可以得到一个数列{f(n)}.4. 数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个公式a n =f(n)(n =1,2,3,…)来表示,那么这个公式叫做这个数列的通项公式.通项公式可以看成数列的函数解析式.5. 数列{a n }的前n 项和S n 与通项a n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[备课札记]题型1 由数列的前几项写通项公式 例1 写出下列数列的一个通项公式: (1) 1,-3,5,-7,9,… (2) 1,0,13,0,15,0,17,…(3) a ,b ,a ,b ,a ,b ,…(4) 0.9,0.99,0.999,0.9999,… (5) 1,22,12,24,14,… 解:(1) a n =(-1)n +1(2n -1).(2) a n =1-(-1)n2n .(3) a n =(-1)n +1(a -b )+a +b2.(4) a n =1-110n .(5) a n =(2)1-n. 变式训练写出下列数列的一个通项公式: (1) -12,2,-92,8,-252,…(2) 5,55,555,5555,… (3) 1,3,6,10,15,… 解:(1) a n =(-1)n n22.(2) a n =59(10n-1).(3) a n =n (n +1)2.题型2 由a n 与S n 关系求a n例2 已知数列{a n }的前n 项和S n ,求通项a n .(1) S n =3n-1;(2) S n =n 2+3n +1.解:(1) n =1时,a 1=S 1=2.n ≥2时,a n =S n -S n -1=2·3n -1. 当n =1时,a n =1符合上式.∴ a n =2·3n -1.(2) n =1时,a 1=S 1=5.n ≥2时,a n =S n -S n -1=2n +2.当n =1时a 1=5不符合上式.∴ a n =⎩⎪⎨⎪⎧5,n =1,2n +2,n ≥2.备选变式(教师专享)已知函数f(x)=ax 2+bx(a≠0)的导函数f′(x)=-2x +7,数列{a n }的前n 项和为S n ,点P n (n ,S n )(n∈N *)均在函数y =f(x)的图象上,求数列{a n }的通项公式及S n 的最大值.解:由题意可知:∵ f(x)=ax 2+bx(a≠0),∴ f ′(x)=2ax +b ,由f′(x)=-2x +7对应相等可得a =-1,b =7,∴ 可得f(x)=-x 2+7x.因为点P n (n ,S n )(n∈N *)均在函数y =f(x)的图象上,所以有S n =-n 2+7n.当n =1时,a 1=S 1=6;当n≥2时,a n =S n -S n -1=-2n +8,a 1=6适合上式,∴ a n =-2n +8(n∈N *).令a n =-2n +8≥0得n≤4,当n =3或n =4时,S n 取得最大值12.综上,a n =-2n +8(n∈N *),当n =3或n =4时,S n 取得最大值12. 题型3 数列的性质例3对于数列{a n },a 1=4,a n =f(a n -1),n =2,3,4,…,求a 2 008.解:a 1=4,a 2=1,a 3=5,a 4=2,a 5=4,…,可得a n +4=a n .所以a 2008=a 4=2. 备选变式(教师专享)已知数列{}a n 的通项公式a n =n -98n -99(n∈N *),求数列前30项中的最大项和最小项.解:∵a n =1+99-98n -99,∴当n≤9时,a n 随着n 的增大越来越小且小于1,当10≤n≤30时,a n 随着n 的增大越来越小且大于1,∴前30项中最大项为a 10,最小项为a 9.1. 已知a 1=1,a n =n(a n +1-a n )(n∈N *),则数列{a n }的通项公式是________. 答案:a n =n解析:由已知整理得(n +1)a n =na n +1,∴ a n +1n +1=a n n .∴ 数列⎩⎨⎧⎭⎬⎫a n n 是常数列,且a n n =a 11=1.∴ a n =n.2. 设a >0,若a n =⎩⎪⎨⎪⎧(3-a )n -3,n ≤7,a n -6,n >7,且数列{a n }是递增数列,则实数a 的范围是__________.答案:2<a <3解析:由{a n }是递增数列,得⎩⎪⎨⎪⎧3-a >0,a >1,a 8>a 7,解得⎩⎪⎨⎪⎧1<a <3,a <-9或a >2,∴ 2<a <3.3. 已知数列{a n }的前n 项和为S n ,满足log 2(1+S n )=n +1,则{a n }的通项公式为__________.答案:a n =⎩⎪⎨⎪⎧3,n =12n ,n ≥2解析:由log 2(1+S n )=n +1,得S n =2n +1-1.n =1时,a 1=S 1=3.n≥2时,a n =S n -S n -1=2n.当n =1时a 1=3不符合上式,∴ a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.4. (2013·湖南)设S n 为数列{a n }的前n 项和,若S n =(-1)na n -12n ,n ∈N ,则a 3=________.答案:-116解析:当n =3时,S 3=a 1+a 2+a 3=-a 3-18,则a 1+a 2+2a 3=-18,当n =4时,S 4=a 1+a 2+a 3+a 4=a 4-116,两式相减得a 3=-116.5. 若数列⎩⎨⎧⎭⎬⎫n (n +4)⎝ ⎛⎭⎪⎫23n 中的最大项是第k 项,则k =________.答案:4解析:设最大项为第k 项,则有⎩⎪⎨⎪⎧k (k +4)⎝ ⎛⎭⎪⎫23k ≥(k +1)(k +5)⎝ ⎛⎭⎪⎫23k +1,k (k +4)⎝ ⎛⎭⎪⎫23k ≥(k -1)(k +3)⎝ ⎛⎭⎪⎫23k -1,∴ ⎩⎪⎨⎪⎧k 2≥10,k 2-2k -9≤0,解得⎩⎨⎧k≥10或k≤-10,1-10≤k≤1+10,∴ k =4.1. 若a n =n 2+λn +3(其中λ为实常数),n ∈N *,且数列{a n }为单调递增数列,则实数λ的取值范围为________.答案:(-3,+∞)解析:解法1:(函数观点)因为{a n }为单调递增数列,所以a n +1>a n ,即(n +1)2+λ(n+1)+3>n 2+λn +3,化简为λ>-2n -1对一切n∈N *都成立,所以λ>-3.故实数λ的取值范围为(-3,+∞).解法2:(数形结合法)因为{a n }为单调递增数列,所以a 1<a 2,要保证a 1<a 2成立,二次函数f(x)=x 2+λx +3的对称轴x =-λ2应位于1和2中点的左侧,即-λ2<32,亦即λ>-3,故实数λ的取值范围为(-3,+∞).2. 已知a n =n×0.8n (n∈N *). (1) 判断数列{a n }的单调性;(2) 是否存在最小正整数k ,使得数列{a n }中的任意一项均小于k ?请说明理由.解:(1) ∵a n +1-a n =4-n 5×0.8n (n∈N *),∴n <4时,a n <a n +1;n =4时,a 4=a 5;n >4时,a n >a n +1.即a 1,a 2,a 3,a 4单调递增,a 4=a 5,而a 5,a 6,…单调递减.(2) 由(1) 知,数列{a n }的第4项与第5项相等且最大,最大项是4554=1024625=1399625.故存在最小的正整数k =2,使得数列{a n }中的任意一项均小于k.3. 若数列{a n }满足a n +1=a n +a n +2(n∈N *),则称数列{a n }为“凸数列”.(1) 设数列{a n }为“凸数列”,若a 1=1,a 2=-2,试写出该数列的前6项,并求出前6项之和;(2) 在“凸数列”{a n }中,求证:a n +3=-a n ,n ∈N *;(3) 设a 1=a ,a 2=b ,若数列{a n }为“凸数列”,求数列前2011项和S 2 011. (1) 解:a 1=1,a 2=-2,a 3=-3,a 4=-1,a 5=2,a 6=3,故S 6=0.(2) 证明:由条件得⎩⎪⎨⎪⎧a n +1=a n +a n +2,a n +2=a n +1+a n +3,所以a n +3=-a n .(3) 解:由(2) 的结论得a n +6=-a n +3=a n ,即a n +6=a n .a 1=a ,a 2=b ,a 3=b -a ,a 4=-a ,a 5=-b ,a 6=a -b , ∴S 6=0.由(2)得S 6n +k =S k ,n ∈N *,k =1,…,6, 故S 2 011=S 335×6+1=a 1=a.4. 已知数列的前n 项和为S n ,并且满足a 1=2,na n +1=S n +n(n +1). (1) 求{a n }的通项公式;(2) 令T n =⎝ ⎛⎭⎪⎫45nS n ,是否存在正整数m ,对一切正整数n ,总有T n ≤T m ?若存在,求m 的值;若不存在,说明理由.解:(1) 令n =1,由a 1=2及na n +1=S n +n(n +1),① 得a 2=4,故a 2-a 1=2,当n≥2时,有(n -1)a n =S n -1+n(n -1),② ①-②,得na n +1-(n -1)a n =a n +2n. 整理得a n +1-a n =2(n≥2).当n =1时,a 2-a 1=2,所以数列{a n }是以2为首项,以2为公差的等差数列, 故a n =2+(n -1)×2=2n.(2) 由(1)得S n =n(n +1),所以T n =⎝ ⎛⎭⎪⎫45n(n 2+n).故T n +1=⎝ ⎛⎭⎪⎫45n +1[(n +1)2+(n +1)],令⎩⎪⎨⎪⎧T n ≥T n +1,T n≥T n -1,即⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫45n (n 2+n )≥⎝ ⎛⎭⎪⎫45n +1[(n +1)2+(n +1)],⎝ ⎛⎭⎪⎫45n (n 2+n )≥⎝ ⎛⎭⎪⎫45n -1[(n -1)2+(n -1)],即⎩⎪⎨⎪⎧n≥45(n +2),45(n +1)≥n-1,解得8≤n≤9.故T 1<T 2<…<T 8=T 9>T 10>T 11>…故存在正整数m 对一切正整数n ,总有T n ≤T m , 此时m =8或m =9.1. 数列中的数的有序性是数列定义的灵魂,要注意辨析数列的项和数集中元素的异同,数列可以看作是一个定义域为正整数集或其子集的函数,因此在研究数列问题时,既要注意函数方法的普遍性,又要注意数列方法的特殊性.2. 根据所给数列的前几项求其通项,需要仔细观察分析,抓住特征:分式中分子、分母的独立特征,相邻项变化的特征,拆项后的特征,各项的符号特征和绝对值特征,并由此进行化归、归纳、联想.3. 通项a n 与前n 项和S n 的关系是一个十分重要的考点.运用时不要忘记讨论a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n≥2).请使用课时训练(A )第1课时(见活页).[备课札记]。

