3.1线性代数方程组的解法——列主元高斯消去算法讲解

合集下载

方程组的行列式解法和高斯消元法

方程组的行列式解法和高斯消元法

方程组的行列式解法和高斯消元法方程组是我们学习高等数学的基础,而解方程组的方法则是数学研究的重点之一。

其中,行列式解法和高斯消元法是两种常见的解方程组的方法。

本文将会介绍这两种方法的具体操作和优缺点。

一、行列式解法行列式解法是一种基于行列式的方法,它适用于二元线性方程组和三元线性方程组。

对于二元线性方程组:$$\left\{\begin{aligned}&a_{11}x_1 + a_{12}x_2 = b_1 \\&a_{21}x_1 + a_{22}x_2 = b_2\end{aligned}\right.$$我们可以将这个方程组转换为矩阵形式:$$\begin{pmatrix}a_{11} & a_{12} \\a_{21} &a_{22}\end{pmatrix}\begin{pmatrix}x_1 \\x_2\end{pmatrix}=\begin{pmatrix}b_1 \\b_2\end{pmatrix}$$然后,我们可以求出系数矩阵的行列式$D$以及增广矩阵的行列式$D_x$和$D_y$,其中$D_x$和$D_y$分别表示将系数矩阵中第一列和第二列替换为增广矩阵的列向量得到的矩阵的行列式。

这个过程可以表示为:$$D=\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix},D_x=\begin{vmatrix}b_1&a_{12}\\b_2&a_{22}\end{vmatrix},D_y=\begin{vmatrix}a_{11}&b_1\\a_{21}&b_2\end{vmatrix}$$最后,我们可以通过克拉默法则得到方程组的解:$$x_1=\frac{D_x}{D},x_2=\frac{D_y}{D}$$对于三元线性方程组,我们可以采用类似的方法求解。

用列主元高斯消元法求线性代数方程组的解

用列主元高斯消元法求线性代数方程组的解

课程设计任务书前 言回顾普通解方程组的方法,一般都是先逐个削去未知变量,最终得到只有一个未知变量的方程,解之,把得到的值回代到消去变量过程中得到的方程组,逐个求出未知变量。

这种解线性方程组的基本方法就是这里要介绍的高斯消去法。

数学上,高斯消元法(或译:高斯消去法),是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。

当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。

高斯消元法可以用在电脑中来解决数千条等式及未知数。

高斯消元法可以用来找出一个可逆矩阵的逆矩阵。

用关联矩阵表述网络拓扑结构,并根据厂站拓扑结构和网络拓扑结构等概念简化了电力系统的拓扑结构。

根据广义乘法和广义加法的运算规则,将改进的高斯消元算法应用于电力系统拓扑结构分析中,并引入稀疏、分块处理等技术提高了上述拓扑分析的效率。

采用上述高斯消元算法对山东电网220kV 以上的变电站进行拓扑结构分析,结果表明了运用该高斯消元法进行网络拓扑分析的正确性和有效性。

用列主元素法,选取每列的绝对值最大的元素作为消去对象并作为主元素。

然后换行使之变到主元位子上,在进行消元计算。

设)()(k k b X A ,确定第k 列主元所在位置k i ,在交换k i 行和k 行后,在进行消元,并用MATLAB 软件进行求解。

目录摘要......................................................................................... 错误!未定义书签。

第1章绪论 ........................................................................... 错误!未定义书签。

第2章高斯消元法的算法描述 (2)2.1高斯消元法的原理概述 (2)2.1.1高斯消元法的消元过程 (2)2.1.2高斯消元法的回带过程 (3)2.1.3高斯消元法的复杂度分析 (4)2.2列主高斯消元法原理简介 (5)2.2.1列主高斯消元法的消元过程 (6)2.2.2列主高斯消元法的回带过程 (6)2.2.3列主高斯消元法的算法描述 (6)第3章高斯消元法的物理应用 (9)3.1电网模型的描述 (9)3.2电网模型的问题分析 (9)3.3求解计算 (11)参考文献 (13)摘 要用列主元素高斯消去法法,选取每列的绝对值最大的元素作为消去对象并作为主元素。

