二元一次方程组与一元一次不等式组 应用题

合集下载

一元一次方程,二元一次方程,一元一次不等式,一元二次不等式应用题及答案

一元一次方程,二元一次方程,一元一次不等式,一元二次不等式应用题及答案

一元一次方程例1 某厂一车间有64人,二车间有56人.现因工作需要,要求第一车间人数是第二车间人数的一半.问需从第一车间调多少人到第二车间?解析:如果设从一车间调出的人数为x,那么有如下数量关系设需从第一车间调x人到第二车间,根据题意得:2(64-x)=56+x,解得x=24;答:需从第一车间调24人到第二车间二元一次方程例2两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,一元一次不等式例3将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?设笼有x个,那么鸡就有(4x+1)只,根据若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只,可列出不等式求解.解:设笼有x个.4x+1>5(x?2) 4x+1<5(x?2)+3 ,解得:8<x<11 x=9时,4×9+1=37x=10时,4×10+1=41(舍去).故笼有9个,鸡有37只一元二次不等式例4用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?解:设有x辆汽车,则货物有(4x+20)吨,根据题意,有不等式组:4x+20﹤8x (1)4x+20﹥8(x-1) (2)解不等式(1)得:x﹥5解不等式(2)得:x﹤7所以,不等式组的解为 5﹤x﹤7因为x为整数,所以 x=6答:有6辆汽车。

二元一次方程与不等式应用题

二元一次方程与不等式应用题

二元一次方程(组)与一元一次不等式(组)的应用【相遇追及问题】1.甲乙两地相距160km,一辆汽车和一辆拖拉机同时两地相向而行,1小时20分钟后相遇;相遇后,拖拉机继续前行,汽车在相遇处停留1小时后调转车头按原路返回,汽车再次出发1小时后追上了拖拉机,这时,汽车拖拉机各自走了多少千米?2.甲、乙二人同时绕400m的环形跑道行走,如果他们同时从同一起点背向而行,2分30秒后首次相遇;如果他们同时由同一地点同向而行,甲12分30秒后超过乙一圈,甲、乙两人每分钟各走多少米?3.甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。

二人的平均速度各是多少?4.A、B两地间的路程为360千米,甲车从A地出发开往B地,每小时72千米,甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48千米,乙车出发多少小时后两车相遇?14.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,•二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离.15.某铁桥长1000米,有一列火车从桥上通过,测得火车开始上桥到完全过桥用1分钟,整列火车完全在桥上时间为40秒,求火车的速度和车长各是多少?16.一个两位数,十位数字与个位数字之和为8,若十位数字与个位数字对调后,所得新两位数比原两位数小36,求原两位数,17.张先生是集邮爱好者,他带一定数量的钱到邮市上去购买邮票,发现两种较为喜欢的纪念邮票,面值分别为10元和6元。

(1)经盘算发现所带的钱全部用来买面值为10远的邮票,钱数正好不多不少。

若全部钱数用来购买面值为6元的邮票可以多买6张,但余下4元,你知道张先生带了多少钱?(2)若张先生所带的钱全部购进这两种邮票,有多少种购买方案?(3)经估测,这两种邮票都会升值,其中面值为10元的可以上涨100%,面值为6元的邮票会上涨150%,张先生决定把集邮当成一种投资,准备2000元全部投入,请设计最大盈利购邮方案,并作说明。

二元一次方程组和一元一次不等式的应用

二元一次方程组和一元一次不等式的应用

二元一次方程组及不等式的综合应用崔莹莹2016-6-112.(2015•广东省,第22题,7分)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【答案】解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y .答:A ,B 两种型号计算器的销售价格分别为42元,56元.(2)设最少需要购进A 型号的计算a 台,得3040(70)2500+-≥a a ,解得30≥a .答:最少需要购进A 型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A ,B 型号的计算器的销售价格分别是x 元,y 元,等量关系为:“销售5 台A 型号和1台B 型号计算器的利润76元”和“销售6台A 型号和3台B 型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A 型号的计算a 台,不等量关系为:“购进A ,B 两种型号计算器共70台的资金不多于2500元”.6.(2015·四川甘孜、阿坝,第26题8分)一水果经销商购进了A ,B 两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?考点:一元一次不等式的应用..分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果甲店盈利×x;列出函数解析式利用函数性质求得答案即可.解答:解:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+260.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+260=254(元).点评:此题考查一元一次不等式的运用,一次函数的实际运用,找出题目蕴含的不等关系与等量关系解决问题.7.(2015·山东潍坊第19 题9分)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)考点:一元一次不等式的应用;二元一次方程组的应用..分析:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,根据“购进了A、B两种型号家用净水器共160台,购进两种型号的家用净水器共用去36000元.”列出方程组解答即可;(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a 元,根据保证售完这160台家用净水器的毛利润不低于11000元,列出不等式解答即可.解答:解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,由题意得,解得.答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a 元,由题意得100a+60×2a≥11000,解得a≥50,150+50=200(元).答:每台A型号家用净水器的售价至少是200元.点评:此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.12.(2015•四川眉山,第24题9分)某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品.若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.(1)购买一支钢笔和一本笔记本各需多少元?(2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1100元,则工会最多可以购买多少支钢笔?考点:一元一次不等式的应用;二元一次方程组的应用..分析:(1)首先用未知数设出买一支钢笔和一本笔记本所需的费用,然后根据关键语“购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元”,列方程组求出未知数的值,即可得解.(2)设购买钢笔的数量为x,则笔记本的数量为80﹣x,根据总费用不超过1100元,列出不等式解答即可.解答:解:(1)设一支钢笔需x元,一本笔记本需y元,由题意得解得:答:一支钢笔需16元,一本笔记本需10元;(2)设购买钢笔的数量为x,则笔记本的数量为80﹣x,由题意得16x+10(80﹣x)≤1100解得:x≤50答:工会最多可以购买50支钢笔.点评:此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出等量关系,列出方程组和不等式.13. (2015•四川泸州,第21题7分)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵。

