数列的概念及简单表示法

合集下载

数列的概念与简单的表示方法

数列的概念与简单的表示方法
规律:从第3个数开始,每一个数都等于它的前两个数的和。 三角形数: 1,3,6,10,……
规律:1 =1
3 =1+2
6 =1+2+3
10 =1+2+3+4
正方形数:1,4,9,16,……
规律: 1
4
9
16
问题:以上这三列数有什么共同特点? 按照一定顺序排列 着的一列数称为数列。
数列的概念
1、数列定义:按一定次序排成的一列数叫数列。 2、项的定义:数列中的每一个数都叫做这个数列的项, 各项依次叫做这个数列的第1项a1(或首项),第2项a2 ,… ,第n项an … , n是数列的项数。 3、数列的一般表示:数列的一般形式可表示a1,a2,… ,an,…简记为{an}。 注意:其中an是数列的第n项。
传说古希腊毕达哥拉斯学派的数学家经常在沙 滩上研究数学问题,他们在沙滩上画点或用小 石子摆成不同形状来研究数。
1
3
6
10
1,3,6,10,……,由于它们能够表示三角形,就把这 样的数称为三角形数。
1
4
9
16
类似的,1,4,9,16,……,这样的数称为正方形数。
1,1,2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,21=8+13,……
n×(n+1) ……
解:这个数列的前4项都是分子为1的负分数,且分母等于 它的项数乘上后一项项数。 这个数列的一个通项公式为 an =(-1)/n×(n+1)
按项数

2、数列的分类:
{
有限数列 无穷数列 递增数列 递减数列 常数列 摆动数列
按增减性

2.1数列的概念与简单表示法

2.1数列的概念与简单表示法

第二章 数列2.1 数列的概念与简单表示法一、 知识点 (一)数列的定义1、按一定次序排列的一列数叫做数列,数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项)排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项。

2、数列中的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列,例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4,3,是不同的数列。

3、在数列的定义中,并没有规定数列中的数必须不同,因此 ,同一个数在数列中可以重复出现4、数列的一般形式可以写成12,,...,,...n a a a 此数列可简记为{}n a 例如;把数列1111,,,...,,...23n 简记作1n ⎧⎫⎨⎬⎩⎭5、数列的项通常用字母加右下角标表示,其中右下角标表示项的位置序号、我们还应注意到这里{}n a 与n a 是不同的:{}n a 表示数列12,,...,n a a a ;而n a 只表示这个数列的第n 项,这里{}n a 是数列的简记符号,并不表示一个集合。

(二)数列的分类根据数列的项数可以对数列进行分类 1、 项数有限的数列叫有穷数列 2、 项数无限的数列叫无穷数列补充说明:按照项与项之间的大小关系、数列的增减性,可以分为以下几类1、 递增数列:一个数列,如果从第2项起,每一项都大于它前面的一项(即1n n a a +>),这样的数列叫做递增数列。

2、 递减数列:一个数列,如果从第2项起,每一项都小于它前面的一项(即1n n a a +<), 这样的数列叫做递减数列。

3、 摆动数列:一个数列,如果从第2项起,有些项大于它的前一项,有些项小于它的前一项,这样的数列叫做摆动数列。

4、 常数列:一个数列,如果它的每一项都相等,这个数列叫做常数列。

数列的概念及简单表示法(高三一轮复习)

数列的概念及简单表示法(高三一轮复习)

所以数列
S 2
n
是首项为S
2 1
=a
2 1
=1,公差为1的等差数列,所以S
2 n
=n,所以Sn=
n
(n∈N*).
数学 N 必备知识 自主学习 关键能力 互动探究
— 20 —
命题点2 由数列的递推公式求通项公式
考向1 累加法
例2
设数列
a
n
满足a1=1,且an+1-an=1(n∈N*),则数列
1 3
an+1,所以a2=3S1=3×
16 3
=16.当n≥2时,有an=Sn-Sn-1
=13an+1-13an,即an+1=4an.
所以从第二项起,数列an为首项为16,公比为4的等比数列,所以an= 4n(n≥2).
经检验,an=4n对n=1不成立,
所以an=136,n=1, 4n,n≥2.
数学 N 必备知识 自主学习 关键能力 互动探究
,所以a2=
4 2-a1