第3章3-01高斯消元法-列主元法ppt课件

第3章3-01高斯消元法-列主元法ppt课件
.
顺序高斯消去法的计算量
消元中各步需乘除法次数
第i 步
乘法次数
1
(n 1)2
2
(n 2)2
n 1
合计
1
n (n 1)(2 n 1) 6
除法次数
n 1 n 2
1
n (n 1) 2
.
3.1.2 列主元高斯消去法
为什么列选主:数值不稳定
当高斯消去法的主元
a
(k kk
)
0
时 , 尽管“当
A
非奇异时,
0,
a(2) 22
0,
,
a(n) nn
0
消元过程
mik ai(jk1)
a(k) ik
a(k) kk
(k
1,2,
a(k) ij
mik ak(jk)
, n 1) (i, j k 1,k 2,
,n)
bi(k`)
b(k) i
mikbk(k )
.
回代过程
上 三 角 形 方 程 组 A(n)x b(n) 求 解 过 程
列选主元高斯消去法的优越性,不增加求解过程的运算量,而 大大减小误差。
经过 k 1次消元后得到增广矩阵 ( A(k) | b(k) ) ,在此增广
矩阵的第
k
列的元素
a(k kk
)
,
a(k) k 1,k
,
a(k nk
)
中选取
绝对值最大的
一个,记为
a(k) rk
,然后交换
(
A(k )
|
b(k)
)
中的第
k
第3章 线性代数方程组的数值解法
3.1 高斯消去法 3.2 矩阵三角分解法 3.3 平方根法 3.4 向量和矩阵的范数 3.5 迭代法 3.6 迭代法的收敛性 3.7 方程组的形态和误差分析

高斯列主元消去法

高斯列主元消去法

如果在高斯顺序消去法消去过程进行到第i 步时,现选取ri a )(n r i ≤≤中绝对值最大的元素,设为第j 行的元素ji a ,把矩阵的第i 行和第j 行互换,这时ii a 变为ji a ,然后将第i+1行至第n 行中的每一行减去第i 行乘以ii ki a a (k 代表行号),依次进行消元。

Gauss 列主元消去法的算法步骤如下:将方程组写成以下的增广矩阵的形式:⎪⎩⎪⎪⎨⎧43212423222114131211............n n n n a a a a a a a a a a a a对k=1,2,3,...,n-1,令∑==nks sk pk a a max ;交换增广矩阵的第k 行与第p 行;对j=k+1,k+2,...,n,计算kk jkkm jm jm a a a a a ⋅-=(m=看,k+1,...,n )kk jkk j j a a b b b ⋅-=算法结束。

三角分解法程序如下:建立相应的M 文件,其函数名为LU,程序如下:function y=LU(A,B);n=length(A);A=[A B];for k=1:n-1;for i=k:n;if (abs(A(i,k))==max(abs(A(k:n,k)))) P(k)=i;temp=A(k,:);A(k,:)=A(i,:);A(i,:)=temp;endendfor j=k+1:n;A(j,k)=A(j,k)/A(k,k);A(j,k+1:n+1)=A(j,k+1:n+1)-A(j,k)*A(k,k+1:n+1);endendP(n)=n;L(1,1)=1;L(2:n,1)=A(2:n,1);L(1,2:n)=0;U(1,1)=A(1,1);U(2:n,1)=0;U(1,2:n)=A(1,2:n);for i=2:n;L(i,1:i-1)=A(i,1:i-1);L(i,i)=1;L(i,i+1:n)=0;U(i,1:i-1)=0;U(i,i:n)=A(i,i:n);endx(n) = A(n,n+1)/U(n,n);for k = n-1:-1:1x(k)=A(k,n+1);for p=n:-1:k+1;x(k) = x(k)-U(k,p)*x(p); endx(k)=x(k)/U(k,k);endxLUPend在程序命令行输入:a=[0.101 2.304 1.5355;-1.347 3.712 4.623;-2.835 1.072 5.643];b=[1.183,2.137,3.035]';LU(a,b)运行结果为:x =3.1160 -1.1960 2.3305 L =1.0000 0 00.4751 1.0000 0-0.0356 0.7313 1.0000 U =-2.8350 1.0720 5.64300 3.2027 1.94180 0 0.3359 P =3 2 3。