二元一次方程组及一元一次不等式试卷及答案

二元一次方程组及一元一次不等式试卷及答案

第八章 二元一次方程组1一、填空题(每题3分,共24分)3、 3与的差不大于x 与2的和的,用不等式表示为____________。

1、 如果a <b ,那么-2a_____-2b 。

3、5+=x y 中,若3-=x 则=y _______。

5、如果方程组⎩⎨⎧-=-=+1242a by x b y ax 的解是⎩⎨⎧-==11y x ,则=a ,=b 。

二、选择题:(每题3分,共21分)11、如果a >b ,那么下列不等式中不能成立的是( )。

A 、a -3>b -3B 、-3a >-3bC 、D 、-a <-b13、甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,列方程组 [ ]正确的个数为:A.1个B.2个C.3个D.4个 三、解方程组(每题6分,共24分)(3x -1)-3(4x +5) >x -4(x -7) ⎩⎨⎧=-=+113032Y X Y X四、用方程组解应用题(共31分)21、有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两 种债券各有多少?( 5分)27、一组同学在校门口拍一张合影。

已知冲一张底片需要0.6元,洗一张照片需要0.4元,每人都得到一张照片,每人平均分摊的钱不超过0.5元,那么参加合影的同学至少有几人?第九章 二元一次方程组2一、填空题(每题3分,共24分)4、 关于x 的方程2x +3(m -1)=x +1的解是正数,则m 的取值范围是_________。

6、 不等式2x -9<0的非负整数解是______________。

2、二元一次方程52=+x y 在正整数范围内的解是 。

4、由==--y y x y x 得表示用,,06911_______,=x x y 得表示,_______。

8、已知:10=+b a ,20=-b a ,则2b a -的值是 。

二、选择题:(每题3分,共21分)18、边长是整数,周长不大于12的等边三角形的个数是( )。

二元一次方程组与一元一次不等式的应用题

二元一次方程组与一元一次不等式的应用题

1 某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同.若购买2个足球和3个篮球共需340元;购买4个排球和5个篮球共需600元.(1)求购买一个足球、一个篮球分别需要多少元?(2)该中学根据实际情况,需从该体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球? 答案:解(1)设购买一个足球需要x 元,购买一个篮球需要y 元 根据题意,得2334045600x y x y +=⎧⎨+=⎩解这个方程组得:5080x y =⎧⎨=⎩答:购买一个足球需要50元,购买一个篮球需要80元(2)设该中学购买篮球m 个根据题意,得8050(100)6000m m +-≤ 解这个一元一次不等式得:1333m ≤m 是整数33m ∴≤(或m 的最大整数解是33)答:这所中学最多可以购买33个篮球。

2.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A 、B 两种设备,已知:购买1台A 种设备和2台B 种设备需要3.5万元;购买2台A 种设备和1台B 种设备需要2.5万元. (1)求每台A 种、B 种设备各多少万元?(2)根据学校实际,需购进A 种和B 种设备共30台,总费用不超过30万元,请你通过计 解:(1)设每台A 种、B 种设备各x 万元、y 万元,根据题意得出:,解得:,答:每台A 种、B 种设备各0.5万元、1.5万元;(2)设购买A 种设备z 台,根据题意得出: 0.5z+1.5(30﹣z )≤30, 解得:z≥15,答:至少购买A 种设备15台.3.暑期临近,本溪某旅行社准备组织“亲子一家游”活动,去我省沿海城市旅游,报名的人数共有69人,其中成人的人数比儿童人数的2倍少3人.(1)旅游团中成人和儿童各有多少人?(2)旅行社为了吸引游客,打算给游客准备一件T恤衫,成人T恤衫每购买10件赠送1件儿童T恤衫(不足10件不赠送),儿童T恤衫每件15元,旅行社购买服装的费用不超过1200元,请问每件成人T恤衫的价格最高是多少元?4某校九年级有三个班,其中九年一班和九年二班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九年一班的满分率为70%,九年二班的满分率为80%. (1)求九年一班和九年二班各有多少名学生.(2)该校九年三班有45名学生,若九年级体育成绩的总满分率超过75%,求九年三班至少有多少名学生体育成绩是满分.5.学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元?(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?6.某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男女两种款式的书包。