4 2-4
=-2,a3=
4 2-a2

4 2+2
=1,a4=
4 2-a3

4 2-1
=4,…,所以数列
a
n
是以3为周期的周期数列,又2
022=
673×3+3,所以a2 022=a673×3+3=1.
数学 N 必备知识 自主学习 关键能力 互动探究
— 12 —
4.(易错题)若数列
— 7—
4.数列的表示法 数列有三种表示法,它们分别是 8 列表法 、图象法和 9 解析法 .
数学 N 必备知识 自主学习 关键能力 互动探究
— 8—
常用结论► (1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有 关,还与这些“数”的排列顺序有关. (2)项与项数的概念:数列的项是指数列中某一确定的数,而项数是指数列的项 对应的位置序号. (3)若数列{an}的前n项和为Sn,则数列{an}的通项公式为an=SS1n,-nS=n-11,,n≥2.

一轮复习-数列的概念与简单表示法

一轮复习-数列的概念与简单表示法

(1)
(2)
(3)
(4)
例2 写出数列的一个通项公式, 使它的前4项分别是下列各数:
(1)1,3,5,7;
解:此数列的前四项1,3,5,7都 是序号的2倍减去1,所以通项公式 是:
an 2n 1
例1、 写出下面数列的一个通项公式,使它的 前4项分别是下列各数:
(1)1,3,5,7; (2)4,9, 16,25;
这说明:数列的项是序号的函数,序号从1 开始依次增加时,对应的函数值按次序排出就 是数列,这就是数列的实质。
所以:数列可以看成以正整数集N*(或它的有 限子集{1,2,3,4,…,n})为定义域的函数 an=f(n),当自变量按照从小到大的顺序依次取值时, 所对应的一列函数值。反过来,对于函数y=f(x),如 果f(i) (i=1,2,3,…)有意义,那可得到一个数列 f(1),f(2),f(3),…f(n),… 即数列是一种特殊的函数。
数列的一般形式可以写成: a1, a2, a3,an ,,
其中an是数列的第n项,上面的数列又可简记为 an
根据数列的前若干项写出的通项 公式的形式唯一吗?请举例说明。
注意:①一些数列的通项公式不是唯一的
②不是每一个数列都能写出它的通项公式 ③ {an }表示以an为通项的数列,即{an }表示
无穷数列:项数无限的数列. 例如数列1,2,3,4,5,6,…是无穷数列
2)根据数列项的大小分:
递增数列:从第2项起,每一项都大于它的前一项的数列。 递减数列:从第2项起,每一项都小于它的前一项的数列。 常数数列:各项相等的数列。 摆动数列:从第2项起,有些项大于它的前一项,
有些项小于它的前一项的数列
(3)1, 1 ,1 , 1 ; 23 4