高斯消元法与线性方程组的解法知识点总结

高斯消元法与线性方程组的解法知识点总结

高斯消元法与线性方程组的解法知识点总结在数学中,线性方程组是一个常见的问题。

解决线性方程组的一个重要方法是高斯消元法。

本文将对高斯消元法及其相关知识点进行总结。

一、高斯消元法概述高斯消元法是一种通过进行行变换将线性方程组转化为简化行阶梯形矩阵,从而求解方程组的方法。

它通过不断的行变换,将系数矩阵化为单位矩阵,从而得到方程组的解。

二、高斯消元法的步骤1. 构造增广矩阵:将线性方程组中的系数矩阵和常数矩阵合并,形成增广矩阵。

2. 主元选择:选取增广矩阵中的第一个非零元作为主元,将主元所在列的其他元素进行行变换,使其化为零。

3. 交换行:如果主元所在行的系数为零,则可以进行行交换,将非零行移到主元所在行。

4. 迭代计算:从第二行开始,重复进行主元选择和行变换,使整个增广矩阵形成简化行阶梯形矩阵。

5. 回代求解:根据形成的简化行阶梯形矩阵,反向求解线性方程组,得到方程组的解。

三、高斯消元法的优缺点1. 优点:a. 算法简单,易于实现。

b. 可以准确求解线性方程组的解。

c. 可以判断线性方程组的解的个数和解的形式。

2. 缺点:a. 当方程组的系数矩阵存在大量零元或接近零元时,可能会产生较大的舍入误差。

b. 在某些情况下,方程组的解可能无法唯一确定,或者无解。

四、高斯消元法的应用高斯消元法在科学与工程领域有着广泛的应用,特别是在线性代数、计算机图形学、金融数学等领域。

它可以用于求解线性方程组的解,计算矩阵的逆、行列式等。

五、高斯消元法的拓展1. 高斯-约旦消元法:在高斯消元法的基础上,通过对主元所在列的其他元素进行行变换,将主元化为1,从而形成行简化阶梯形矩阵。

2. 列主元高斯消元法:在主元选择时,选取主元所在列中绝对值最大的元素作为主元,从而减小舍入误差的影响。

3. 高斯消元法的数值稳定性:在进行高斯消元法计算时,需要注意舍入误差的积累,通过一些数值稳定的改进方法,可以提高计算的精度。

六、总结高斯消元法是解决线性方程组的一种常用方法,通过不断的行变换,将系数矩阵化为简化行阶梯形矩阵,从而求解方程组的解。

列主元素消去法

列主元素消去法

列主元素消去法列主元素消去法(Gauss-Jordan 消元法)是一种线性代数中常用的消元方法,用于求解线性方程组的解。

这种方法的基本思想是,将线性方程组的增广矩阵通过一系列的初等变换,化为一个阶梯矩阵或行简化阶梯矩阵,从而得到线性方程组的解。

具体步骤如下:构造增广矩阵,即将系数矩阵和常数矩阵组合成一个矩阵。

将增广矩阵转化为一个上三角矩阵(也叫阶梯矩阵)。

反向消元,将阶梯矩阵转化为一个行简化阶梯矩阵。

根据简化矩阵求解方程组。

这种方法的优点是计算简单、容易理解,且可避免误差的积累。

但是,如果矩阵的规模较大,运算量会很大,计算时间较长。

此时可以使用更高效的算法,如LU分解、QR分解等。

假设有一个 $n$ 个未知量和 $n$ 个方程的线性方程组,可以写成矩阵形式如下:$Ax = b$其中,$A$ 是一个 $n \times n$ 的系数矩阵,$x$ 是一个 $n \times 1$ 的未知量向量,$b$ 是一个 $n \times 1$ 的常数向量。

为了求解 $x$,可以将方程组的增广矩阵表示如下:$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} & b_{1} \ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} & b_{2} \ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} & b_{n} \end{bmatrix}$ 其中,$a_{ij}$ 表示矩阵的第 $i$ 行第 $j$ 列的元素。

列主元素Gauss消去法Jacobi迭代法原理及计算方法

列主元素Gauss消去法Jacobi迭代法原理及计算方法

一、 列主元素Gauss 消去法、Jacobi 迭代法原理及计算方法1. 列主元素Gauss 消去法:1.1 Gauss 消去法基本原理设有方程组Ax b =,设A 是可逆矩阵。