2014高考系统复习数学(文)精品课件(人教A版) 7-1 数列的概念与简单表示法

2014高考系统复习数学(文)精品课件(人教A版) 7-1 数列的概念与简单表示法

与名师对话
高考总复习 ·课标版 ·A
数学(文)
解析:从图中可观察星星的构成规律,n=1 时,有 1 个; n=2 时,有 3 个;n=3 时,有 6 个;n=4 时,有 10 个;„ nn+1 ∴an=1+2+3+4+„+n= . 2
答案:C
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(文)
解:(1)因为各项是从 4 开始的偶数, 所以 an=2n+2. (2) 由 于 每 一 项 分 子 比 分 母 少 1 , 而 分 母 可 写 为 2n-1 21,22,23,24,25, 故所求数列的一个通项公式可写为 an= n . „, 2 (3)由于带有正负号,故数列可以用(-1)n 去掉负号,观察可得.
)
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(文)
3 解析:∵1 可以写成 ,∴分母为 3,5,7,9, 3 即 2n+1,分子可以看为 1×3,2×4,3×5,4×6, nn+2 故为 n(n+2),即 an= . 2n+1 1 此题也可用排除法求解, 只需验证当 n=1 时, 选项为 , A 3 3 3 B 选项为2,C 选项为4,均不为 1,故排除 A、B、C,从而选 D.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(文)
(3)各项的分母分别为 21,22,23,24,„易看出第 2,3,4 项的分 2-3 子分别比分母少 3.因此把第 1 项变为- 2 , 原数列可化为- 21-3 22-3 23-3 24-3 , 2 ,- 3 , 4 ,„, 21 2 2 2 2n-3 ∴an=(-1)n· n . 2

数列的概念与简单表示法教案

数列的概念与简单表示法教案

数列的概念与简单表示法教案一、教学目标1. 了解数列的概念,理解数列的表示方法,如通项公式、项的表示等。

2. 学会用图像和数学公式表示数列。

3. 能够运用数列的性质解决实际问题。

二、教学内容1. 数列的概念:数列是按照一定的顺序排列的一列数。

2. 数列的表示方法:a) 通项公式:数列中每一项的数学表达式。

b) 项的表示:用序号表示数列中的每一项。

3. 数列的图像表示:数列的图像通常为一条直线或曲线。

4. 数列的性质:数列的项数、公差、公比等。

三、教学重点与难点1. 教学重点:数列的概念、数列的表示方法、数列的图像表示。

2. 教学难点:数列的性质及其应用。

四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳数列的性质。

2. 利用多媒体展示数列的图像,增强学生的直观感受。

3. 开展小组讨论,培养学生合作学习的能力。

五、教学步骤1. 引入数列的概念,引导学生理解数列是按照一定顺序排列的一列数。

2. 讲解数列的表示方法,如通项公式、项的表示,让学生学会用数学公式表示数列。

3. 利用多媒体展示数列的图像,让学生了解数列的图像表示方法。

4. 分析数列的性质,如项数、公差、公比等,并引导学生运用数列的性质解决实际问题。

5. 进行课堂练习,巩固所学内容。

教案设计仅供参考,具体实施时可根据学生的实际情况进行调整。

六、教学活动1. 课堂讲解:数列的概念与表示方法。

2. 实例分析:分析生活中常见的数列,如等差数列、等比数列。

3. 练习:求给定数列的前n项和。

七、数列的图像表示1. 讲解:数列图像的绘制方法。

2. 练习:绘制给定数列的图像。

八、数列的性质与应用1. 讲解:数列的性质及其应用。

2. 实例分析:运用数列的性质解决实际问题。

3. 练习:运用数列的性质解决给定问题。

九、课堂小结1. 回顾本节课所学内容,总结数列的概念、表示方法、图像表示和性质。

2. 强调数列在实际问题中的应用。

十、课后作业1. 习题:求给定数列的前n项和。

人教A版高中数学必修五数列的概念与简单表示法教案第课时

人教A版高中数学必修五数列的概念与简单表示法教案第课时

§2.1 数列的概念及简单表示(1)教学目标1.通过大量实例,理解数列概念,了解数列和函数之间的关系2.了解数列的通项公式,并会用通项公式写出数列的任意一项3.对于比较简单的数列,会根据其前几项写出它的个通项公式4.提高观察、抽象的能力.教学重点:1.理解数列概念;2.用通项公式写出数列的任意一项.教学难点:根据一些数列的前几项抽象、归纳数列的通项公式.教学方法:发现式教学法教学步骤:一.(引言)数产生于人类社会的生产、生活需要,它是描绘静态下物体的量,因此,在人类社会发展的历程中,离不开对数的研究,在这一背景下产生数列。