二元一次方程组与一元一次不等式组应用题

二元一次方程组与一元一次不等式组应用题

二元一次方程组与一元一次不等式经典应用题2007年绵阳中考绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.1王灿如何安排甲、乙两种货车可一次性地运到销售地有几种方案2若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少最少运费是多少解:1设安排甲种货车x 辆,则安排乙种货车8-x 辆,依题意,得⎩⎨⎧≥-+≥-+12)8(220)8(24x x x x 解此不等式组, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4. 因此安排甲、乙两种货车有三种方案: 方案一,甲种货车2辆,乙种货车6辆 方案二,甲种货车3辆,乙种货车5辆 方案三,甲种货车4辆,乙种货车4辆2方案一所需运费 204062402300=⨯+⨯元;方案二所需运费 210052043300=⨯+⨯元; 方案三所需运费 216042404300=⨯+⨯元. 所以王灿应选择方案一运费最少,最少运费是2040元.2007年济南某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.1设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;2如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.解:1由租用甲种汽车x 辆,则租用乙种汽车(8)x -辆由题意得:4030(8)2901020(8)100x x x x +-⎧⎨+-⎩≥≥解得:56x ≤≤即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.2第一种租车方案的费用为520003180015400⨯+⨯=元; 第二种租车方案的费用为620002180015600⨯+⨯=元 ∴第一种租车方案更省费用.2007资阳年陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元. ” 王老师算了一下,说:“你肯定搞错了. ”⑴ 王老师为什么说他搞错了试用方程的知识给予解释;⑵ 陈老师连忙拿出购物发票,发现的他还买了一个笔记本. 但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元(1) 设单价为元的课外书为x 本,得:812(105)1500418x x +-=- (2) 解之得:44.5x =不符合题意 (3) 所以王老师肯定搞错了.⑵ 设单价为元的课外书为y 本,解法一:设笔记本的单价为a 元,依题意得: 812(105)1500418y y a +-=-- . 解之得:178+a =4y ,∵ a 、y 都是整数,且178+a 应被4整除,∴ a 为偶数, 又∵a 为小于10元的整数,∴ a 可能为2、4、6、8 .当a =2时,4x =180,x =45,符合题意;当a =4时,4x =182,x =,不符合题意; 当a =6时,4x =184,x =46,符合题意;当a =8时,4x =186,x =,不符合题意 . ∴ 笔记本的单价可能2元或6元 . ······················································ 8分 解法2:设笔记本的单价为b 元,依题意得: 解得:475.44<<x ∴ x 应为45本或46本 . 当x =45本时,b =1500-8×45+12105-45+418=2, 当x =46本时,b =1500-8×46+12105-46+418=6, 2012四川泸州,6分某商店准备购进甲、乙两种商品;已知甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元;(1)若该商品同时购进甲、乙两种商品共100件,恰好用去2700元,求购进的甲、乙两种商品各多少件(2)若该商品准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润为多少 利润 = 售价 - 进价解:1设购进甲种商品x 件,购进乙种商品y 件,根据题意⎩⎨⎧=+=+.27003515,100y x y x 解这个方程组得,⎩⎨⎧==.60,40y x答:商店购进甲种商品40件,则购进乙种商品60件;2设商店购进甲种商品x 件,则购进乙种商品x -100件,根据题意,得 ()()⎩⎨⎧≥-+≤-+.890100105,31001003515x x x x 解之得20≤x ≤22方案一,甲种商品20件,乙种商品80件方案二,甲种商品21件,乙种商品79件 方案三,甲种商品22件,乙种商品78件 方案一所得利润9008010205=⨯+⨯元; 方案二所得利润8957910215=⨯+⨯元 方案三所得利润8907810225=⨯+⨯元. 所以应选择方案一利润最大, 为2040元;2014宜宾在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分.1小李考了60分,那么小李答对了多少道题解:1设小李答对了x 道题.依题意得 5x ﹣320﹣x=60. 解得x=15.答:小李答对了16道题.2设小王答对了y 道题,依题意得:,解得:≤y ≤,即∵y 是正整数, ∴y=17或18,答:小王答对了17道题或18道题.2009年河南某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台类别 电视机冰 箱洗衣机进价元/台 2000 2400 1600 售价元/台2100250017001电视机数量的一半,商场有哪几种进货方案2国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在1的条件下. 如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元 设购进电视机、冰箱各x 台,则洗衣机为15-2x 台依题意得:⎪⎩⎪⎨⎧≤-++≤-32400)215(16002400200021215x x x xx 解这个不等式组,得6≤x ≤7∵x 为正整数,∴x =6或7 方案1:购进电视机和冰箱各6台,洗衣机3台;方案2:购进电视机和冰箱各7台,洗衣机1台 2方案1需补贴:6×2100+6×2500+1×1700×13%=4251元; 方案2需补贴:7×2100+7×2500+1×1700×13%=4407元; ∴国家的财政收入最多需补贴农民4407元.2011年达州我市化工园区一化工厂,组织20辆汽车装运A 、B 、C 三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解 1设装运A 种物资的车辆数为x ,装运B 种物资的车辆数为y .求y 与x 的函数关系式; 2如果装运A 种物资的车辆数不少于5辆,装运B 种物资的车辆数不少于4辆, 那么车辆的安排有几种方案并写出每种安排方案;3在2的条件下,若要求总运费最少,应采用哪种安排方案请求出最少总运费. 解:1根据题意,得:∴x y 220-=……………………2分 2根据题意,得:⎩⎨⎧≥-≥42205x x 解之得:85≤≤x ∵x 取正整数,∴=x 5,6,7,8……………………4分 ∴共有4种方案,即……………………5分3设总运费为M 元,则M=)20220(2008)220(3201024012-+-⨯+-⨯+⨯x x x x 即:M=640001920+-x∵M 是x 的一次函数,且M 随x 增大而减小,∴当x =8时,M 最小,最少为48640元……………………7分2011年广元某童装店到厂家选购A 、B 两种服装.若购进A 种服装12件、B 种服装8件,需要资金1880元;若购进A 种服装9件、B 种服装10件,需要资金1810元. 1求A 、B 两种服装的进价分别为多少元2销售一件A 服装可获利18元,销售一件B 服装可获利30元.