高斯消去法的基本思想就是将矩阵的初等行变换作用于方程组的增广矩阵[]B A b = ,将其中的A 变换成一个上三角矩阵,然后求解这个三角形方程组。

1.2 列主元Gauss 消去法计算步骤将方程组用增广矩阵[]()(1)ijn n B A b a ⨯+== 表示。

1). 消元过程对1,2,,1k n =-(1) 选主元,找{},1,,k i k k n ∈+ 使得 ,max k i k ik k i na a ≤≤= (2) 如果,0k i k a =,则矩阵A 奇异,程序结束;否则执行(3)。

(3) 如果k i k ≠,则交换第k 行与第k i 行对应元素位置,k kj i j a a ↔,,,1j k n =+ 。

(4) 消元,对,,i k n = ,计算/,ik ik kk l a a =对1,,1j k n =++ ,计算.ij ij ik kj a a l a =-2). 回代过程(1) 若0,nn a =则矩阵奇异,程序结束;否则执行(2)。

(2) ,1/;n n n nn x a a +=对1,,2,1i n =- ,计算,11/n i i n ij j ii j i x a a x a +=+⎛⎫=- ⎪⎝⎭∑2. Jacobi 迭代法2.1 Jacobi 迭代法基本原理Jacobi 迭代法的基本思想是对n 元线性方程组b Ax =,.,n n R b R A ∈∈将其变形为等价方程组f Bx x +=,其中.,,n n n n R x R f R B ∈∈∈⨯B 成为迭代矩阵。

从某一取定的初始向量)0(x 出发,按照一个适当的迭代公式 ,逐次计算出向量f Bx x k k +=+)()1( ( 1,0=k ),使得向量序列}{)(k x 收敛于方程组的精确解.(1)输入1,,,,)0(=k n xb A ε,. (2) )(1,1)0()1(∑≠=-=n j i i j ij i iii x a b a x )1,0(n i = (3)判断 ε≤--≤≤)0()1(10max i i n i x x ,若是,输出1)1(2)1(1,,n x x x ,若否,置1+=k k ,)1()0(i i x x =,)2,1(n i =。