数列是刻画离散现象的函数,是一种重要的数学模型。

人们往往通过离散现象认识连续现象,因此就有必要研究数列(设置情景)看下列一组实例:(1)课本32页“三角形数问题”(2)见EXCEL(3)某种放射性物质最初的质量为1,每经过一年剩留这种物资的84%,则这种物资各年开始时的剩留量排成一列数:1,84.0,284.0,384.0,……(4)-1的1次幂,2次幂,,……排成一列数:-1,1,-1,1,……(5)无穷多个1排成一列数:1,1,1,1,1,……提出问题:上述各组数据有何共同特征?二.探求与研究.I.基础知识:1.数列:按一定的次序排列的一列数叫数列。

2.项:数列中的每一个数都叫做这个数列的项。

其中第1项也叫做首项3.项数:数列的各项所在的位置序号叫做项数。

4.数列的表示: (1)一般形式:1a ,2a ,3a ,…n a ,…其中n a 是数列的第n 项。

(2)简单表示:{}n a5.通项公式:若数列{}n a 的第n 项n a 与它的项数n 之间的关系可以用一个公式表示,则这个公式叫做数列的通项公式。

简记为。

()n a f n =说明:(1)通项公式的本质:反映了数列的项与项数之间的对应关系(函数关系)。

(2)依次用1,2,3,…代替公式中的n ,就可以求出这个数列的各项。

高中数学必修5《数列的概念与简单表示法》教案-5页精选文档

高中数学必修5《数列的概念与简单表示法》教案-5页精选文档

2.1《数列的概念与简单表示法》(第1课时)普通高中课程标准实验教科书A版数学(必修5 )一、教材分析:1、教材的地位和作用《数列的概念与简单表示法》是“数列”一章中的重要组成部分;一方面它是前面函数知识的延伸及应用,另一方面为后面学习等差数列、等比数列的通项、求和等知识作铺垫,所以本节课在教材中起到了“承上启下”的作用;有利于学生思维拓展;况且数列是历年高考命题的热点之一,命题的方向主要是以能力考查为主,通过减少计算量,增加思维量,突出体现数列在实际生活中的应用价值。

2、教学目标知识目标:理解数列的有关概念,及通项公式的意义。

能力目标:培养学生观察、归纳、类比、联想等分析问题的能力。

情感目标:培养学生敢于实践,勇于发现,大胆探究的合作创新精神;体会数学源于生活又服务于生活;激发学习数学兴趣。

3、教学重点与难点教学重点:理解数列的概念与通项公式的意义;能根据数列前几项的特点,归纳出数列的通项公式。

教学难点:根据数列前几项的特点,归纳出数列的通项公式。

二、教法学法1、教法分析:根据主编寄语:“数学是自然的;数学是清楚的;数学是有用的”,和本节课的内容与结构以及本班学生的实际情况,本节课教学主要采用以下方法:①观察分析法:通过对生活事例的观察,引导学生的思维在“最近发展区”内,自然合理地感受到数学源于生活又服务于生活,对学习数学产生浓厚的兴趣。

②提问法:以恰时恰点的问题引导学生活动,培养问题意识,孕育创新精神。

③动手实践法:让学生通过动手实践,解决发现的问题,激发探究新知的的欲望。

④启发式法:通过不同内容的联系与启发,提高数学思维能力,培育理性精神。

2、教学媒体:多媒体平台。

3、学法分析:“动手实践,自主探究、合作交流”。

由于新课标精神在于以学生发展为本,能力培养为主,把学习的主动权还给学生。

因此,根据本节课的内容与结构,采用“动手实践、自主探究、合作交流”的学法。

三、教学过程:四、教学评价:本节课的教学设计要真正体现出学生的主体地位,以学生活动、学生探究为主,把数学与实际生活联系起来,具体说来,新课程的理念有如下体现:本节课的组织与实施,充分体现了教师的主导和学生的主体性相结合的原则;教师扮演的是组织者、引导者、参与者,学生是学习的主体,通过大量实例激发学生的学机动机和学习兴趣。