高考数学知识点:数列的概念与简单表示法

高考数学知识点:数列的概念与简单表示法

高考数学知识点:数列的概念与简单表示法1500字数列是指按照一定规律排列的数字集合。

在高考数学中,数列是一个重要的知识点,它不仅会在选择题和填空题中出现,还会涉及到解答题的证明和计算。

本文将从数列的概念、简单表示法、常见数列以及数列的应用等方面,详细介绍高考数学数列知识点。

一、数列的概念数列中的数字按照一定的顺序排列,每个数字依次被称为数列的项。

一般来说,数列用字母表示,如a₁, a₂, a₃, ...,其中a₁表示数列的第一项,a₂表示数列的第二项,以此类推。

数列中的项可以是整数、分数或者实数,也可以是变量。

数列可以分为等差数列和等比数列两种。

等差数列是指相邻的两项之差都是一常数的数列,等差数列的通项公式一般为an = a₁ + (n-1)d,其中a₁表示首项,d表示公差,n表示项数。

等比数列是指相邻的两项之比都是一常数的数列,等比数列的通项公式一般为an = a₁ * r^(n-1),其中a₁表示首项,r表示公比,n表示项数。

二、数列的简单表示法在高考数学中,常见的数列表示法有两种:通项公式和递推公式。

通项公式是指通过数列的第n项表示数列的任意一项,递推公式是指通过数列的前一项表示数列的后一项。

以等差数列为例,该数列的递推公式为an = an-1 + d,表示每一项都是前一项与公差之和。

而通项公式为an = a₁ + (n-1)d,表示数列的任意一项可以通过项数和公差计算得出。

另外,数列也可以通过数列的前几项给出,例如{1, 2, 3, ...}表示自然数列,{2, 4, 6, ...}表示偶数列。

这种表示法在高考数学中较少使用,但在解答题时可能会用到。

三、常见数列在高考数学中,有一些常见的数列被广泛应用。

这些数列包括等差数列、等比数列、等差数列的前n项和、等比数列的前n项和、斐波那契数列等等。

1. 等差数列:等差数列是指相邻的两项之差都是一常数的数列。

例如{1, 3, 5, 7, ...}是一个公差为2的等差数列。

数列的概念和简单表示法ppt

数列的概念和简单表示法ppt

递增性
总结词
数列的各项按照从小到大的顺序排列。
详细描述
递增性指的是数列中的每一项都比前一项大,即数列按照从小到大的顺序排列。 例如,一个递增的整数数列可以是1,2,3,4,5,…。
递减性
总结词
数列的各项按照从大到小的顺序排列。
详细描述
递减性指的是数列中的每一项都比后一项小,即数列按照从大到小的顺序排 列。例如,一个递减的整数数列可以是5,4,3,2,1,…。
2023
数列的概念和简单表示法
目录
• 数列的定义和分类 • 数列的表示法 • 数列的特性 • 数列的简单运算 • 数列的扩展知识 • 数列的应用案例
01
数列的定义和分类
数列的定义
数列是一种特殊的函数,它按照顺序排列一组实数。 数列的第一个数叫做首项,最后一个数叫做末项。
数列中的每一个数叫做项,而每个项与它前面的那个 数的差叫做公差。
数列的极限和收敛性
数列的极限
如果当n趋向无穷大时,数列的项无限接近某个常数a,则称a为该数列的极限。
数列的收敛性
如果一个数列存在极限,则称该数列为收敛数列。
06
数列的应用案例
数列在金融领域的应用
复利计算
01
数列常用于计算投资收益的复利,如等比数列的求和公式被广
泛应用于计算累计利息。
风险评估
02
等差数列的性质
等差数列的任意一项都等于其首项加上一个常数,即第n 项a_n=a_1+(n-1)d,其中d为公差。
等比数列的概念和性质
等比数列的定义
如果一个数列从第二项起,每一项与前一项的比等于同一个常数,这个数列 就叫做等比数列。这个常数叫做等比数列的公比。
等比数列的性质

数学知识点:数列的概念及简单表示法_知识点总结

数学知识点:数列的概念及简单表示法_知识点总结

数学知识点:数列的概念及简单表示法_知识点总结
一般地按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项,数列的一般形式可以写成,简记为数列{an},其中数列的第一项a1也称首项,an是数列的第n项,也叫数列的通项2、数列的递推公式:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式表示,那么这个公式就叫做这个数列的递推公式,递推公式也是给出数列的一种方法。

从函数角度看数列:
数列可以看作是一个定义域为正整数集N'(或它的有限子集{l,2,3,…,n})的函数,即当自变量从小到大依次取值时对应的一列函数值,这里说的函数是一种特殊函数,其特殊性为自变量只能取正整数,且只能从I开始依次增大.可以将序号作为横坐标,相应的项作为纵坐标描点画图来表示一个数列,从数列的图象可以看出数列中各项的变化情况。

特别提醒:
①数列是一个特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,学习规律,即用共性来解决特殊问题;
②还要注意数列的特殊性(离散型),由于它的定义域是N'或它的子集{1,2,…,n},因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性.。