根据市场需求,服装店决定:购进A 种服装的数量要比购进B 种服装的数量的2倍还多4件,且A 种服装购进数量不超过28件,并使这批服装全部销售完毕后的总获利不少于699元.设购进B 种服装x 件,那么请问该服装店有几种满足条件的进货方案哪种方案获利最多解:1设A 种型号服装每件x 元,B 种型号服装每件y 元. 依题意可得⎩⎨⎧=+=+18808121810109y x y x 解得⎩⎨⎧==10090y x ,答:A 种型号服装每件90元,B 种型号服装每件100元.2①设购进B 种服装x 件,则购进A 种服装的数量是2x+4, ∴y=30x+2x+4×18, =66x+72;②设B 型服装购进m 件,则A 型服装购进()42+m 件,根据题意得⎩⎨⎧≤+≥++284269930)42(18m m m ,解不等式得12219≤≤m ,因为m 这是正整数,所以m=10,11,12,则2m+4=24,26,28 有三种进货方案:方案一:B 型服装购进10件,A 型服装购进24件; 方案二:B 型服装购进11件,A 型服装购进26件; 方案三:B 型服装购进12件,A 型服装购进28件.方案一所得利润90024301018=⨯+⨯元; 方案二所得利润97826301118=⨯+⨯元 方案三所得利润105628301218=⨯+⨯元. 所以应选择方案一利润最大, 为1056元;2011雅安某部门为了给员工普及电脑知识,决定购买A 、B 两种电脑,A 型电脑单价为4800元,B 型电脑单价为3200元,若用不超过160000元去购买A 、B 型电脑共36台,要求购买A 型电脑多于25台,有哪几种购买方案解:设购买A 种电脑x 台,则购买B 种电脑36﹣x 台,由题意得:⎩⎨⎧≤-+25160000)36(32004800>x x x ,解得:25<x≤28, ∵x 必须求整数, ∴x=26,27,28,∴购买B 种电脑:10,9,8, 可以有3种购买方案,①购买A 种电脑26,台,则购买B 种电脑10台, ②购买A 种电脑27台,则购买B 种电脑9台, ③购买A 种电脑28台,则购买B 种电脑8台.2012哈尔滨同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球每个足球的价格相同,每个篮球的价格相同,若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元. 1购买一个足球、一个篮球各需多少元2根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球解:设购买一个足球需要x 元,购买一个篮球需要y 元, 根据题意得,解得,∴购买一个足球需要50元,购买一个篮球需要80元. 解:设购买n 个足球,则购买96﹣n 个篮球. 50n+8096﹣n ≤5720, n ≥65∵n 为整数,∴n 最少是66 96﹣66=30个.∴这所学校最多可以购买30个篮球.2014攀枝花为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表: 租金单位:元/台时 挖掘土石方量单位:m 3/台时 甲型挖掘机 100 60 乙型挖掘机 120 801若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台2如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案 解:1设甲、乙两种型号的挖掘机各需x 台、y 台.依题意得:,解得.答:甲、乙两种型号的挖掘机各需5台、3台; 2设租用m 辆甲型挖掘机,n 辆乙型挖掘机. 依题意得:60m+80n=540,化简得:3m+4n=27. ∴m=9﹣n, ∴方程的解为,.当m=5,n=3时,支付租金:100×5+120×3=860元>850元,超出限额; 当m=1,n=6时,支付租金:100×1+120×6=820元,符合要求.答:有一种租车方案,即租用1辆甲型挖掘机和3辆乙型挖掘机.2012四川广安某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.1求购买1块电子白板和一台笔记本电脑各需多少元2根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案3上面的哪种购买方案最省钱按最省钱方案购买需要多少钱解:1设购买1块电子白板需要x 元,一台笔记本电脑需要y 元,由题意得:x=3y+30004x+5y=80000⎧⎨⎩,解得:x=15000y=4000⎧⎨⎩; 答:购买1块电子白板需要15000元,一台笔记本电脑需要4000元; 2设购买购买电子白板a 块,则购买笔记本电脑396﹣a 台,由题意得:()396a 3a270000015000a+4000396a -≤⎧⎪≤⎨-⎪⎩,解得:599a 10111≤≤; ∵a 为整数,∴a =99,100,101,则电脑依次买:297,296,295; ∴该校有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块; 方案三:购买笔记本电脑297台,则购买电子白板99块;2012年河南某中学计划购买A 型和B 型课桌凳共200套,经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,,且购4套A 型和6套B 型课桌凳共需1820元;1求购买一套A 型课桌凳和一套B 型课桌凳各需多少元 解析1设A 型每套x 元,B 型每套40x +元 ∴45(40)1820x x ++= ∴180,40220x x =+=即购买一套A 型课桌凳和一套B 型课桌凳各需180元和220元;2学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳的23,求该校本次购买A 型和B 型课桌凳共有几种方案哪种方案的总费用最低2设A 型课桌凳a 套,则购买B 型课桌凳200a -套 解得7880a ≤≤∵a 为整数,所以a =78,79,80 所以共有3种方案;2011眉山在眉山市开展城乡综合治理的活动中,需要将A 、B 、C 三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D 、E 两地进行处理.已知运往D 地的数量比运往E 地的数量的2倍少10立方米. 1求运往两地的数量各是多少立方米2若A 地运往D 地a 立方米a 为整数,B 地运往D 地30立方米,C 地运往D 地的数量小于A 地运往D 地的2倍.其余全部运往E 地,且C 地运往E 地不超过12立方米,则A 、C 两地运往D 、E 两地哪几种方案,x+2x ﹣10=140, 解得:x=50, ∴2x ﹣10=90,答:共运往D 地90立方米,运往E 地50立方米; 2由题意可得, {90﹣(a +30)<2a 50﹣[90﹣(a +30)]≤12,解得:20<a≤22, ∵a 是整数, ∴a=21或22,∴有如下两种方案:第一种:A 地运往D 地21立方米,运往E 地29立方米;C 地运往D 地39立方米,运往E 地11立方米;第二种:A 地运往D 地22立方米,运往E 地28立方米; C 地运往D 地38立方米,运往E 地12立方米; 3第一种方案共需费用: 22×21+20×29+39×20+11×21=2053元, 第二种方案共需费用: 22×22+28×20+38×20+12×21=2056元, 所以,第一种方案的总费用最少.2014德阳为落实国家“三农”政策,某地政府组织40辆汽车装运A 、B 、C 三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题: 农产品种类 A B C 每辆汽车的装载量吨 4 5 61如果装运C 种农产品需13辆汽车,那么装运A 、B 两种农产品各需多少辆汽车2如果装运每种农产品至少需要11辆汽车,那么车辆的装运方案有几种写出每种装运方案. 解:1设装运A 、B 两种农产品各需x 、y 辆汽车.