列主元高斯消去法和列主元三角分解法解线性方程

列主元高斯消去法和列主元三角分解法解线性方程

计算方法实验报告1课题名称用列主元高斯消去法和列主元三角分解法解线性方程目的和意义高斯消去法是一个古老的求解线性方程组的方法,但由它改进得到的选主元的高斯消去法则是目前计算机上常用的解低阶稠密矩阵方程组的有效方法;用高斯消去法解线性方程组的基本思想时用矩阵行的初等变换将系数矩阵A 约化为具有简单形式的矩阵上三角矩阵、单位矩阵等,而三角形方程组则可以直接回带求解 用高斯消去法解线性方程组b Ax =其中A ∈Rn ×n 的计算量为:乘除法运算步骤为32(1)(1)(21)(1)(1)262233n n n n n n n n n n nMD n ----+=+++=+-,加减运算步骤为(1)(21)(1)(1)(1)(25)6226n n n n n n n n n n AS -----+=++=;相比之下,传统的克莱姆法则则较为繁琐,如求解20阶线性方程组,克莱姆法则大约要19510⨯次乘法,而用高斯消去法只需要3060次乘除法;在高斯消去法运算的过程中,如果出现absAi,i 等于零或过小的情况,则会导致矩阵元素数量级严重增长和舍入误差的扩散,使得最后的计算结果不可靠,所以目前计算机上常用的解低阶稠密矩阵方程的快速有效的方法时列主元高斯消去法,从而使计算结果更加精确; 2、列主元三角分解法高斯消去法的消去过程,实质上是将A 分解为两个三角矩阵的乘积A=LU,并求解Ly=b 的过程;回带过程就是求解上三角方程组Ux=y;所以在实际的运算中,矩阵L 和U 可以直接计算出,而不需要任何中间步骤,从而在计算过程中将高斯消去法的步骤进行了进一步的简略,大大提高了运算速度,这就是三角分解法采用选主元的方式与列主元高斯消去法一样,也是为了避免除数过小,从而保证了计算的精确度计算公式1、 列主元高斯消去法设有线性方程组Ax=b,其中设A 为非奇异矩阵;方程组的增广矩阵为第1步k=1:首先在A 的第一列中选取绝对值最大的元素1l a ,作为第一步的主元素:111211212222112[,]n n n l n nn n a a a a b a a a b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦a b然后交换A,b 的第1行与第l 行元素,再进行消元计算;设列主元素消去法已经完成第1步到第k -1步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组 Akx=bk第k 步计算如下:对于k=1,2,…,n -11按列选主元:即确定t 使 2如果t ≠k,则交换A,b 第t 行与第k 行元素; 3消元计算消元乘数mik 满足:4回代求解2、 列主元三角分解法 对方程组的增广矩阵 经过k -1步分解后,可变成如下形式:111max 0l i i n a a ≤≤=≠(1)(1)(1)(1)(1)1112111(2)(2)(2)(2)22222()(()1)()()()()()1,1()(,)()[,][,] k k k k nk k nk n k k k k k kk kn k k k k n k k k n nn a a a a b a a a b a a b a b b a a a +++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A b A b ()()max 0k k tk ik k i na a ≤≤=≠,(1,,)ik ik ik kka a m i k n a ←=-=+, (,1,,), (1,,)ij ij ik kji i ik k a a m a i j k n b b m b i k n ←+=+⎧⎨←+=+⎩⎪⎪⎩⎪⎪⎨⎧--=-←←∑+=)1,,2,1(,)(1n n i a x a b x a b x ii n i j j ij i i nnn n [,]A A b =11121,11111222,122221,11,1,1,211,11,2121,112,112,1k k k k k k k j n k k j n k k k i i i k n n kk kj kn k ik ij in i nknjk k k j k n n nnk k n a a a b A a u u u u u u y l l l l l l ll l l l u u u u u y u u u u y a a b a a b l a -------------⎡→⎣⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦第k 步分解,为了避免用绝对值很小的数kku 作除数,引进量1111 (,1,,;1,2,,) ()/ (1,2,,;1,2,,)k kj kj km mj m k ik ik im mk kkm u a l u j k k n k n l a l u u i k k n k n -=-=⎧=-=+=⎪⎪⎨⎪=-=++=⎪⎩∑∑11(,1,,)k i ik im mk m s a l u i k k n -==-=+∑,于是有kk u =ks ;如果 ,则将矩阵的第t 行与第k 行元素互换,将i,j 位置的新元素仍记为jjl 或jja ,然后再做第k 步分解,这时列主元高斯消去法程序流程图max t ik i n s s ≤≤= ()/ 1,2,,)1 (1,2,,),kk k k t iki k ik u s s s l s s i k k n l i k k n ===++≤=++即交换前的,(且列主元高斯消去法Matlab主程序function x=gauss1A,b,c %列主元法高斯消去法解线性方程Ax=bif lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;for k=1:n-1 %找列主元p,q=maxabsAk:n,k; %找出第k列中的最大值,其下标为p,qq=q+k-1; %q在Ak:n,k中的行号转换为在A中的行号if absp<cdisp'列元素太小,detA≈0';break;elseif q>ktemp1=Ak,:; %列主元所在行不是当前行,将当前行与列主Ak,:=Aq,:; 元所在行交换包括bAq,:=temp1;temp2=bk,:;bk,:=bq,:;bq,:=temp2;end%消元for i=k+1:nmi,k=Ai,k/Ak,k; %Ak,k将Ai,k消为0所乘系数Ai,k:n=Ai,k:n-mi,kAk,k:n; %第i行消元处理bi=bi-mi,kbk; %b消元处理endenddisp'消元后所得到的上三角阵是'A %显示消元后的系数矩阵bn=bn/An,n; %回代求解for i=n-1:-1:1bi=bi-sumAi,i+1:nbi+1:n/Ai,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题列主元三角分解法程序流程图列主元三角分解法Matlab主程序①自己编的程序:function x=PLUA,b,eps %定义函数列主元三角分解法函数if lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;A=A b; %将A与b合并,得到增广矩阵for r=1:nif r==1for i=1:nc