2.1数列的概念与简单表示法

2.1数列的概念与简单表示法

(2)1,3,5,7;
an=2n-1
(3)1,
3 4
,
1 2
,
5 16
;
变式:-3,-1,1,3;
aபைடு நூலகம்=2n-5
an
n 1 2n
(4)9,99,999,9999. an=10n-1
变式:5,55,555,5555;
an
5 9
(10n
1)
拓展: 试写出下面数列的一个通项公式,使它的前4项 分别是下列各数:
2.1数列的概念与简单表示法
古希腊毕达哥拉斯学派数学家曾研究过三 角形数
1
3
6
10
类似地,1,4,9,16,25,······ 被称为正方形数。
1
4
9
16
童谣: 一只青蛙一张嘴,两只眼睛四条腿; 两只青蛙两张嘴,四只眼睛八条腿; 三只青蛙三张嘴,六只眼睛十二条腿; 四只青蛙四张嘴,八只眼睛十六条腿
如:数列{n2}的第11项是__1_2_1. (2)一些数列的通项公式不是唯一的;
如:数列1,-1,1,-1,… (3)不是每一个数列都能写出它的通项公式.
如:数列1,24,8,3,19
例1、试写出下面数列的一个通项公式,使它的前4项 分别是下列各数:
(1)2, 4, 6, 8; an=2n
变式:4, 6, 8, 10; an=2n+2
(1)-2, 2, -2, 2;
an=(-1)n2
(2)1, 1 , 1 , 1 ;
23 4
an
(1)n1
1 n
(4)2,0,2,0.
an (1)n1 1
小结: 观察法求通项公式
(1)常见数列:正整数数列,奇数列,偶数列, 平方数列,三角形数列; (2)分数数列:观察分子分母的特点; (3)指数数列:观察底数、指数的特点; (4)各项符号一正一负:(-1)n或(-1)n+1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的概念及简单表示法
一、选择题
1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n等于( )
A.(-1)n+1
2
B.cos

2
C.cos n+1
2
π D.cos
n+2
2
π
解析令n=1,2,3,…,逐一验证四个选项,易得D正确. 答案 D
2.数列2
3
,-
4
5

6
7
,-
8
9
,…的第10项是( )
A.-16
17
B.-
18
19
C.-20
21
D.-
22
23
解析所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n}的通项公式a n=
(-1)n+1·
2n
2n+1
,故a10=-
20
21
.
答案 C
3.(2016·保定调研)在数列{a n}中,已知a1=1,a n+1=2a n+1,则其通项公式a
n
=( )
A.2n-1
B.2n-1+1
C.2n-1
D.2(n-1)
解析法一由a n+1=2a n+1,可求a2=3,a3=7,a4=15,…,验证可知a n =2n-1.
法二由题意知a n+1+1=2(a n+1),∴数列{a n+1}是以2为首项,2为公比的等比数列,∴a n+1=2n,∴a n=2n-1.
答案 A
4.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n 等于( ) A.2n -1 B.n 2 C.
(n +1)2
n 2
D.
n 2
(n -1)2
解析 设数列{a n }的前n 项积为T n ,则T n =n 2,
当n ≥2时,a n =T n T n -1=n 2
(n -1)2.
答案 D
5.数列{a n }满足a n +1+a n =2n -3,若a 1=2,则a 8-a 4=( ) A.7
B.6
C.5
D.4
解析 依题意得(a n +2+a n +1)-(a n +1+a n )=[2(n +1)-3]-(2n -3),即a n +2-
a n =2,所以a 8-a 4=(a 8-a 6)+(a 6-a 4)=2+2=4. 答案 D 二、填空题
6.若数列{a n }满足关系a n +1=1+1a n ,a 8=34
21,则a 5=________.
解析 借助递推关系,则a 8递推依次得到a 7=
2113,a 6=138,a 5=85
. 答案
8
5
7.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________. 解析 当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎨⎧4,n =1,
2n +1,n ≥2.
答案 ⎩⎨⎧4,n =1,2n +1,n ≥2.
8.(2017·北京海淀期末)已知数列{a n }的前n 项和为S n ,且a n ≠0(n ∈N *),又
a n a n +1=S n ,则a 3-a 1=________.
解析 因为a n a n +1=S n ,所以令n =1得a 1a 2=S 1=a 1,即a 2=1,令n =2,得a 2a 3
=S2=a1+a2,即a3=1+a1,所以a3-a1=1.
答案 1
三、解答题
9.数列{a n}的通项公式是a n=n2-7n+6.
(1)这个数列的第4项是多少?
(2)150是不是这个数列的项?若是这个数列的项,它是第几项?
(3)该数列从第几项开始各项都是正数?
解(1)当n=4时,a4=42-4×7+6=-6.
(2)令a n=150,即n2-7n+6=150,解得n=16或n=-9(舍去),即150是这个数列的第16项.
(3)令a n=n2-7n+6>0,解得n>6或n<1(舍).
∴从第7项起各项都是正数.
10.已知数列{a n}中,a1=1,前n项和S n=n+2
3
a
n
.
(1)求a2,a3;
(2)求{a n}的通项公式.
解(1)由S2=4
3
a
2
得3(a1+a2)=4a2,
解得a2=3a1=3.
由S3=5
3
a
3
得3(a1+a2+a3)=5a3,
解得a3=3
2
(a1+a2)=6.
(2)由题设知a1=1.
当n≥2时,有a n=S n-S n-1=n+2
3
a
n