则,解得.答:装运A 、B 两种农产品各需13、14辆汽车;2设装运A 、B 两种农产品各需x 、y 辆汽车.则 4x+5y+640﹣x ﹣y=200, 解得:y=﹣2x+40.由题意可得如下不等式组:,即,解得:11≤x≤ 因为x 是正整数,所以x 的值可为11,12,13,14;共4个值,因而有四种安排方案. 方案一:11车装运A,18车装运B,11车装运C 方案二:12车装运A,16车装运B,12车装运C . 方案三:13车装运A,14车装运B,13车装运C . 方案四:14车装运A,12车装运B,14车装运C .2011内江某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元. 1每台电脑机箱、液晶显示器的进价各是多少元2该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案哪种方案获利最大最大利润是多少解:1设每台电脑机箱、液晶显示器的进价各是x,y 元, 根据题意得:⎩⎨⎧=+=+4120527000810y x y x ,解得:⎩⎨⎧==80060y x ,答:每台电脑机箱、液晶显示器的进价各是60元,800元;2设该经销商购进电脑机箱m 台,购进液晶显示器50﹣m 台, 根据题意得:⎩⎨⎧≥-+≤-+4100)50(1601022240)50(80060m m m m ,解得:24≤m≤26,因为m 要为整数,所以m 可以取24、25、26, 从而得出有三种进货方式:①电脑箱:24台,液晶显示器:26台, ②电脑箱:25台,液晶显示器:25台; ③电脑箱:26台,液晶显示器:24台. ∴方案一的利润:24×10+26×160=4400, 方案二的利润:25×10+25×160=4250, 方案三的利润:26×10+24×160=4100, ∴方案一的利润最大为4400元.2013自贡某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.1求该校的大小寝室每间各住多少人2预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案 解答:解:1设该校的大寝室每间住x 人,小寝室每间住y 人,由题意得: , 解得:,答:该校的大寝室每间住8人,小寝室每间住6人; 2设大寝室a 间,则小寝室80﹣a 间,由题意得:,解得:80≥a ≥75,①a=75时,80﹣75=5, ②a=76时,80﹣a=4, ③a=77时,80﹣a=3, ④a=78时,80﹣a=2, ⑤a=79时,80﹣a=1, ⑥a=80时,80﹣a=0.故共有6种安排住宿的方案.2012浙江温州12分温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n 件产品运往A ,B ,C 三地销售,要求运往C 地的件数是运往A 地件数的2倍,各地的运费如图所示;设安排x 件产品运往A 地; 1当n 200=时, ①根据信息填表:A 地B 地C 地 合计 产品件数件200运费元30x②若运往B 地的件数不多于运往C 地的件数,总运费不超过4000元,则有哪几种运输方案 2若总运费为5800元,求n 的最小值; 答案解:1①根据信息填表A 地B 地C 地 合计 产品件数件200运费元30x②由题意,得 2003x 2x160056x 4000-≤⎧⎨+≤⎩ ,解得40≤x ≤6427;∵x 为整数,∴x =40或41或42; ∴有三种方案,分别是iA 地40件,B 地80件,C 地80件;iiA 地41件,B 地77件,C 地82件; iiiA 地42件,B 地74件,C 地84件;2由题意,得30x +8n -3x +50x =5800,整理,得n =725-7x .∵n -3x ≥0,∴x ≤;又∵x ≥0,∴0≤x ≤且x 为整数;∵n 随x 的增大而减少,∴当x =72时,n 有最小值为221;2007年南充某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:类 别 电视机 洗衣机 进价元/台 1800 1500 售价元/台20001600计划购进电视机和洗衣机共100台,商店最多可筹集资金160 600元. 1请你帮助商店算一算有多少种进货方案不考虑除进价之外的其它费用2哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多并求出最多利润.利润=售价-进价9. 解:1设商店购进电视机x 台,则购进洗衣机100-x 台,根据题意,得⎪⎩⎪⎨⎧≤-+≥160600)100(15001800)-100(21x x x x解不等式组,得 1333≤x ≤3135.即购进电视机最少34台,最多35台,商店有2种进货方案.方案一,电视机34台,洗衣机66台:利润为134006610034200=⨯+⨯元 方案二,电视机35台,洗衣机65台:利润为135006510035200=⨯+⨯元 商店为了获得最大利润应选方案二,最大利润为13500元;2008年南充某乒乓球训练馆准备购买10副某种品牌的乒乓球拍,每副球拍配(3)x x ≥个乒乓球,已知A B ,两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元,现两家超市正在促销,A 超市所有商品均打九折按原价的90%付费销售,而B 超市买1副乒乓球拍送3个乒乓球,若仅考虑购买球拍和乒乓球的费用,请解答下列问题:1如果只在某一家超市购买所需球拍和乒乓球,那么去A 超市还是B 超市买更合算 2当12x =时,请设计最省钱的购买方案.解:1去A 超市购买所需费用0.9(201010)A y x =⨯+ 即9180A y x =+去B 超市购买所需费用201010(3)B y x =⨯+- 即10170B y x =+当A B y y <时,即918010170x x +<+ 当A B y y =时,即918010170x x +=+ 当A B y y >时,即918010170x x +>+综上所述:当10x >时,去A 超市购买更合算;当10x =时,去A 超市或B 超市购买一样;当310x <≤时,去B 超市购买更合算.2当12x =时,即购买10副球拍应配120个乒乓球 若只去A 超市购买的费用为: 9180912180288x +=⨯+=元若在B 超市购买10副球拍,去A 超市购买余下的乒乓球的费用为:2000.9(123)10281+-⨯=元∴最佳方案为:只在B 超市购买10副球拍,同时获得送30个乒乓球,然后去A 超市按九折购买90个乒乓球.2009年南充某电信公司给顾客提供了两种手机上网计费方式: 方式A 以每分钟元的价格按上网时间计费;方式B 除收月基费20元外,再以每分钟元的价格按上网时间计费.假设顾客甲一个月手机上网的时间共有x 分钟,上网费用为y 元.1分别写出顾客甲按A 、B 两种方式计费的上网费y 元与上网时间x 分钟之间的函数关系式,并在图7的坐标系中作出这两个函数的图象; 2如何选择计费方式能使甲上网费更合算 方式A :0.1(0)y x x =≥, 方式B :0.0620(0)y x x =+≥,两个函数的图象如图所示.2012南充学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元. 1求大、小车每辆的租车费各是多少元2若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案. 解:1设大车每辆的租车费是x 元、小车每辆的租车费是y 元. 可得方程组,解得.答:大车每辆的租车费是400元、小车每辆的租车费是300元.240名师生都有座位,租车总辆数≥6;每辆车上至少要有一名教师,租车总辆数≤6,故租车总数为6辆,设大车辆数是x 辆,则租小车6-x 辆,得解得∴4≤x ≤5. ∵x 是正整数, ∴x =4或5,于是有两种租车方案:方案1:大车4辆,小车2辆,总租车费用2 200元; 方案2:大车5辆,小车1辆,总租车费用2 300元, 可见最省钱的是方案1.。

