晶体有三个特征

合集下载

晶体学基础

晶体学基础

图 六方晶系的一些晶向指数与晶面指数
4.晶带
相交于某一晶向直线或平行于此直线的晶面构成一个晶带, 此直线称为晶带轴 设晶带轴的指数为[uvw],则晶带中任何一个晶面的指数 (hkl)都必须满足:hu+kv+lw=0,满足此关系的晶面都属 于以[uvw]为晶带轴的晶带。→晶带定律 (a) 由两晶面(h1k1l1) (h2k2l2)求其晶带轴[uvw]:
简单晶胞计算公式
正交晶系
dhkl
1 h k l a b c
2 2 2
立方晶系
d hkl
d hkl
a h k l
2 2 2

六方晶系
1 4 h hk k l 2 3 a c
2 2 2 2
的一组晶向,用<uvw>表示。数字相同,但排列顺序不
同或正负号不同的晶向属于同一晶向族。
eg: 立方晶系中
[111 ], [1 11], [1 1 1], [11 1][11 1], [1 11][1 1 1], [111 ] 八个晶向是立方体中
四个体对角线的方向,其原子排列完全相同,属同一晶向族,故用<111>表示。
六方晶系的晶向指数和晶面指
数同样可以应用上述方法标定,
这时取a1,a2,c为晶轴,而 a1轴与a2轴的夹角为120度,c 轴与a1,a2轴相垂直。但这种 方法标定的晶面指数和晶向指 数,不能显示六方晶系的对称 性,同类型 晶面和晶向,其指 数却不相雷同,往往看不出他 们的等同关系。
根据六方晶系的对称特点,对六 方晶系采用a1,a2,a3及c四个
§2.2.2 晶系和布拉菲点阵
1.七个晶系
2. 十四种布拉菲点阵 按照“每个阵点的周围环境相同”的要求,最先是布拉菲 (A. Bravais)用数学方法证明了只能有14种空间点阵。通 常人们所说的点阵就是指布拉菲点阵。

化学 晶体结构与性质总复习

化学  晶体结构与性质总复习

分子晶体
碘晶体构造
• 1.定义:只含分子的晶体称为分子晶体 如碘晶体只含I2分子,属于分子晶体。
构成粒子:分子
构成晶体中粒子间的相互作用:分子间作用力 (范德华力和氢键)
分子晶体熔化时一般只破坏分子间作用 力,不破坏化学键,也有例外,如S8
注:分子内原子间以共价键结合,除稀有气体
因为 稀有气体分子为单原子分子,无共价键。
〔5〕绝大多数有机物晶体 乙醇,冰醋酸,蔗糖
分子晶体的物理特性:
较低的熔点和沸点〔为什么?〕
较小的硬度〔多数分子晶体在常温时为 气态或液态〕
一般都是绝缘体,固态或熔融状态也不 导电,局部溶于水后导电(举例)。
溶解性与溶质、溶剂的分子的极性相关 ——相似相溶(讲)。 ➢原因:分子间作用力很弱
分子晶体熔沸点变化规律
一、晶体和非晶体
1、构造特征:晶体——构造微粒在微观空间里 呈周期性有序排列 非晶体——构造微粒无序排列
2 晶体与非晶体的性质特征
自范性
微观结构
晶体
有(能自发呈封闭的规则的多面 原子在三维空间里呈周期性有
体外形)
序排列
非晶体 没有(不能自发呈现多面体外形)
原子排列相对无序
• 说明:
– 晶体自范性的本质:是晶体中粒子在微观空间里呈现周期性的有序排列 的宏观表象。
所以在金刚石中
碳原子的杂化方式为sp3 金刚石晶体中所有的C—
C键长 相等
• 晶体中最小的碳环由6 个碳组成,且不在同一平面内,;
晶体中每个C原子被 12 个六元环所共有,每个环平均拥 有: 1 个C-C键, 1/2个C原子。
• 晶体中每个C参与了4条C—C键的形成,而在每条键中的
奉献只有一半,故C原子与C—C键数之比为:1:2

晶体结构笔记-固体物理学

晶体结构笔记-固体物理学

晶体结构一、晶体、准晶体和非晶体材料结构特征与差别(1)晶体结构:整个晶体是一个完整的单一结构,即结晶体内部的微粒在三维空间呈高度有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序,且具有各向异性。