高中数学教案 第1讲 数列的概念与简单表示法

第1讲数列的概念与简单表示法1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数,理解单调性是数列的一项重要性质,可用来求最值.1.数列的有关概念(1)数列的定义一般地,我们把按照□1确定的顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.(2)数列与函数数列{a n}是从正整数集N*(或它的有限子集{1,2,…,n})到实数集R的函数,其自变量是□2序号n,对应的函数值是□3数列的第n项a n,记为a n=f(n).数列是一种特殊的函数,在研究数列问题时,既要注意函数方法的普遍性,又要考虑数列方法的特殊性.2.数列的表示法解析式法、表格法、□4图象法.3.数列的单调性从第2项起,每一项都□5大于它的前一项的数列叫做递增数列;从第2项起,每一项都□6小于它的前一项的数列叫做递减数列.特别地,□7各项都相等的数列叫做常数列.4.数列的通项公式和递推公式(1)如果数列{a n}的□8第n项a n与它的□9序号n之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.(2)如果一个数列的相邻两项或多项之间的关系可以用□10一个式子来表示,那么这个式子叫做这个数列的递推公式.(1)并不是所有的数列都有通项公式;(2)同一个数列的通项公式在形式上未必唯一.5.数列的前n 项和公式如果数列{a n }的前n 项和S n 与它的□11序号n 之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的前n 项和公式.常用结论1.若数列{a n }的前n 项和为S n ,则通项公式为a n 1,n =1,n -S n -1,n ≥2,n ∈N *.2.在数列{a n }中,若a n n ≥a n -1,n ≥a n +1(n ≥2),若a n n ≤a n -1,n ≤a n +1(n ≥2).1.思考辨析(在括号内打“√”或“×”)(1)根据数列的前几项归纳出数列的通项公式可能不止一个.()(2)1,1,1,1,…,不能构成一个数列.()(3)任何一个数列不是递增数列,就是递减数列.()(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .()答案:(1)√(2)×(3)×(4)√2.回源教材(1)已知数列a 1=2,a n =2-1a n -1(n ≥2),则a 5=.猜想a n =.解析:∵a 1=2,a n =2-1a n -1,∴a 2=2-12=32,a 3=2-23=43,a 4=2-34=54,a 5=2-45=65,故猜想a n =n +1n .答案:65n +1n(2)已知数列{a n }的前n 项和公式为S n =n 2,则a n =.解析:当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1,且a 1=1也满足此式,故a n =2n -1,n ∈N *.答案:2n -1(3)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n=.解析:由a 1=1=5×1-4,a 2=6=5×2-4,a 3=11=5×3-4,a 4=16=5×4-4,…,归纳可知a n =5n -4.答案:5n -4由a n 与S n 的关系求通项公式例1(1)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=5S n (n ≥1),则a n =()A.5×6nB.5×6n +1,n =1,×6n -2,n ≥2,n =1,×6n -2+1,n ≥2解析:C当n =1时,a 2=5S 1=5a 1=5,当n ≥2时,a n =5S n -1,所以a n +1-a n =5(S n -S n -1)=5a n ⇒a n +1=6a n ,而a 2=5a 1≠6a 1,所以数列{a n }从第二项起是以5为首项,6为公比的等比数列,所以a n ,n =1,×6n -2,n ≥2.(2)已知数列{a n }的前n 项和为S n ,且满足S n =2n +2-3,则a n =.解析:根据题意,数列{a n }满足S n =2n +2-3,当n ≥2时,有a n =S n -S n -1=(2n +2-3)-(2n +1-3)=2n +1,当n =1时,有a 1=S 1=8-3=5,不符合a n =2n +1,故a n ,n =1,n +1,n ≥2.,n =1,n +1,n ≥2反思感悟已知S n 求a n 的3个步骤(1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.训练1(1)已知数列{a n }的前n 项和为S n ,且2a 1+22a 2+23a 3+…+2n a n =n ·2n ,则数列{a n }的通项公式为a n =.解析:由题意,2a 1+22a 2+23a 3+…+2n a n =n ·2n ①,当n =1时,2a 1=2,∴a 1=1,当n ≥2时,2a 1+22a 2+23a 3+…+2n -1a n -1=(n -1)·2n -1②,①-②得2n a n =n ·2n -(n -1)2n -1=(n +1)2n -1(n ≥2),∴a n =n +12(n ≥2).当n =1时,a 1=1满足上式,∴a n =n +12.答案:n +12(2)已知S n 为数列{a n }的前n 项和,a 1=1,S n S n +1=-a n +1(n ∈N *),则a 10=.解析:根据题意,数列{a n }满足S n S n +1=S n -S n +1,且S n ≠0,则1S n +1-1S n =1,因为a 1=1,所以1S 1=11,公差为1的等差数列,则1S n =1+(n -1)×1=n ,所以S n =1n ,a 10=S 10-S 9=110-19=-190.答案:-190由数列的递推关系求通项公式累加法例2设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列{a n }的通项公式为a n =.解析:由题意a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又因为a 1=1,所以a n =n 2+n2(n ≥2).因为当n =1时也满足此式,所以a n =n 2+n2(n ∈N *).答案:n 2+n2(n ∈N *)累乘法例3已知a 1=2,a n +1=2n a n ,则数列{a n }的通项公式a n =.解析:因为a n +1a n=2n ,所以a na n -1=2n -1,a n -1a n -2=2n -2,…a 3a 2=22,a 2a 1=2(n ≥2),所以a n =a n a n -1·a n -1a n -2…·a 3a 2·a2a 1·a 1=2n -1·2n -2·…·22·2·2=21+2+3+…+(n -1)·2=2(n -1)·n2+1=2n 2-n +22,当n =1时也满足此式,所以a n =2n 2-n +22(n ∈N *).答案:2n 2-n +22(n ∈N *)反思感悟1.累加法:已知a 1,且a n -a n -1=f (n )(n ≥2),可用累加法求a n ,即a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1.2.累乘法:已知a 1,且a na n -1=f (n )(n ≥2),可用累乘法求a n ,即a n =a n a n -1·a n -1a n -2·…·a2a 1·a 1.训练2(1)已知数列{a n }满足a 1=3,a n +1=a n +1n -1n +1,则a n =()A.4+1n B.4-1nC.2+1n D.2-1n解析:B因为a n+1=a n+1n-1n+1,所以a n+1-a n=1n-1n+1,所以当n≥2时,a2-a1=1-12,a3-a2=12-13,…,a n-a n-1=1n-1-1n(n≥2),累加可得a n-a1=(a2-a1)+(a3-a2)+…+(a n-a n-1)=1-12+12-13+…+1n-1-1n=1-1 n (n≥2),因为a1=3,所以a n=1-1n+3=4-1n(n≥2),当n=1时,a1=3,满足上式,所以a n=4-1n,故选B.(2)在数列{a n}中,已知a n+1=nn+2a n(n∈N*),且a1=4,则数列{a n}的通项公式a n=.解析:由a n+1=nn+2a n,得a n+1a n=nn+2故a2a1=13,a3a2=24,…,a na n-1=n-1n+1(n≥2),以上式子累乘得,a na1=13×24×…·n-3n-1·n-2n·n-1n+1=2n(n+1).因为a1=4,所以a n=8n(n+1)(n≥2).因为a1=4满足上式,所以a n=8n(n+1)(n∈N*).答案:8n2+n(n∈N*)数列的性质数列的单调性例4已知数列{a n}的通项公式为a n=3n+k2n,若数列{a n}为递减数列,则实数k的取值范围为()A.(3,+∞)B.(2,+∞)C.(1,+∞)D.(0,+∞)解析:D因为a n+1-a n=3n+3+k2n+1-3n+k2n=3-3n-k2n+1,由数列{a n}为递减数列,知对任意n∈N*,a n+1-a n=3-3n-k2n+1<0,所以k>3-3n对任意n∈N*恒成立,所以k∈(0,+∞).数列的周期性例5(2024·哈尔滨质检)已知数列{a n}的前n项积为T n,a1=2且a n+1=1-1 a n,则T2024=.解析:∵a2=1-1a1=12,a3=1-1a2=-1,a4=1-1a3=2,…,∴数列{a n}是周期为3的数列.又a1a2a3=2×12×(-1)=-1,且2024=3×674+2,∴T2024=(-1)674·a2023·a2024=1×2×12=1.答案:1数列的最值例6已知数列{a n}的通项公式为a n=12n-15,其最大项和最小项的值分别为()A.1,-17B.0,-17C.1 7,-17D.1,-111解析:A因为n ∈N *,所以当1≤n ≤3时,a n =12n-15<0,且单调递减;当n ≥4时,a n =12n -15>0,且单调递减,所以最小项为a 3=18-15=-17,最大项为a 4=116-15=1.反思感悟1.解决数列单调性问题的三种方法(1)用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列或常数列.