(完整word)一元一次不等式(组)与二元一次方程(组)结合培优资料

(完整word)一元一次不等式(组)与二元一次方程(组)结合培优资料

一元一次不等式(组)与方程(组)的结合培优资料考点·方法·破译1.进一步熟悉二元一次方程组的解法,以及一元二次不等式组的解法.2.综合运用一元一次不等式组和二元一次方程组解决一些典型的实际问题.经典·考题·赏析【例1】求方程3x +27=17的正整数解.【解法指导】一般地,一个二元一次方程有无数个解,但它的特殊解是有限个,如一个二元一次方程的正整数解,非负整数解都是有限个.求不定方程的正(非负)整数解时,往往借助不等式,整数的奇偶性等相关知识来帮助求解.解:将方程变形为2y =17-3x 即2317x y -= ∵y >0 ∴2317x ->0 ∴x <317即x <325 又∵y 为正整数(即2317x -为整数) ∴17-3x 为偶数∴x 必为奇数∴x =1,3,5当x =1时,7213172317=⨯-=-=x y 当x =3时,4233172317=⨯-=-=x y 当x =5时,1253172317=⨯-=-=x y故原方程的正整数解为错误! 或错误! 或错误!【变式题组】01.求下列各方程的正整数解:⑴2x +y =10(2) 3x +4y =2102.有10个苹果,要分给两个女孩和一个男孩,要求苹果不得切开,且两个女孩所得的苹果数相等,每个孩子都有苹果吃,问有哪几种分法?【例2】足球联赛得分规定如下:胜1场得3分,平1场得1分,负1场得0分•某队在足球联赛的4场比赛中得6分,这个队胜了几场,平了几场,负了几场?【解法指导】本题中,所有的等量关系只有两个,而未知量有三个•因而所列方程的个数少于未知数的个数,即为不定方程组,但每个未知数量的数目必为非负整数•因此,此题的实质就是滶不定方程的非负整数解的问题.此方程组有两个方和,三个未知数,解法仍然是消元,即消去某一个未知数后,变为二元一次方程,再仿照例1的解法施行.解:设该队胜了x场,平了y场 ,负了z场,依题意可得:错误!②-①得:2x-z=2 ③变形得:z=2x-2∵0≤z≤2∴0≤2x-2≤2即1≤x≤2又x为正整数∴x=1,2相应地,y=3,0 z=0,2答:这个队胜了1场,平了3场,或胜了2,负了2场.【变式题组】01.(佳木斯)为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么可能购买甲种笔().A.11支B.9支C.7支D.5支02.一旅游团50人到一旅舍住宿,旅舍的客户有三人间、二人间、单人间三种•其中三人间的客房每人每晚20元,二人间的客房每人每晚30元,单人间的客房每人每晚50元.(1)若旅游团共住满了20间客房,问三种客房各住了几间?怎样住消费最低?(2)若该旅游团中,夫妻住二人间,单身住三人间,小孩随父母住在一起,现已知有小孩4人(每对夫妻最多只带1个小孩),单身30人,其中男性17人,有两名单身心脏病患者要求住单人间,问这一行人共需多少间客房?【例3】已知:关于x、y的方程组错误!若x>y,求a的取值范围.【解法指导】解本题的指导思想就是构建以a为未知数的不等式•解之即得a的取值范围,构建不等式的依据就是x>y,而解方程组即可用a的代数式分别表示x和y,进而可得不等式.解:解方程组错误!得错误!∵x>y∴2a+1>a-2 解得a>-3故a的取值范围是a>-3.【变式题组】01.已知:关于x的方程3x-(2a-3) =5x+(3a+6)的解是负数,则a的取值范围是_____.02.已知:关于x、y的方程组错误!的解为非负数.(1)求a的取值范围;(2)化简|4a+5|-|a-4|.03.当m 为何值时,关于x 的方程2153166--=--m x m x 的解大于1?4.已知方程组错误! 的解x 、y 都是正数,且x 的值小于y 的值,求m 的取值范围.【例4】(凉州)若不等式{x -a >2,b -2x >0 的解集是-1<x <1,求(a +b )2009的值. 【解法指导】解此不等式组得a +2<x <2b ,而依题意,该不等式的解集又是-1<x <1,而解集是唯一的,因此两解集的边界点分别“吻合”,从而得两等式即得方程组,解之可得a 、b 之值.解:解不等式组错误! 得a +2<x <2b 又∵此不等式组的解集是-1<x <1∴ 错误! 解设错误!∴(a +b )2009=(-1)2009=-1【变式题组】 01.若错误! 的解集为-1<x <2,则a =___________,b =_____________.02.已知:关于x 的不等式组错误!的解集为3≤x <5,则a b 的值为( ) A .-2 B .21- C .-4 D . 41- 03.若关于x 的不等式组错误! 的解集为x <2,则a 的取值范围是___________.04.已知:不等式组错误! 的解庥为-1<x <2,求(a +b )2008的值.【例5】(永春)商场正在销售“福娃"玩具和徽章两种奥运商品,已知购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元•(1)一盒“福娃"玩具和一盒徽章的价格各是多少元?(2)某公司准备购买这两种奥运商品共20盒送给幼儿园(要求每种商品都要购买),且购买金额不能超过450元,请你帮该公司设计购买方案•【解法指导】本题属材料选择类的方程与不等式结合的实际应用题,但方程组与不等式组是分开的•分析可知:第(1)问只需依照题目主干所提供的两个等量关系即可列出二元一次方程组•第(2)问由题目所给不等关系“购买金额不能超过450元”及第(1)问所求出的数据列出不等式,从而求解•解:(1)设一盒“福娃"玩具和一盒徽章的价格分别为x元和y元.依题意,得错误!解得错误!答:一盒“福娃”玩具和一盒徽章的价格分别是125元和10元.(2)设购买“福娃”玩具m盒,则购买徽章(20-m)盒.由题意,得125m+10(20-m)≤450,解得m≤2。