(2)准晶体结构:既不同于晶体,也不同于非晶态,原子分布不具有平移对称性,但仍有一定的规则,且呈长程的取向性有序分布,可认为是一种准周期性排列。

一位准晶:原子有二维是周期分布的,一维是准晶周期分布。

一维准晶模型————菲博纳奇(fibonacci)序列。

其序列以L→L+S S →L(L,S分别代表长短两段线段)的规律增长,若以L为起始项,则会发现学列中L可以成双或成单出现,而S 只能成单出现,序列的任意项均为前两项之和,相邻的比值逐渐逼近i,当n →∞时,i=(1+√5)/2。

二维准晶,一种典型的准晶结构是三维空间的彭罗斯拼图(Penrose)。

二维空间的彭罗斯拼图由内,角为36度、144度和72度、108度的两种菱形组成,能够无缝隙无交叠地排满二维平面。

这种拼图没有平移对称性,但是具有长程的有序结构,并且具有晶体所不允许的五次旋转对称性。

三维准晶,原子在三维上的都是准周期分布包括二十面体准晶,立方准晶。

准晶体质点在空间排列为长程取向,没有长程平移周期性。

(3)非晶体结构:非晶体是内部质点在三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序。

外形为无规则形状的固体。

非晶体具有各向同性,非晶体无固定的熔点,它的熔化过程中温度随加热不断升高。

二、原胞、基矢的概念,晶面晶向的表示,对称性和点阵基本类型(1)原胞与基矢:能完整反映晶体内部原子或离子在三维空间分布之化学-结构特征的平行六面体单元,最小的周期重复单元称作点阵的原胞。

以原胞的边长为点阵基矢构成平移矢量为基矢。

任意格矢为R=m1a1+m2a2+m3a3,定义表明,晶体在不同方向上,晶体的物理性质不同,也表明点阵是无限大的。

固体物理

固体物理

第1章晶体的结构(1)固体物质是由大量的原子、分子或离子按照一定方式排列而成的,这种微观粒子的排列方式称为固体的微结构。

(2)按照微结构的有序程度,固体分为晶体、准晶体和非晶体三类。

其中,晶体的研究已经非常成熟,而非晶体和准晶体则是固体研究的新领域。

(3)晶体的结构和特性决定了它在现代科学技术上有着及其广泛的应用,因此,固体物理学以晶体作为主要的研究对象。

§1.1 晶体的基本性质一、晶体的特征1.长程有序*虽然不同的晶体具有各自不同的特性,但是,在不同的晶体之间仍存在着某些共同的特征,这主要表现在以下几个方面。

*具有一定熔点的固体,称为晶体。

*实验表明:在晶体中尺寸为微米量级的小晶粒内部,原子的排列是有序的。

在晶体内部呈现的这种原子的有序排列,称为长程有序。

*长程有序是所有晶体材料都具有的共同特征,这一特性导致晶体在熔化过程中具有一定的熔点。

*晶体分为单晶体和多晶体。

在单晶体内部,原子都是规则地排列的。

单晶体是个凸多面体,围成这个凸多面体的面是光滑的,称为晶面。

(1)单晶体( Single Crystal )由许多小单晶(晶粒)构成的晶体,称为多晶体。

多晶体仅在各晶粒内原子才有序排列,不同晶粒内的原子排列是不同的。

(2)多晶体( Multiple Crystal )由许多小单晶(晶粒)构成的晶体,称为多晶体。

多晶体仅在各晶粒内原子才有序排列,不同晶粒内的原子排列是不同的。

*晶面的大小和形状受晶体生长条件的影响,它们不是晶体品种的特征因素。

2.解理(Cleavage)(1)晶体具有沿某一个或数个晶面发生劈裂的特征,这种特征称为晶体的解理。

解理的晶面,称为解理面。

(2)有些晶体的解理性比较明显,例如,NaCl晶体等,它们的解理面常显现为晶体外观的表面。

(3)有些晶体的解理性不明显,例如,金属晶体等。

(4)晶体解理性在某些加工工艺中具有重要的意义,例如,在划分晶体管管芯时,利用半导体晶体的解理性可使管芯具有平整的边缘和防止无规则的断裂发生,以保证成品率。

晶体结构

晶体结构

第五章 晶体结构安徽师范大学化学与材料科学学院§5­1晶体的点阵理论晶体具有按一定几何规律排列的内部结构,即晶 体由原子(离子、原子团或离子团)近似无限地、在三 维空间周期性地呈重复排列而成。

这种结构上的长 程有序,是晶体与气体、液体以及非晶态固体的本 质区别。

晶体的内部结构称为晶体结构。

1. 晶体的结构特征(1)均匀性(2) 各向异性(3) 自发形成多面体外形(4) 具有确定的熔点(5) 对称性(6) X射线衍射2.周期性下面两个图形均表现出周期性:沿直线方向,每 隔相同的距离,就会出现相同的图案。