(2)用作商比较法,根据a n +1a n(a n >0或a n <0)与“1”的大小关系进行判断.(3)结合相应函数的图象直观判断.2.解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.3.求数列的最大项或最小项的常用方法(1)函数法,利用函数的单调性求最值.(2)n ≥a n -1,n ≥a n +1(n ≥2)n ≤a n -1,n ≤a n +1(n ≥2)确定最小项.训练3(1)如表,定义函数f (x ):x 12345f (x )54312对于数列{a n },a 1=4,a n =f (a n -1),n =2,3,4,…,则a 2023=()A.1B.2C.5D.4解析:C由题意,a 1=4,a n =f (a n -1),所以a 2=f (a 1)=f (4)=1,a 3=f (a 2)=f (1)=5,a 4=f (a 3)=f (5)=2,a 5=f (a 4)=f (2)=4,a 6=f (a 5)=f (4)=1,a 7=f (a 6)=f (1)=5,…,则数列{a n }是以4为周期的周期数列,所以a 2023=a 2020+3=a 3=5,故选C.(2)已知数列{a n }的通项a n =2n -192n -21,n ∈N *,则数列{a n }前20项中的最大项与最小项分别为.解析:a n =2n -192n -21=2n -21+22n -21=1+22n -21,当n ≥11时,22n -21>0,且单调递减;当1≤n ≤10时,22n -21<0,且单调递减.因此数列{a n }前20项中的最大项与最小项分别为第11项,第10项,a 11=3,a 10=-1.答案:3,-1限时规范训练(四十)A 级基础落实练1.已知数列{a n }的通项公式是a n =n3n +1,那么这个数列是()A.递增数列B.递减数列C.摆动数列D.常数列解析:A ∵a n +1-a n =n +13n +4-n 3n +1=1(3n +1)(3n +4)>0,∴a n +1>a n ,∴选A.2.已知数列a 1,a 2a 1,a3a 2,…,a n +1a n,…是首项为1,公比为2的等比数列,则下列数中是数列{a n }中的项的是()A.16B.128C.32D.64解析:D a n +1=a 1·a 2a 1·a 3a 2·…·a n +1a n=1×21×22×…×2n =21+2+…+n=2n (n +1)2,当n =3时,a 4=26=64.3.(2024·莆田质检)九连环是我国从古至今广泛流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.在某种玩法中,用a n 表示解下n (n ≤9,n ∈N *)个圆环所需的最少移动次数,若a 1=1,且a n +1n +2,n 为奇数,a n -1,n 为偶数,则解下6个环所需的最少移动次数为()A.13B.15C.16D.29解析:B∵a1=1,a n+1n+2,n为奇数,a n-1,n为偶数,∴a2=a1+2=3,a3=2a2-1=5,a4=a3+2=7,a5=2a4-1=13,a6=a5+2=15.4.大衍数列,来源于我国的《乾坤谱》,是世界数学史上第一道数列题,主要用于解释中国传统文化中的太极衍生原理.其前11项依次是0,2,4,8,12,18,24,32,40,50,60,则大衍数列的第41项为()A.760B.800C.840D.924解析:C由题意得,大衍数列的奇数项依次为12-12,32-12,52-12,…,易知大衍数列的第41项为412-12=840.5.(多选)已知数列{a n}的通项公式为a n=(n+2)·(67)n,则下列说法正确的是()A.数列{a n}的最小项是a1B.数列{a n}的最大项是a4C.数列{a n}的最大项是a5D.当n≥5时,数列{a n}递减解析:BCD假设第n项为{a n}n≥a n-1,n≥a n+1,n+2)·(67)n≥(n+1)·(67)n-1,n+2)·(67)n≥(n+3)·(67)n+1,≤5,≥4,又n∈N*,所以n=4或n=5,故数列{a n}中a4与a5均为最大项,且a4=a5=6574,当n≥5时,数列{a n}递减.6.(2023·珠海质检)数列{a n}满足a1=1,a2=2且a n+2=a n+(-1)n,n∈N*,则该数列的前40项之和为()A.-170B.80C.60D.230解析:C由a n +2=a n +(-1)n ,n ∈N *,得a 2k +2=a 2k +1,a 2k +1=a 2k -1-1,所以a 2k +1+a 2k +2=a 2k -1+a 2k =…=a 1+a 2=3,所以数列{a n }的前40项之和为20(a 1+a 2)=60.7.数列1,12,12,12,13,13,13,13,13,14,…的第2024项为()A.144B.145C.146D.12025解析:B 观察可知数列的构成规律为1个1,3个12,5个13,…,(2n -1)个1n,….注意到1+3+5+…+(2n -1)=n 2,而442=1936<2024,452=2025>2024,由此知数列的第2024项为145.8.数列{a n }满足a 1=1,对任意n ∈N *,都有a n +1=1+a n +n ,则1a 1+1a 2+…+1a 99=()A.9998B.2C.9950D.99100解析:C由a n +1=1+a n +n ,得a n +1-a n =n +1,则a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=n (n +1)2,则1a n =2n (n +1)=2n -2n +1,则1a 1+1a 2+…+1a 99=2×[(1-12)+(12-13)+…+(199-1100)]=2×(1-1100)=9950.9.S n为数列{a n}的前n项和,且log2(S n+1)=n+1,则数列{a n}的通项公式为.解析:由log2(S n+1)=n+1,得S n+1=2n+1,当n=1时,a1=S1=3;当n≥2时,a n=S n-S n-1=2n,显然当n=1时,不满足上式.所以数列{a n}的通项公式为a n,n=1,n,n≥2.答案:a n,n=1,n,n≥210.已知数列{a n}的首项a1=1,前n项和为S n,且满足2a n+1+S n=2(n∈N*),则数列{a n}的通项公式a n=.解析:因为2a n+1+S n=2,①当n≥2时,2a n+S n-1=2,②由①式减②式得a n+1=12a n,又当n=1时,2a2+S1=2,得a2=12=12a1,所以数列{a n}是以1为首项,公比为12的等比数列,a n=12n-1.答案:1 2n-111.已知数列{a n}中,前n项和为S n,且S n=n+23a n,则a na n-1的最大值为.解析:∵S n=n+23a n,∴当n≥2时,a n=S n-S n-1=n+23a n-n+13a n-1,可化为a na n-1=n+1n-1=1+2n-1,由函数y=2x-1在区间(1,+∞)上单调递减,可得当n=2时,2n-1取得最大值2.∴a na n-1的最大值为3.答案:312.已知[x]表示不超过x的最大整数,例如:[2.3]=2,[-1.7]=-2.在数列{a n}中,a n=[lg n],记S n为数列{a n}的前n项和,则a2024=;S2024=.解析:∵a n =[lg n ],∴当1≤n ≤9时,a n =[lg n ]=0;当10≤n ≤99时,a n =[lg n ]=1;当100≤n ≤999时,a n =[lg n ]=2;当1000≤n ≤9999时,a n =[lg n ]=3.∴a 2024=[lg 2024]=3,S 2024=9×0+90×1+900×2+1025×3=4965.答案:34965B 级能力提升练13.(2024·绵阳模拟)若数列{a n }满足(n -1)a n =(n +1)a n -1(n ≥2)且a 1=2,则满足不等式a n <462的最大正整数n 为()A.20 B.19C.21D.22解析:A ∵(n -1)a n =(n +1)a n -1(n ≥2),∴当n ≥2时,a n a n -1=n +1n -1,∴a n =a 1×a 2a 1×a 3a 2×…×a n a n -1=2×31×42×53×…×n +1n -1=n (n +1),当n =1时,a 1=2=1×2,∴a n =n (n +1),又a n <462,∴n (n +1)<462,解得-22<n <21,又n ∈N *,故所求n 的最大值为20.14.已知数列{a n }满足a 1=1,a 2=116,a n a n +2=4a 2n +1,则a n 的最小值为()A.2-12B.2-10C.2-5D.2-6解析:D ∵a 1=1,a 2=116,a n a n +2=4a 2n +1,∴a n ≠0,a n +2a n +1=4a n +1a n ,∴是首项为a 2a 1=116,公比为4的等比数列,∴a n +1a n =116×4n -1=4n -3.当n ≥2时,a n=a n a n -1·a n -1a n -2·…·a 2a 1·a 1=4n -4×4n -5×…×4-2×1=412(n -1)(n -6),∵n =1时,412(n -1)(n -6)=1=a 1,∴a n =412(n -1)(n -6)=412(n -72)2-258,n ∈N *,∴当n =3或n=4时,a n取得最小值,最小值为4-3=2-6.15.已知数列{a n}的通项公式为a n=n33n,当a n 最大时,n=.(33≈1.44)解析:设a n是数列{a n}n+1≤a n,n-1≤a n,≤n33n,≤n33n,解得1 33-1≤n≤3333-1.因为33≈1.44,所以n的值为3.(也可以通过列举得出{a n}的最大项)答案:316.(2024·八省八校联考)数列{a n}:1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,该数列是由意大利数学家莱昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.在数学上,斐波那契数列可表述为a1=a2=1,a n=a n-1+a n-2(n≥3,n∈N*).设该数列的前n项和为S n,记a2023=m,则S2021=.(用m表示)解析:由a n=a n-1+a n-2得a n=a n+2-a n+1(n∈N*),即S2021=a1+a2+…+a2021=a3-a2+a4-a3+…+a2023-a2022=a2023-a2=m-1.答案:m-1。