二元一次方程组、一元一次不等式(组)的性质及其应用

二元一次方程组、一元一次不等式(组)的性质及其应用

名称 符号 读法
意义
例子
大于号
> 大于
左边的量大于右边的量 3>2
小于号 < 小于
左边的量小于右边的量 -5<1
大于或等于号 ≥
1.大于或等于左边的量不小于右边的量 a≥4
2.不小于
小于或等于号 ≤ 12..小不于 大或 于等于左边的量不大于右边的量 b≤-1
不等号
≠ 不等于 左右两边的量不相等 c≠0
一.基本知识结构:
二元一次方程及二元一次方程组
求解
思想 方法
消代 元入
加 减






一、知识要点: 1、二元一次方程的定义
含有两个未知数,并且所含的未知数的项的次数都是1的 方程,叫做二元一次方程。 练习:1、请判断下列各方程中,哪些是二元一次方程, 哪些不是?并说明理由。
(1)2x+5y=10 (2) 2x+y+z=1
轴上表示为( )
A
B
C
D
解析:解不等式 3x-1>2,得 x>1.解不等式 4- 2x≥0,得 x≤2.∴1<x≤2.在数轴上表示不等式组的解 集时,要从表示 1 的点向右画,且用空心圆圈;从表 示 2 的点向左画,且用实心圆点.故选 A.
答案: A
4.(2014·株洲)一元一次不等式组x2-x+5≤1>00, 的
化系数为1得: x≤6 所以不等式 的正整数解为: 1、2、3、4、5、6
10、一元一次不等式组:
一般地,关于同一未知数的几个一元一次不等式合在一起,就组 成一个一元一次不等式组。
11、一元一次不等式组的解集:
一般地,一元一次不等式组中各个不等式解集的公共部分,叫这个 一元一次不等式组的解集。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组与一元一次不等式经典应用题(2007年绵阳中考)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得⎩⎨⎧≥-+≥-+12)8(220)8(24x x x x 解此不等式组, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:方案一,甲种货车2辆,乙种货车6辆方案二,甲种货车3辆,乙种货车5辆方案三,甲种货车4辆,乙种货车4辆(2)方案一所需运费 204062402300=⨯+⨯元;方案二所需运费 210052043300=⨯+⨯元;方案三所需运费 216042404300=⨯+⨯元.所以王灿应选择方案一运费最少,最少运费是2040元.(2007年济南)某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.解:(1)由租用甲种汽车x 辆,则租用乙种汽车(8)x -辆由题意得:4030(8)2901020(8)100x x x x +-⎧⎨+-⎩≥≥ 解得:56x ≤≤即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)第一种租车方案的费用为520003180015400⨯+⨯=元;第二种租车方案的费用为620002180015600⨯+⨯=元∴第一种租车方案更省费用.(2007资阳)年陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元. ”王老师算了一下,说:“你肯定搞错了. ”⑴ 王老师为什么说他搞错了?试用方程的知识给予解释;⑵ 陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本. 但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?(1) 设单价为8.0元的课外书为x 本,得:812(105)1500418x x +-=-(2) 解之得:44.5x =(不符合题意)(3) 所以王老师肯定搞错了.⑵ 设单价为8.0元的课外书为y 本,解法一:设笔记本的单价为a 元,依题意得:812(105)1500418y y a +-=-- .解之得:178+a =4y ,∵ a 、y 都是整数,且178+a 应被4整除,∴ a 为偶数,又∵a 为小于10元的整数,∴ a 可能为2、4、6、8 .当a =2时,4x =180,x =45,符合题意;当a =4时,4x =182,x =45.5,不符合题意;当a =6时,4x =184,x =46,符合题意;当a =8时,4x =186,x =46.5,不符合题意 .∴ 笔记本的单价可能2元或6元 . ······················································ 8分解法2:设笔记本的单价为b 元,依题意得:解得:475.44<<x∴ x 应为45本或46本 .当x =45本时,b =1500-[8×45+12(105-45)+418]=2,当x =46本时,b =1500-[8×46+12(105-46)+418]=6,(2012四川泸州,6分)某商店准备购进甲、乙两种商品。

已知甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元。

(1)若该商品同时购进甲、乙两种商品共100件,恰好用去2700元,求购进的甲、乙两种商品各多少件?(2)若该商品准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润为多少?(利润 = 售价 - 进价)解:(1)设购进甲种商品x 件,购进乙种商品y 件,根据题意⎩⎨⎧=+=+.27003515,100y x y x 解这个方程组得,⎩⎨⎧==.60,40y x 答:商店购进甲种商品40件,则购进乙种商品60件。

