无源无线测温原理
无线测温工作原理

无线测温工作原理
无线测温是一种利用无线技术进行温度测量的方法。
其工作原理如下:
1. 温度传感器:无线测温系统中使用一种温度传感器,可以是热电偶、热敏电阻或红外线传感器等。
这些传感器可以测量环境的温度变化。
2. 数据采集:传感器通过测量环境的温度变化,将温度信号转换为相应的电信号。
3. 无线传输:通过无线通信技术,将温度数据传输到接收设备。
无线通信技术可以是蓝牙、Wi-Fi或以太网等。
传输的距离可
以根据通信技术和设备的工作范围来确定。
4. 数据接收:接收设备接收到传输的温度数据,并将其转换为数字信号。
接收设备可以是手机、计算机或专用的接收器。
5. 数据处理:接收设备对接收到的温度数据进行处理,可以进行数据分析、存储或显示等操作。
总结:无线测温工作原理是通过温度传感器测量温度变化,将数据通过无线通信技术传输到接收设备,接收设备对数据进行处理与显示。
这种方法可以使温度测量更为方便、灵活,并且不限制测量位置的距离。
声表面波无源无线测温原理

声表面波无源无线测温原理以声表面波无源无线测温原理为标题,本文将详细介绍该原理的相关内容。
一、引言温度是工业生产和生活中非常重要的一个物理量,而准确测量温度对于许多领域来说至关重要。
传统的温度测量方法通常需要接触式测量,但这种方法不适用于高温、高压、强腐蚀等特殊环境。
因此,无源无线测温技术应运而生。
声表面波无源无线测温技术是一种基于声表面波传感器的温度测量方法。
它利用材料的温度变化引起声表面波传感器频率的变化来实现温度的测量。
声表面波是一种沿着材料表面传播的超声波,其频率与材料的物理性质和温度相关。
声表面波传感器通常由压电材料制成,当材料受到温度变化的影响时,其物理性质也会发生变化,进而导致声表面波的频率发生变化。
三、声表面波无源无线测温系统结构声表面波无源无线测温系统主要由声表面波传感器、射频天线、温度信号调理电路和无线传输模块组成。
1. 声表面波传感器声表面波传感器是整个系统的核心部件,它将声表面波的频率变化转化为电信号,并传递给后续的电路进行处理。
2. 射频天线射频天线用于接收和发送无线信号,将传感器采集到的温度信号转化为无线信号传输出去,同时接收无线信号并传递给后续的电路进行处理。
3. 温度信号调理电路温度信号调理电路用于对传感器采集到的温度信号进行放大、滤波和处理等操作,以保证信号的稳定性和可靠性。
4. 无线传输模块无线传输模块用于将经过调理的温度信号通过射频天线发送出去,实现无线传输。
四、声表面波无源无线测温原理的优势声表面波无源无线测温技术相比传统的接触式测温方法具有以下优势:1. 无源无线声表面波无源无线测温技术不需要外部电源供电,传感器通过接收到的无线信号获得能量,从而实现无源无线测温,避免了传统接触式测温方法中电源供电的局限性和安全隐患。
2. 适用于特殊环境声表面波传感器可以承受高温、高压和强腐蚀等特殊环境的考验,因此适用于一些传统测温方法无法应用的场景。
3. 高精度声表面波传感器具有较高的灵敏度和稳定性,能够实现对温度的精确测量,满足工业生产和科学研究对于温度测量的高要求。
无线测温:详细介绍一下无源无线测温

无线测温:详细介绍一下无源无线测温什么是无源无线测温?无源无线测温是一种通过无线传输技术,实现非接触式测温的方式。
与传统的有源式无线测温不同,无源无线测温不需要配备电池或外部电源,可以通过接收到的无线信号来获取目标物体的温度信息。
在无源无线测温技术中,关键的部件是温度传感器。
温度传感器通常由两个不同的金属材料制成,称之为热偶。
当热偶的一个端口与目标物体接触时,热偶会产生微小的电压差异,这个电压差异与目标物体的温度成正比。
通过使用无线能量传输技术,将能量传输给微控制器和无线传输芯片,这些芯片通过无线信号传输目标物体的温度数据。
无源无线测温的优势相比传统的测温方式,无源无线测温有以下几个优势:非接触式测温无源无线测温不需要接触目标物体,无论是不规则形状还是高温表面,都能够准确的测量物体的温度,避免了传统测温设备因为接触不良、测点不准确、误差大等问题所带来的不便和不稳定。
实时、快速测温无源无线测温能够实现实时测温,同时由于不需要待测物体处于静止状态,完全可以在物体运动的过程中实时测量,从而提供更精准、快速的测温数据,并且不会对被测试的物体产生任何干扰。
性价比高相比传统的测温设备,无源无线测温不需要配备电池或外部电源,而且无须布线,省去了大量的费用和时间,因此更加节约成本,而且可以快速实现部署。
此外,无源无线测温还可以实现对多个点进行测温,因此更具有性价比。
安全稳定性高无源无线测温采用非接触式测温方式,与物体不产生实际的接触,避免了传统测温设备潜在的安全风险,而且无源无线测温的传感器可以通过无线信号传输数据,因此不会给使用者带来任何干扰或损害,保证了设备的稳定性。
总结无源无线测温是一种前沿的测温技术,它可以实现实时、非接触、高稳定性的测温,而且操作简单、成本低,非常适合于各种需要测温的应用场景。
尽管无源无线测温目前还存在一些技术问题,但是这种技术已经发展成为了许多现代制造业、工业环境、医疗领域和生活领域应用的主流技术,可谓是当今科技创新的重要成果。
无线测温系统的工作原理