如果在图形 中划出一个最小的重复单位(阴影部分所示),通 过平移,将该单位沿直线向两端周期性重复排列, 就构成了上面的图形。

最小重复单位的选择不是唯一的,例如,在图(a) 中,下面任何一个图案都可以作为最小的重复单位。

点的位置可以任意指定,可以在单位中或边缘的任 何位置,但一旦指定后,每个单位中的点的位置必须 相同。

如,不论点的位置如何选取,最后得到的一组点在空间 的取向以及相邻点的间距不会发生变化。

3.结构基元在晶体中,原子(离子、原子团或离子团)周期性地重 复排列。

上面我们在图形找出了最小的重复单位,类似 的,可以在晶体中划出结构基元。

结构基元是指晶体中 能够通过平移在空间重复排列的基本结构单位。

【例1】一维实例:在直线上等间距排列的原子。

一个原子组成一个结构基元,它同时也是基本的化学组成单位。

结构基元必须满足如下四个条件:化学组成相同;空间结构相 同;排列取向相同;周围环境相同。

【例2】一维实例:在伸展的聚乙烯链中,­CH2­CH2­组成一个 结构基元,而不是­CH2­。

【例3】二维实例:层状石墨分子,其结构基元由两个C原子组 成(相邻的2个C原子的周围环境不同)。

结构基元可以有不同的选法,但其中的原子种类和数目应保 持不变。

晶体结构与性质知识点

晶体结构与性质知识点

第三章晶体构造与性质第一节晶体的常识【知识点梳理】一、晶体与非晶体1、晶体与非晶体① 晶体:是内部微粒〔原子、离子或分子〕在空间按一定规律做周期性重复排列构成的物质。