2014高考数学(理)一轮复习总教案:6.1 数列的概念与简单表示法

第六章数列高考导航考试要求重难点击命题展望1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式);(2)了解数列是自变量为正整数的一类函数。

2.等差数列、等比数列(1)理解等差数列、等比数列的概念;(2)掌握等差数列、等比数列的通项公式与前n项和公式;(3)能在具体问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题;(4)了解等差数列与一次函数、等比数列与指数函数本章重点:1.等差数列、等比数列的定义、通项公式和前n项和公式及有关性质;2。

注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、分组求和法、函数与方程思想、数学模型思想以及离散与连续的关系。

本章难点:1。

数列概念的理解;2.等差等比数列性质的运用;3.数列通项与求和方法仍然会以客观题考查等差数列与等比数列的通项公式和前n项和公式及性质,在解答题中,会保持以前的风格,注重数列与其他分支的综合能力的考查,在高考中,数列常考常新,其主要原因是它作为一个特殊函数,使它可以与函数、不等式、解析几何、三角函数等综合起来,命出开放性、探索性强的问题,更体现了知识交叉命题原则得以贯彻;又因为数列与生产、生的关系.的运用。

活的联系,使数列应用题也倍受欢迎.知识网络6。

1 数列的概念与简单表示法典例精析题型一归纳、猜想法求数列通项【例1】根据下列数列的前几项,分别写出它们的一个通项公式:(1)7,77,777,7 777,…(2)错误!,-错误!,错误!,-错误!,…(3)1,3,3,5,5,7,7,9,9,…【解析】(1)将数列变形为错误!·(10-1),错误!(102-1),错误!(103-1),…,错误!(10n -1),故an =错误!(10n -1).(2)分开观察,正负号由(-1)n +1确定,分子是偶数2n,分母是1×3,3×5,5×7, …,(2n -1)(2n +1),故数列的通项公式可写成an =(-1)n +1)12)(12(2+-n n n.(3)将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,….故数列的通项公式为an =n +2)1(1n-+。

高考数学一轮复习第五章数列5.1数列的概念与简单表示法教案.doc

数列的概念与简单表示法【教学目标】1.了解数列的概念和几种简单的表示方法(列表、图象、公式法).2.了解数列是自变量为正整数的一类特殊函数. 【重点难点】1.教学重点:了解数列的概念和几种简单的表示方法(列表、图象、公式法).;2.教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力; 【教学策略与方法】自主学习、小组讨论法、师生互动法 【教学过程】 教学流程 教师活动 学生活动设计意图考纲传真:1.了解数列的概念和几种简单的表示方法(列表、图象、公式法).2.了解数列是自变量为正整数的一类特殊函数. 真题再现;1.(2014·辽宁高考文科)设等差数列的公差为d ,若数列{}12na a 为递减数列,则11()0()0()0()0A dB dC a dD a d ><><【解题提示】 依照递减数列的定义,得11122nn a a a a -<,再由指数函数性质得111n na a a a ->结合等差数列的定义即可解决问题.【解析】选D.由于数列{}12na a 为递减数列,得11122nn a a a a -<,再由指数函数性质得111n na a a a ->,由等差数列的公差为d 知,1n n a a d--=,所以1111111110()00.n n n n n n a a a a a a a a a a a a d --->⇒-<⇒-<⇒<2. (2014·新课标全国卷Ⅱ高考文科数学·T16)数列学生通过对高考真题的解决,发现自己对知识的掌握情况。

通过对考纲的解读和分析。

让学生明确考试要求,做到有的放矢{a n}满足a n+1=11na-,a8=2,则a1= .【解题提示】利用递推关系式逐步推导,可直接求得a1.【解析】由a n+1=11na-,可得a n=1-11na+,又a8=2,故a7=12,……依次下去得a1=12.答案:12知识梳理:知识点1 数列的概念按照一定次序排列的一列数称为数列,数列中的每一个数叫作这个数列的项.数列一般形式可以写成a1,a2,a3,…,a n,…,简记为{a n},其中数列的第1项a1也称首项;a n是数列的第n项,也叫数列的通项.知识点2 数列的分类类型满足条件有穷数列项数有限无穷数列项数无限递增数列a n+1>a n其递减数列a n+1<a n常数项a n+1=a n摆动数列从第2项起有些项大于它的前一项,有些项项周期数列∀n∈N*,存在正整数k,a n+知识点3 数列的表示方法列表格表示n与a n的对应关系把点(n,a n)画在平面直角坐标系中把数列的通项使用公式表示的方法使用初始值a1和a n+1=f(a n)或a1,a2和a n+1=f(a n,a n-1)等表知识点4 数列与函数的关系从函数观点看,数列可以看作定义域为正整数集N *(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.知识点5 a n 与S n 的关系若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1,n ≥2.名师点睛:1.必会结论在数列{a n } 中,若a n 最大,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1.若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1.2.必知联系;数列中的数与集合中的元素的区别与联系:(1)若组成两个数列的数相同而排列次序不同,则它们是不同的数列.这区别于集合中元素的无序性. (2)数列中的数可以重复出现而集合中的元素不能重复出现. 考点分项突破考点一:由数列的前几项归纳数列的通项公式 1.数列1,3,6,10,…的一个通项公式是( )A .a n =n 2-(n -1)B .a n =n 2-1C .a n =n n +12D .a n =n n -12【解析】 观察数列1,3,6,10,…可以发现1=1, 3=1+2,6=1+2+3, 10=1+2+3+4,…第n 项为1+2+3+4+…+n =n n +12.∴a n =n n +12.【答案】 C2.数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =________.【解析】 数列可以看作32,55,710,917,…,分母可以看作12+1,22+1,32+1,42+1,第n 项分母为n 2+1,分子可以看作2×1+1,2×2+1,2×3+1,2×4+1,第n 项分子为2n +1,故a n =2n +1n 2+1. 【答案】2n +1n 2+1归纳: 由前几项归纳数列通项的常用方法及具体策略1.常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.2.具体策略:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k +1,k ∈N *处理.考点二: 由a n 与S n 的关系求通项(1)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.(2)已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式:①S n =2n 2-3n ;②S n =3n+b .【解析】 (1)由S n =23a n +13得,当n ≥2时,S n -1=23a n-1+13,两式相减,整理得a n =-2a n -1,又n =1时,S 1=a 1=23a 1+13,∴a 1=1,∴{a n }是首项为1,公比为-2的等比数列,故a n =(-2)n -1. 【答案】 (-2)n -1(2)①a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5,由于a 1也适合此等式,∴a n =4n -5. ②a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n-1.当b =-1时,a 1适合此等式.当b ≠-1时,a 1不适合此等式.∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n ={3+b ,n =1,2·3n -1,n ≥2.跟踪训练:1.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .64【解析】 a 8=S 8-S 7=82-72=15. 【答案】 A2.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B.⎝ ⎛⎭⎪⎫32n -1C.⎝ ⎛⎭⎪⎫23n -1D.12n -1【解析】 由a n +1=S n +1-S n ,得12S n =S n +1-S n ,即S n +1=32S n (n ≥1),又S 1=a 1=1,所以数列{S n }是首项为1,公比为32的等比数列,所以S n =⎝ ⎛⎭⎪⎫32n -1,故选B.【答案】 B归纳:已知S n 求a n 的三个步骤1.当n =1时,a 1=S 1. 2.当n ≥2时,a n =S n -S n -1.3.对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则a n 应写成分段函数的形式,即a n=⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.考点三: 由数列的递推公式求通项公式 1.根据下列条件,确定数列{a n }的通项公式:(1)a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ;(2)a 1=1,a n +1=2na n ; (3)a 1=1,a n +1=3a n +2.【解】 (1)∵a n +1=a n +ln ⎝⎛⎭⎪⎫1+1n ,∴a n -a n -1=ln ⎝⎛⎭⎪⎫1+1n -1=ln nn -1(n ≥2), ∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln nn -1+ln n -1n -2+…+ln 32+ln 2+2=2+ln ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·32·2=2+ln n (n ≥2). 又a 1=2适合上式,故a n =2+ln n (n ∈N *). (2)∵a n +1=2na n ,∴a n a n -1=2n -1(n ≥2), ∴a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=2n n -12.又a 1=1适合上式,故a n =2n n -12.(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), 又a 1=1,∴a 1+1=2,故数列{a n +1}是首项为2,公比为3的等比数列,∴a n +1=2·3n -1,因此a n =2·3n -1-1.跟踪训练:。