d=maxabsA:,1; %选取最大列向量,并做行交换if c<=eps %最大值小于e,主元太小,程序结束break;elseendd=d+1-1;p=A1,:;A1,:=Ad,:;Ad,:=p;A1,i=A1,i;endA1,2:n=A1,2:n;A2:n,1=A2:n,1/A1,1; %求u1,ielseur,r=Ar,r-Ar,1:r-1A1:r-1,r; %按照方程求取ur,iif absur,r<=eps %如果ur,r小于e,则交换行p=Ar,:;Ar,:=Ar+1,:;Ar+1,:=p;elseendfor i=r:nAr,i=Ar,i-Ar,1:r-1A1:r-1,i; %根据公式求解,并把结果存在矩阵A中endfor i=r+1:nAi,r=Ai,r-Ai,1:r-1A1:r-1,r/Ar,r; %根据公式求解,并把结果存在矩阵A中endendendy1=A1,n+1;for i=2:nh=0;for k=1:i-1h=h+Ai,kyk;endyi=Ai,n+1-h; %根据公式求解yiendxn=yn/An,n;for i=n-1:-1:1h=0;for k=i+1:nh=h+Ai,kxk;endxi=yi-h/Ai,i; %根据公式求解xiendAdisp'AX=b的解x是'x=x'; %输出方程的解②可直接得到P,L,U并解出方程解的的程序查阅资料得子函数PLU1,其作用是将矩阵A分解成L乘以U的形式;PLU2为调用PLU1解题的程序,是自己编的Ⅰ.function l,u,p=PLU1A %定义子函数,其功能为列主元三角分解系数矩阵A m,n=sizeA; %判断系数矩阵是否为方阵if m~=nerror'矩阵不是方阵'returnendif detA==0 %判断系数矩阵能否被三角分解error'矩阵不能被三角分解'endu=A;p=eyem;l=eyem; %将系数矩阵三角分解,分别求出P,L,Ufor i=1:mfor j=i:mtj=uj,i;for k=1:i-1tj=tj-uj,kuk,i;endenda=i;b=absti;for j=i+1:mif b<abstjb=abstj;a=j;endendif a~=ifor j=1:mc=ui,j;ui,j=ua,j;ua,j=c;endfor j=1:mc=pi,j;pi,j=pa,j;pa,j=c;endc=ta;ta=ti;ti=c;endui,i=ti;for j=i+1:muj,i=tj/ti;endfor j=i+1:mfor k=1:i-1ui,j=ui,j-ui,kuk,j;endendendl=trilu,-1+eyem;u=triuu,0Ⅱ.function x=PLU2A,b %定义列主元三角分解法的函数l,u,p=PLU1A %调用PLU分解系数矩阵A m=lengthA; %由于A左乘p,故b也要左乘p v=b;for q=1:mbq=sumpq,1:mv1:m,1;endb1=b1 %求解方程Ly=b for i=2:1:mbi=bi-sumli,1:i-1b1:i-1;endbm=bm/um,m; %求解方程Ux=y for i=m-1:-1:1bi=bi-sumui,i+1:mbi+1:m/ui,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题①②编程疑难这是第一次用matlab编程,对matlab的语句还不是非常熟悉,因此在编程过程中,出现了许多错误提示;并且此次编程的两种方法对矩阵的运算也比较复杂;问题主要集中在循环控制中,循环次数多了一次或者缺少了一次,导致数据错误,一些基本的编程语句在语法上也会由于生疏而产生许多问题,但是语句的错误由于系统会提示,比较容易进行修改,数据计算过程中的一些逻辑错误,比如循环变量的控制,这些系统不会提示错误,需要我们细心去发现错误,不断修正,调试;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当方程组阶数较高时,计算量很大,因此克莱姆法则通 常仅有理论上的应用价值,计算线性方程组的解还要考 虑数值解法。
求解线性方程组的数值方法分为直接解法和迭代解法:
直接解法 若计算过程没有舍入误差,经过有限次算术 运算就能求出方程组(1)精确解的数值方法。
迭代解法 若计算过程没有舍入误差,也不能经过有限 次算术运算求得方程组(1)的精确解,而只能是逐步 逼近的数值方法。
①交换矩阵的两行; ②某一行乘以一个非零的数; ③某一行乘以一个数,加到另一行。
消去法 就是对增广矩阵作上述行变换,化为可以直接求解的
3种方程之一,而后求解。
思 Gauss消去法就是先将(1)的系数矩阵A化为上三角阵, 路: 再回代求解。
School of Math. & Phys.
6
North China Elec. P.U.
1 2 3 14
r3 5r2
0 1
4
10
0 0 24 72
x3
72
24
3
1
x2
(10
4x3 ) 1
2
x1
(14
2x2
3x3 ) 1
1
x 2 3
下面看求解n元线性方程组的一般过程,
School of Math. & Phys.
9
North China Elec. P.U.
Mathematical Methods & its Applications 2020/8/13
Mathematical Methods & its Applications 2020/8/13
线性方程组的解法
考虑如下线性方程组
a11
x1
a1n xn
b1
an1x1 ann xn bn
写成矩阵形式
Ax b
其中 det(A) 0 ,
J. G. Liu
(1)
School of Math. & Phys.
我们先考虑直接方法。
School of Math. & Phys.
3
North China Elec. P.U.
Mathematical Methods & its Applications 2020/8/13
1 基本思想
Gauss消去法
J. G. Liu
我们知道,下面有3种方程的解我们可以直接求出: n次运算
7
North China Elec. P.U.
Mathematical Methods & its Applications 2020/8/13
J. G. Liu
2 计算步骤
例1 求解方程组 1 2 3 x1 14
2
5
2
x
2
18
3 1 5 x3 20
解:
1
Ab 2
2 5
3
2
14 18
J. G. Liu
第一步: 若 a11 0 ,
a11 a21
a12 a22
a1n a2n
b1 a11 b2 0
a12 a(2)
22
a1n
a(2) 2n
b1 b(2)
2
an1
an2
ann
bn
0
a(2) n2
a(2) nn
b(2) n
即 第i行 第1行 ai1 , i 2, , n
1
North China Elec. P.U.
Mathematical Methods & its Applications 2020/8/13
由克莱姆法则可知 (1)有唯一的解,而且解为:
xi
Di D
,D
det( A),
(i 1, 2,
其中
a11
Di
det
Hale Waihona Puke an1a1i1 b1 a1i1 ani1 bn ani1
Mathematical Methods & its Applications 2020/8/13
J. G. Liu