② 非晶体:是内部的原子或分子的排列呈杂乱无章的分布状态的物质。

2、晶体的特征〔1〕晶体的根本性质晶体的根本性质是由晶体的周期性构造决定的。

① 自范性:a.晶体的自范性即晶体能自发的呈现多面体外形的性质。

b.“自发〞过程的实现,需要一定的条件。

晶体呈现自范性的条件之一是晶体生长的速率适当。

② 均一性:指晶体的化学组成、密度等性质在晶体中各局部都是一样的。

③ 各向异性:同一晶体构造中,在不同方向上质点排列一般是不一样的,因此,晶体的性质也随方向的不同而有所差异。

④ 对称性:晶体的外形与内部构造都具有特有的对称性。

在外形上,常有相等的对称性。

这种一样的性质在不同的方向或位置上做有规律的重复,这就是对称性。

晶体的格子构造本身就是质点重复规律的表达。

⑤ 最小内能:在一样的热力学条件下,晶体与同种物质非晶体固体、液体、气体相比拟,其内能最小。

⑥ 稳定性:晶体由于有最小内能,因而结晶状态是一个相对稳定的状态。

⑦ 有确定的熔点:给晶体加热,当温度升高到某温度便立即熔化。

⑧ 能使X射线产生衍射:当入射光的波长与光栅隙缝大小相当时,能产生光的衍射现象。

X射线的波长与晶体构造的周期大小相近,所以晶体是个理想的光栅,它能使X射线产生衍射。

利用这种性质人们建立了测定晶体构造的重要试验方法。

非晶体物质没有周期性构造,不能使X射线产生衍射,只有散射效应。

〔2〕晶体SiO2与非晶体SiO2的区别① 晶体SiO2有规那么的几何外形,而非晶体SiO2无规那么的几何外形。

② 晶体SiO2的外形与内部质点的排列高度有序,而非晶体SiO2内部质点排列无序。

③ 晶体SiO2具有固定的熔沸点,而非晶体SiO2无固定的熔沸点。

④ 晶体SiO2能使X射线产生衍射,而非晶体SiO2没有周期性构造,不能使X射线产生衍射,只有散射效应。

晶体的特征

晶体的特征

原子晶体
原子
共价键
金刚石.SiC
分子晶体
金属晶体
分子
原子.离子
分子间力
金属键
CO2.NH3
W.Ag.Cu
【练习】 1.从我们熟悉的食盐.金属.冰到贵重的钻石等都是 晶体,而同样透明的玻璃却是非晶体。下列关于 晶体 和非晶体的本质区别的叙述中,正确的是( D) A.是否具有规则的几何外形的固体 B.是否具有固定组成的物质 C.是否具有美观对称的外形 D.内部基本构成微粒是否按一定规律做周期性重 复排列
ห้องสมุดไป่ตู้
导 电 性 差
导电性强
热的铁针 涂有石蜡 的水晶片 热的铁针 涂有石蜡 的玻璃片
晶体的内部 微粒排列
非晶体的内 部微粒排列
3. 晶体的分类
根据晶体内部微粒的种类和微粒间相互作用。
离子晶体
晶体类型
分子晶体 原子晶体
金属晶体
晶体类型
离子晶体
组成微粒
阴.阳离子
微粒间作用 力
离子键
实 例
NaCl.MgO
一.晶体的特性
1.晶体与非晶体的本质区别 自范型 有 没有 微观结构 原子在三维空间里呈周 期性有序排列 原子排列相对无序
晶体
非晶体
2. 晶体的特征
自范性: 在适宜条件下,晶体能自发呈现封闭 的.规则的多面体外形---自范性。 各向异性: 在不同的方向上表现不同的物理 性质(如导电)----向异性 对称性: 具有特定的对称性---对称性
2.下列物质中属于晶体的是( CD ) A.橡胶 B.玻璃 C.食盐 D.水晶 B 3. 关于晶体的自范性,下列叙述正确的是( ) A.破损的晶体能够在固态时自动变成规则的多面体 B.缺角的氯化钠晶体在饱和的NaCl溶液中慢慢变为完美 的立方块 C.圆形容器中结出的冰是圆形的 D.由玻璃制成的圆形的玻璃球 D ) 4.下列物质具有固定熔点的是( A.橡胶 B.玻璃 C.水玻璃 D.CuSO4•5H2O

晶体结构基础知识

晶体结构基础知识

a ≠ b ≠ c , = = = 90° 正交晶系 。 此外还有六方晶系,三方晶系,单斜晶系和三斜晶系。
由晶胞参数a,b, c,α,β,γ表 示, a,b,c 为 六面体边长, α, β,γ 分别是bc ca , ab 所形成的 三个夹角。
晶胞的两个要素:
(1)晶胞的大小与形状:
简单单斜
底心单斜
简单三斜
晶体分类
离子晶体: 原子晶体: 分子晶体: 金属晶体:
阴阳离子间通过离子键构成的晶体
原子间以共价键形成的空间网状结构的晶体
分子间以分子间作用力(范德华力)形成的晶体
金属阳离子和自由电子通过金属键形成的单质晶体
金属晶体中离子是以紧密堆积的形式存在的 。下面用等径刚性球模型来讨论堆积方式。
观察实心圆点 K,除了 立方体顶点的 8 个 K 外,体 心位置有 1 个 K 。所以称为体心立方晶胞。
再看金属钾的晶胞,右图 。必须说明的是,它属于立方晶系,但既不是 AB 型,也不属 于离子晶体。
立方晶系有 3 种类型晶胞 : 面心立方、简单立方、体心立方 。
晶体结构基础知识
单击此处添加副标题
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅的阐述观点。
红宝石 ruby Al2O3-Cr
宏观晶体的形貌
立方 立方晶体的宏观形貌
晶体的宏观对称性分析
石英玻璃
非晶态又称玻璃态
天然石英玻璃矿物照片
晶体的原子呈周期性排列 非晶体的原子不呈周期性排列
1
在一个层中,最紧密的堆积方式,是一个球与周围 6 个球相切,在中心的周围形成 6 个凹位,将其算为第一层。
2
四、金属晶体
1
2
3
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体有三个特征:(1)晶体有整齐规则的几何外形;(2)晶体有固定的熔点;(3)晶体有各向异性的特点。