第5篇 数列专题


A.an=n -n+1 nn+1 C.an= 2
2
nn-1 B.an= 2 nn+2 D.an= 2
抓住3个考点
突破3个考向
揭秘3年高考
解析
从图中可观察星星的构成规律,
n=1 时,有 1 个;n=2 时,有 1+2=3 个;n=3 时,有 1 +2+3=6 个;n=4 时,有 1+2+3+4=10 个;„ nn+1 ∴an=1+2+3+4+„+n= . 2
抓住3个考点
突破3个考向
揭秘3年高考
等差数列的判定方法有以下四种: (1)定义法:an+1-an=d(常数)(n∈N*);(2)等差中项法:2an+
* ) ; (3) 通项公式法: a = an + b ( a , b 是常 = a + a ( n ∈ N 1 n n+2 n
数, n ∈ N * ) ; (4) 前 n 项和公式法: S n = an 2 + bn ( a , b 为常 数).但如果要证明一个数列是等差数列,则必须用定义法或 等差中项法.
3 ∴Sn+1-Sn= (Sn-Sn-1), 2 an+1 3 3 即 an+1= an,∴ = , 2 an 2 3 由 a1=1,得 S2=2a1+1=a1+a2,
抓住3个考点
突破3个考向
揭秘3年高考
3 a2 3 ∴a2= ,∴ = . 2 a1 2 3 ∴数列{an}是首项为 1,公比为 的等比数列. 2
抓住3个考点
突破3个考向
揭秘3年高考
上述 n-1 个式子的等号两端分别相加可得:an-a1=n2-1, ∴an=n2. 又∵a1 也满足上式,所以 an=n2. an an-1 an-2 a3 a2 (2)an= · · · „· · · a an-1 an-2 an-3 a2 a1 1 n-1 n-2 n 3 2 2 = × n × ×„×4×3×1= , n+1 n-1 n+1 2 又∵a1 也满足上式,∴an= (n∈N*). n+1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章数列第1课时数列的概念及其简单表示法(对应学生用书(文)、(理)70~71页)考情分析考点新知理解数列的概念,认识数列是反映自然规律的基本数学模型,探索并掌握数列的几种简单表示法(列表、图象、通项公式);了解数列是一种特殊的函数;发现数列规律找出可能的通项公式.①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).②了解数列是自变量为正整数的一类函数.1. (必修5P32习题1改编)一个数列的前四项为-1,12,-13,14,则它的一个通项公式是________.答案:a n=(-1)n1n2. (必修5P31练习2改编)已知数列{a n}的通项公式是a n=n+12n+3,则这个数列的第5项是________.答案:a5=6133. (必修5P44习题8改编)若数列{a n}的前n项和S n=n2+3n,则a6+a7+a8=________.答案:48解析:a6+a7+a8=S8-S5=88-40=48.4. (必修5P32习题6改编)已知数列{a n}的通项公式是a n=n2-8n+5,这个数列的最小项是________.答案:-11解析:由a n =(n -4)2-11,知n =4时,a n 取最小值为-11.1. 数列的概念按照一定顺序排列的一列数. 2. 数列的分类项数有限的数列叫做有穷数列. 项数无限的数列叫做无穷数列. 3. 数列与函数的关系从函数观点看,数列可以看成是以正整数为定义域的函数a n =f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.反过来,对于函数y =f(x),如果f(i)(i =1,2,3,…)有意义,那么可以得到一个数列{f(n)}.4. 数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个公式a n =f(n)(n =1,2,3,…)来表示,那么这个公式叫做这个数列的通项公式.通项公式可以看成数列的函数解析式.5. 数列{a n }的前n 项和S n 与通项a n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[备课札记]题型1 由数列的前几项写通项公式 例1 写出下列数列的一个通项公式: (1) 1,-3,5,-7,9,… (2) 1,0,13,0,15,0,17,…(3) a ,b ,a ,b ,a ,b ,…(4) 0.9,0.99,0.999,0.9999,… (5) 1,22,12,24,14,… 解:(1) a n =(-1)n +1(2n -1). (2) a n =1-(-1)n2n.(3) a n =(-1)n +1(a -b )+a +b2.(4) a n =1-110n .(5) a n =(2)1-n .变式训练写出下列数列的一个通项公式: (1) -12,2,-92,8,-252,…(2) 5,55,555,5555,… (3) 1,3,6,10,15,… 解:(1) a n =(-1)nn 22. (2) a n =59(10n -1).(3) a n =n (n +1)2.题型2 由a n 与S n 关系求a n例2 已知数列{a n }的前n 项和S n ,求通项a n . (1) S n =3n -1; (2) S n =n 2+3n +1.解:(1) n =1时,a 1=S 1=2. n ≥2时,a n =S n -S n -1=2·3n -1.当n =1时,a n =1符合上式. ∴ a n =2·3n -1. (2) n =1时,a 1=S 1=5. n ≥2时,a n =S n -S n -1=2n +2. 当n =1时a 1=5不符合上式.∴ a n =⎩⎪⎨⎪⎧5,n =1,2n +2,n ≥2.备选变式(教师专享)已知函数f(x)=ax 2+bx(a ≠0)的导函数f′(x)=-2x +7,数列{a n }的前n 项和为S n ,点P n (n ,S n )(n ∈N *)均在函数y =f(x)的图象上,求数列{a n }的通项公式及S n 的最大值.解:由题意可知:∵ f(x)=ax 2+bx(a ≠0),∴ f ′(x)=2ax +b ,由f′(x)=-2x +7对应相等可得a =-1,b =7,∴ 可得f(x)=-x 2+7x.因为点P n (n ,S n )(n ∈N *)均在函数y =f(x)的图象上,所以有S n=-n 2+7n.当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=-2n +8,a 1=6适合上式, ∴ a n =-2n +8(n ∈N *).令a n =-2n +8≥0得n ≤4,当n =3或n =4时,S n 取得最大值12. 综上,a n =-2n +8(n ∈N *),当n =3或n =4时,S n 取得最大值12. 题型3 数列的性质 例3 如下表定义函数f(x):对于数列{a n },a 1=4,a n =f(a n -1),n =2,3,4,…,求a 2 008.解:a 1=4,a 2=1,a 3=5,a 4=2,a 5=4,…,可得a n +4=a n .所以a 2008=a 4=2. 备选变式(教师专享)已知数列{}a n 的通项公式a n =n -98n -99(n ∈N *),求数列前30项中的最大项和最小项.