(2)设商店购进甲种商品x 件,则购进乙种商品(x -100)件,根据题意,得()()⎩⎨⎧≥-+≤-+.890100105,31001003515x x x x 解之得20≤x ≤22 方案一,甲种商品20件,乙种商品80件方案二,甲种商品21件,乙种商品79件方案三,甲种商品22件,乙种商品78件方案一所得利润9008010205=⨯+⨯元;方案二所得利润8957910215=⨯+⨯元方案三所得利润8907810225=⨯+⨯元.所以应选择方案一利润最大, 为2040元。

(2014?宜宾)在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分.(1)小李考了60分,那么小李答对了多少道题?(2009年河南)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5(1)于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下.如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?设购进电视机、冰箱各x台,则洗衣机为(15-2x)台依题意得:⎪⎩⎪⎨⎧≤-++≤-32400)215(16002400200021215x x x x x 解这个不等式组,得6≤x ≤7∵x 为正整数,∴x =6或7方案1:购进电视机和冰箱各6台,洗衣机3台;方案2:购进电视机和冰箱各7台,洗衣机1台(2)方案1需补贴:(6×2100+6×2500+1×1700)×13%=4251(元);方案2需补贴:(7×2100+7×2500+1×1700)×13%=4407(元);∴国家的财政收入最多需补贴农民4407元.(2011年达州)我市化工园区一化工厂,组织20辆汽车装运A 、B 、C 三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解(1)设装运A 种物资的车辆数为x ,装运B 种物资的车辆数为y .求y 与x 的函数关系式;(2)如果装运A 种物资的车辆数不少于5辆,装运B 种物资的车辆数不少于4辆, 那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费. )解:(1)根据题意,得:∴x y 220-=……………………2分(2)根据题意,得: ⎩⎨⎧≥-≥42205x x 解之得:85≤≤x ∵x 取正整数,∴=x 5,6,7,8……………………4分∴共有4种方案,即……………………5分(3)设总运费为M 元,则M=)20220(2008)220(3201024012-+-⨯+-⨯+⨯x x x x即:M=640001920+-x∵M 是x 的一次函数,且M 随x 增大而减小,∴当x =8时,M 最小,最少为48640元……………………7分(2011年广元)某童装店到厂家选购A 、B 两种服装.若购进A 种服装12件、B 种服装8件,需要资金1880元;若购进A 种服装9件、B 种服装10件,需要资金1810元.(1)求A 、B 两种服装的进价分别为多少元?(2)销售一件A 服装可获利18元,销售一件B 服装可获利30元.根据市场需求,服装店决定:购进A 种服装的数量要比购进B 种服装的数量的2倍还多4件,且A 种服装购进数量不超过28件,并使这批服装全部销售完毕后的总获利不少于699元.设购进B 种服装x 件,那么请问该服装店有几种满足条件的进货方案?哪种方案获利最多?解:(1)设A 种型号服装每件x 元,B 种型号服装每件y 元.依题意可得⎩⎨⎧=+=+18808121810109y x y x 解得⎩⎨⎧==10090y x , 答:A 种型号服装每件90元,B 种型号服装每件100元.(2)①设购进B 种服装x 件,则购进A 种服装的数量是2x+4,∴y=30x+(2x+4)×18,=66x+72;②设B 型服装购进m 件,则A 型服装购进()42+m 件,根据题意得⎩⎨⎧≤+≥++284269930)42(18m m m ,解不等式得12219≤≤m , 因为m 这是正整数,所以m=10,11,12,则2m+4=24,26,28有三种进货方案:方案一:B 型服装购进10件,A 型服装购进24件;方案二:B 型服装购进11件,A 型服装购进26件;方案三:B 型服装购进12件,A 型服装购进28件.方案一所得利润90024301018=⨯+⨯元;方案二所得利润97826301118=⨯+⨯元方案三所得利润105628301218=⨯+⨯元.所以应选择方案一利润最大, 为1056元。

(2011?雅安)某部门为了给员工普及电脑知识,决定购买A 、B 两种电脑,A 型电脑单价为4800元,B 型电脑单价为3200元,若用不超过160000元去购买A 、B 型电脑共36台,要求购买A 型电脑多于25台,有哪几种购买方案?解:设购买A 种电脑x 台,则购买B 种电脑(36﹣x )台,由题意得:⎩⎨⎧≤-+25160000)36(32004800>x x x ,解得:25<x≤28, ∵x 必须求整数,∴x=26,27,28,∴购买B 种电脑:10,9,8,可以有3种购买方案,①购买A 种电脑26,台,则购买B 种电脑10台,②购买A 种电脑27台,则购买B 种电脑9台,③购买A 种电脑28台,则购买B 种电脑8台.(2012?哈尔滨)同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要 解:设购买一个足球需要x 元,购买一个篮球需要y 元,根据题意得,解得, ∴购买一个足球需要50元,购买一个篮球需要80元.解:设购买n 个足球,则购买(96﹣n )个篮球.50n+80(96﹣n )≤5720,n ≥65∵n 为整数,∴n 最少是6696﹣66=30个.∴这所学校最多可以购买30个篮球.(2014?攀枝花)为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:租金(单位:元/台?时) 挖掘土石方量(单位:m 3/台?时) 甲型挖掘机 100 60乙型挖掘机 120 80(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?解:(1)设甲、乙两种型号的挖掘机各需x 台、y 台. 依题意得:,解得 . 答:甲、乙两种型号的挖掘机各需5台、3台;(2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机.依题意得:60m+80n=540,化简得:3m+4n=27.∴m=9﹣n ,∴方程的解为,.当m=5,n=3时,支付租金:100×5+120×3=860元>850元,超出限额;当m=1,n=6时,支付租金:100×1+120×6=820元,符合要求.答:有一种租车方案,即租用1辆甲型挖掘机和3辆乙型挖掘机.(2012四川广安)某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?解:(1)设购买1块电子白板需要x 元,一台笔记本电脑需要y 元,由题意得:x=3y+30004x+5y=80000⎧⎨⎩,解得:x=15000y=4000⎧⎨⎩。

相关文档
最新文档