固态物质有晶体与非晶态物质(无定形固体)之分,而无定形固体不具有上述特点。

组成晶体的结构微粒(分子、原子、离子)在空间有规则地排列在一定的点上,这些点群有一定的几何形状,叫做晶格。

排有结构粒子的那些点叫做晶格的结点。

金刚石、石墨、食盐的晶体模型,实际上是它们的晶格模型。

晶体按其结构粒子和作用力的不同可分为四类:离子晶体、原子晶体、分子晶体和金属晶体。

具有整齐规则的几何外形、固定熔点和各向异性的固态物质,是物质存在的一种基本形式。

固态物质是否为晶体,一般可由X射线衍射法予以鉴定。

晶体内部结构中的质点(原子、离子、分子)有规则地在三维空间呈周期性重复排列,组成一定形式的晶格,外形上表现为一定形状的几何多面体。

组成某种几何多面体的平面称为晶面,由于生长的条件不同,晶体在外形上可能有些歪斜,但同种晶体晶面间夹角(晶面角)是一定的,称为晶面角不变原理。

晶体按其内部结构可分为七大晶系和14种晶格类型。

晶体都有一定的对称性,有32种对称元素系,对应的对称动作群称做晶体系点群。

按照内部质点间作用力性质不同,晶体可分为离子晶体、原子晶体、分子晶体、金属晶体等四大典型晶体,如食盐、金刚石、干冰和各种金属等。

同一晶体也有单晶和多晶(或粉晶)的区别。

在实际中还存在混合型晶体。

说到晶体,还得从结晶谈起。

大家知道,所有物质都是由原子或分子构成的。

众所周知,物质有三种聚集形态:气体、液体和固体。

但是,你知道根据其内部构造特点,固体又可分为几类吗?研究表明,固体可分为晶体、非晶体和准晶体三大类。

晶体通常呈现规则的几何形状,就像有人特意加工出来的一样。

其内部原子的排列十分规整严格,比士兵的方阵还要整齐得多。

如果把晶体中任意一个原子沿某一方向平移一定距离,必能找到一个同样的原子。

而玻璃、珍珠、沥青、塑料等非晶体,内部原子的排列则是杂乱无章的。

准晶体是最近发现的一类新物质,其内部排列既不同于晶体,也不
同于非晶体。

究竟什么样的物质才能算作晶体呢?首先,除液晶外,晶体一般是固体形态。

其次,组成物质的原子、分子或离子具有规律、周期性的排列,这样的物质就是晶体。

但仅从外观上,用肉眼很难区分晶体、非晶体与准晶体。

那么,如何才能快速鉴定出它们呢?一种最常用的技术是X光技术。

用X光对固体进行结构分析,你很快就会发现,晶体和非晶体、准晶体是截然不同的三类固体。

为了描述晶体的结构,我们把构成晶体的原子当成一个点,再用假想的线段将这些代表原子的各点连接起来,就绘成了像图中所表示的格架式空间结构。

这种用来描述原子在晶体中排列的几何空间格架,称为晶格。

由于晶体中原子的排列是有规律的,可以从晶格中拿出一个完全能够表达晶格结构的最小单元,这个最小单元就叫作晶胞。

许多取向相同的晶胞组成晶粒,由取向不同的晶粒组成的物体,叫做多晶体,而单晶体内所有的晶胞取向完全一致,常见的单晶如单晶硅、单晶石英。

大家最常见到的一般是多晶体。

由于物质
内部原子排列的明显差异,导致了晶体与非晶体物理化学性质的巨大差异。

例如,晶体有固定的熔点,当温度高到某一温度便立即熔化;而玻璃及其它非晶体则没有固定的熔点,从软化到熔化是一个较大的温度范围。

我们吃的盐是氯化钠的结晶,味精是谷氨酸钠的结晶,冬天窗户玻璃上的冰花和天上飘下的雪花,是水的结晶。

我们可以这样说:“熠熠闪光的不一定是晶体,朴实无华、不能闪光的未必就不是晶体”。

不是吗?每家厨房中常见的砂糖、碱是晶体,每个人身上的牙齿、骨骼是晶体,工业中的矿物岩石是晶体,日常见到的各种金属及合金制品也属晶体,就连地上的泥土砂石都是晶体。

我们身边的固体物质中,除了常被我们误以为是晶体的玻璃、松香、琥珀、珍珠等之外,几乎都是非晶体。

晶体离我们并不遥远,它就在我们的日常生活中。

组成晶体的结构粒子(分子、原子、离子)在三维空间有规则地排列在一定的点上,这些点周期性地构成有一定几何形状的无限格子,叫做晶格。

按照晶体的现代点阵理论,构成晶体结构的原
子、分子或离子都能抽象为几何学上的点。

这些没有大小、没有质量、不可分辨的点在空间排布形成的图形叫做点阵,以此表示晶体中结构粒子的排布规律。

构成点阵的点叫做阵点,阵点代表的化学内容叫做结构基元。

因此,晶格也可以看成点阵上的点所构成的点群集合。

对于一个确定的空间点阵,可以按选择的向量将它划分成很多平行六面体,每个平行六面体叫一个单位,并以对称性高、体积小、含点阵点少的单位为其正当格子。

晶格就是由这些格子周期性地无限延伸而成的。

空间正当格子只有7种形状(对应于7个晶系),14种型式。

它们是简单立方、体心立方、面心立方;简单三方;简单六方;简单四方、体心四方;简单正交、底心正交、体心正交、面心正交;简单单斜、底心单斜;。

相关文档
最新文档