解:∵a n =1+99-98n -99,∴当n ≤9时,a n 随着n 的增大越来越小且小于1,当10≤n ≤30时,a n 随着n 的增大越来越小且大于1,∴前30项中最大项为a 10,最小项为a 9.1. 已知a 1=1,a n =n(a n +1-a n )(n ∈N *),则数列{a n }的通项公式是________. 答案:a n =n解析:由已知整理得(n +1)a n =na n +1, ∴a n +1n +1=a n n .∴ 数列⎩⎨⎧⎭⎬⎫a n n 是常数列,且a n n =a 11=1.∴ a n =n.2. 设a >0,若a n =⎩⎪⎨⎪⎧(3-a )n -3,n ≤7,a n -6,n >7,且数列{a n }是递增数列,则实数a 的范围是__________.答案:2<a <3解析:由{a n}是递增数列,得⎩⎪⎨⎪⎧3-a >0,a >1,a 8>a 7,解得⎩⎪⎨⎪⎧1<a <3,a <-9或a >2,∴ 2<a <3.3. 已知数列{a n }的前n 项和为S n ,满足log 2(1+S n )=n +1,则{a n }的通项公式为__________.答案:a n =⎩⎪⎨⎪⎧3,n =12n ,n ≥2解析:由log 2(1+S n )=n +1,得S n =2n +1-1. n =1时,a 1=S 1=3. n ≥2时,a n =S n -S n -1=2n .当n =1时a 1=3不符合上式,∴ a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.4. (2013·湖南)设S n 为数列{a n }的前n 项和,若S n =(-1)n a n -12n ,n ∈N ,则a 3=________.答案:-116解析:当n =3时,S 3=a 1+a 2+a 3=-a 3-18,则a 1+a 2+2a 3=-18,当n =4时,S 4=a 1+a 2+a 3+a 4=a 4-116,两式相减得a 3=-116.5. 若数列⎩⎨⎧⎭⎬⎫n (n +4)⎝⎛⎭⎫23n 中的最大项是第k 项,则k =________.答案:4解析:设最大项为第k 项,则有⎩⎪⎨⎪⎧k (k +4)⎝⎛⎭⎫23k ≥(k +1)(k +5)⎝⎛⎭⎫23k +1,k (k +4)⎝⎛⎭⎫23k≥(k -1)(k +3)⎝⎛⎭⎫23k -1,∴ ⎩⎪⎨⎪⎧k 2≥10,k 2-2k -9≤0,解得⎩⎪⎨⎪⎧k ≥10或k ≤-10,1-10≤k ≤1+10,∴ k =4.1. 若a n =n 2+λn +3(其中λ为实常数),n ∈N *,且数列{a n }为单调递增数列,则实数λ的取值范围为________.答案:(-3,+∞)解析:解法1:(函数观点)因为{a n }为单调递增数列,所以a n +1>a n ,即(n +1)2+λ(n +1)+3>n 2+λn +3,化简为λ>-2n -1对一切n ∈N *都成立,所以λ>-3.故实数λ的取值范围为(-3,+∞).解法2:(数形结合法)因为{a n }为单调递增数列,所以a 1<a 2,要保证a 1<a 2成立,二次函数f(x)=x 2+λx +3的对称轴x =-λ2应位于1和2中点的左侧,即-λ2<32,亦即λ>-3,故实数λ的取值范围为(-3,+∞).2. 已知a n =n ×0.8n (n ∈N *). (1) 判断数列{a n }的单调性;(2) 是否存在最小正整数k ,使得数列{a n }中的任意一项均小于k ?请说明理由. 解:(1) ∵a n +1-a n =4-n5×0.8n (n ∈N *),∴n <4时,a n <a n +1;n =4时,a 4=a 5;n >4时,a n >a n +1.即a 1,a 2,a 3,a 4单调递增,a 4=a 5,而a 5,a 6,…单调递减.(2) 由(1) 知,数列{a n }的第4项与第5项相等且最大,最大项是4554=1024625=1399625.故存在最小的正整数k =2,使得数列{a n }中的任意一项均小于k.3. 若数列{a n }满足a n +1=a n +a n +2(n ∈N *),则称数列{a n }为“凸数列”.(1) 设数列{a n }为“凸数列”,若a 1=1,a 2=-2,试写出该数列的前6项,并求出前6项之和;(2) 在“凸数列”{a n }中,求证:a n +3=-a n ,n ∈N *;(3) 设a 1=a ,a 2=b ,若数列{a n }为“凸数列”,求数列前2011项和S 2 011.(1) 解:a 1=1,a 2=-2,a 3=-3,a 4=-1,a 5=2,a 6=3,故S 6=0.(2) 证明:由条件得⎩⎪⎨⎪⎧a n +1=a n +a n +2,a n +2=a n +1+a n +3,所以a n +3=-a n .(3) 解:由(2) 的结论得a n +6=-a n +3=a n ,即a n +6=a n . a 1=a ,a 2=b ,a 3=b -a ,a 4=-a ,a 5=-b ,a 6=a -b , ∴S 6=0.由(2)得S 6n +k =S k ,n ∈N *,k =1,…,6, 故S 2 011=S 335×6+1=a 1=a.4. 已知数列的前n 项和为S n ,并且满足a 1=2,na n +1=S n +n(n +1).(1) 求{a n }的通项公式;(2) 令T n =⎝⎛⎭⎫45nS n ,是否存在正整数m ,对一切正整数n ,总有T n ≤T m ?若存在,求m 的值;若不存在,说明理由.解:(1) 令n =1,由a 1=2及na n +1=S n +n(n +1),① 得a 2=4,故a 2-a 1=2,当n ≥2时,有(n -1)a n =S n -1+n(n -1),② ①-②,得na n +1-(n -1)a n =a n +2n. 整理得a n +1-a n =2(n ≥2).当n =1时,a 2-a 1=2,所以数列{a n }是以2为首项,以2为公差的等差数列, 故a n =2+(n -1)×2=2n.(2) 由(1)得S n =n(n +1),所以T n =⎝⎛⎭⎫45n(n 2+n). 故T n +1=⎝⎛⎭⎫45n +1[(n +1)2+(n +1)],令⎩⎪⎨⎪⎧T n ≥T n +1,T n ≥T n -1,即⎩⎪⎨⎪⎧⎝⎛⎭⎫45n(n 2+n )≥⎝⎛⎭⎫45n +1[(n +1)2+(n +1)],⎝⎛⎭⎫45n(n 2+n )≥⎝⎛⎭⎫45n -1[(n -1)2+(n -1)],即⎩⎨⎧n ≥45(n +2),45(n +1)≥n -1,解得8≤n ≤9.故T 1<T 2<…<T 8=T 9>T 10>T 11>…故存在正整数m 对一切正整数n ,总有T n ≤T m , 此时m =8或m =9.1. 数列中的数的有序性是数列定义的灵魂,要注意辨析数列的项和数集中元素的异同,数列可以看作是一个定义域为正整数集或其子集的函数,因此在研究数列问题时,既要注意函数方法的普遍性,又要注意数列方法的特殊性.2. 根据所给数列的前几项求其通项,需要仔细观察分析,抓住特征:分式中分子、分母的独立特征,相邻项变化的特征,拆项后的特征,各项的符号特征和绝对值特征,并由此进行化归、归纳、联想.3. 通项a n 与前n 项和S n 的关系是一个十分重要的考点.运用时不要忘记讨论a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2). 请使用课时训练(A )第1课时(见活页).[备课札记]。

相关文档
最新文档