n+1
3
a
n-1

整理得a n=n+1
n-1
a
n-1
.
于是
a 1=1, a 2=31
a 1,
a 3=42a 2, ……
a n -1=
n n -2
a n -2,
a n =
n +1
n -1a n -1
. 将以上n 个等式两端分别相乘, 整理得a n =
n (n +1)
2
.
显然,当n =1时也满足上式. 综上可知,{a n }的通项公式a n =
n (n +1)
2
.
11.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163
B.133
C.4
D.0
解析 ∵a n =-3⎝ ⎛
⎭⎪⎫n -522
+34,由二次函数性质,得当n =2或3时,a n 最大,最
大为0. 答案 D
12.(2017·石家庄质检)已知数列{a n }满足a n +2=a n +1-a n ,且a 1=2,a 2=3,则
a 2 016的值为________.
解析 由题意得,a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-
a 4=-1,a 7=a 6-a 5=2,∴数列{a n }是周期为6的周期数列,而 2 016=6×336,∴a 2 016=a 6=-1. 答案 -1
13.(2017·太原模拟)已知数列{a n}满足a1=1,a n-a n+1=na n a n+1(n∈N*),则a n =________.
解析由a n-a n+1=na n a n+1得
1
a
n+1

1
a
n
=n,则由累加法得
1
a
n

1
a
1
=1+2+…+(n
-1)=n2-n
2
,又因为a1=1,所以
1
a
n

n2-n
2
+1=
n2-n+2
2
,所以a n=
2
n2-n+2
.
答案
2
n2-n+2
14.(2016·开封模拟)已知数列{a n}中,a n=1+
1
a+2(n-1)
(n∈N*,a∈R且
a≠0).
(1)若a=-7,求数列{a n}中的最大项和最小项的值;
(2)若对任意的n∈N*,都有a n≤a6成立,求a的取值范围.
解(1)∵a n=1+
1
a+2(n-1)
(n∈N*,a∈R,且a≠0),
又a=-7,∴a n=1+
1
2n-9
(n∈N*).
结合函数f(x)=1+
1
2x-9
的单调性,可知1>a1>a2>a3>a4,a5>a6>a7>…>
a
n
>1(n∈N*).
∴数列{a n}中的最大项为a5=2,最小项为a4=0.
(2)a n=1+
1
a+2(n-1)
=1+
1
2
n-
2-a
2

已知对任意的n∈N*,都有a n≤a6成立,
结合函数f(x)=1+
1
2
x-
2-a
2
的单调性,
可知5<2-a
2
<6,即-10<a<-8.
即a的取值范围是(-10,-8).。

相关文档
最新文档