(n+1)n/2
u11
A
u12 u22
次运算
u1n
u2n
unn
xi
bi
n
uij x j
j i 1
uii
,i
n,,1
众所周知,对方程组作如下变换,解不变,
①交换两个方程的次序; ②一个方程的两边同时乘以一个非零的数; ③一个方程的两边同时乘以一个数,加到另一个方程上。
Mathematical Methods & its Applications
a11
[
A
|
b]
a21
a12
a22
a1n
a2n
b1 b2
an1 an2 ann bn
a(1) 11 0
a(1) 12
a(2) 22
a (1) 13
a(2) 23
0
0
a(3) 33
0 0 0
rr32
2r1 3r1
1 0
2 1
3 14
4
10
3 1 5 20
0 5 4 22
School of Math. & Phys.
8
North China Elec. P.U.
Mathematical Methods & its Applications 2020/8/13
J. G. Liu
J. G. Liu
, n)
a1n
ann
School of Math. & Phys.
2
North China Elec. P.U.
Mathematical Methods & its Applications 2020/8/13
J. G. Liu
若行列式用按行(列)展开的方法计算 ,
用克莱姆法则求解(1)的计算量为: (n 1)(n 1)n!
School of Math. & Phys.
5
North China Elec. P.U.
Mathematical Methods & its Applications
考虑到:
2020/8/13
方程组(1)
增广矩阵 (A,b)
J. G. Liu
因此,对应的,对增广矩阵(A,b),作如下的行变换,解不变,
其中
a(2) ij
aij

A

A
diag(a11, a22 ,, ann )
l11
l21 l22
xi
ln1 ln2 lnn
xi bi
bi aii
i 1
j 1
lii
,i 1,, n
(n+1)n/2
lij x j
次运算
,i 1,, n
School of Math. & Phys.
4
North China Elec. P.U.
2020/8/13
其中
J. G. Liu
a (1) 1j
a1 j (
j
1,2,, n),
b1(1) b1
a(k) kk
, (k
1,2,,
n)
a (1) 1n
a(2) 2n
——主元素
b(1) 1
b(2) 2
a(3) 3n
b(3) 3
a(n) nn
b(n) n
School of Math. & Phys.
相关文档
最新文档