无线测温系统的工作原理无线测温系统是一种可以无线获取温度数据的系统,它可以实时监测和记录温度数据,并将数据传输到接收器进行处理和报告。
该系统主要由温度传感器、信号调理模块、数据传输模块和数据接收模块组成。
首先,温度传感器是无线测温系统最重要的部件之一。
它能够感知环境中的温度,并将其转化为电信号。
常用的温度传感器有热电偶、热电阻和半导体温度传感器等。
这些传感器以不同的方式响应温度变化,但其基本原理都是基于热效应或半导体材料的性质。
其次,信号调理模块是无线测温系统的核心组成部分之一。
该模块的作用是将传感器产生的电信号进行放大、滤波和线性化处理,以保证传输的数据准确性和稳定性。
在这个模块中,通常会使用一些电子器件如运算放大器、滤波电路和电压参考源等来完成信号调理的任务。
然后,数据传输模块是实现无线传输的关键技术。
在无线测温系统中,通常会采用无线传输技术如射频、蓝牙或Wi-Fi来实现传输。
传感器通过数据传输模块将处理后的温度数据转化为无线信号,并将其发送到接收器或其他设备上。
最后,数据接收模块接收传输的无线信号,并将其转化为可读的温度数据。
在这个模块中,可以利用计算机、显示屏或其他设备来处理和显示温度数据。
通过数据接收模块,用户可以实时获取测温系统采集到的温度数据,并进行分析和记录。
总体来说,无线测温系统的工作原理如下:1. 温度传感器感知环境中的温度并将其转化为电信号;2. 信号调理模块对传感器输出的电信号进行放大、滤波和线性化处理;3. 数据传输模块将处理后的温度数据转化为无线信号,并通过无线传输技术发送到接收器或其他设备上;4. 数据接收模块接收无线信号并将其转化为可读的温度数据;5. 用户可以通过数据接收模块实时获取和分析测温系统采集到的温度数据。
无线测温系统的工作原理实现了温度监测的自动化和远程化。
它具有实时、准确和灵活等特点,广泛应用于工业、农业、医疗和环境等领域。
通过无线测温系统,用户可以方便地获取温度信息,及时采取相应的措施,以提高生产效率和节约能源。
声表面波无源无线测温原理(一)

声表面波无源无线测温原理(一)声表面波无源无线测温原理什么是声表面波•声表面波是一种沿固体表面传播的声波。
•它是通过材料表面的弹性波来传递能量和信息。
无源无线测温技术•无源无线测温技术是一种无需电池或外部电源的温度测量方法。
•它利用材料自身的特性来实现温度测量。
声表面波无源无线测温原理1.声表面波传感器:–利用压电材料的特性将温度转化为电压信号。
–压电材料受温度变化影响,产生电荷分布改变。
–这种变化可通过表面电场和声表面波的相互作用被测量。
2.无线信号传输:–无线传感器通过接收器接收声表面波的信号。
–接收器将信号转化为电压,并通过解调器转化为数字信号。
3.温度计算:–数字信号被传输到计算机或其他设备进行温度计算。
–通过预先建立的温度-电压关系曲线,可以准确地计算出温度数值。
声表面波无源无线测温的优势•免电池:无需外部电源,节省维护成本和能源消耗。
•无线传输:信号无需物理线缆传输,减少安装和维护难度。
•高精度:利用压电材料的高灵敏度和稳定性,可以实现高精度的温度测量。
•高可靠性:无源无线传输和压电材料的稳定性,提高了系统的可靠性和持久性。
应用领域•工业:在高温环境下进行温度监测和控制,例如冶金、玻璃制造和钢铁工业。
•医疗:监测生物样品温度,如血液和药物储存温度。
•家电:测量电子设备的温度,实现故障诊断和温度控制。
•环境:用于土壤温度监测、气象数据采集等领域。
结论声表面波无源无线测温技术凭借其高精度、高可靠性和便捷的特点,在多个领域得到了广泛应用。
通过利用材料自身的特性和无线传输技术,该技术为温度测量提供了一种新的解决方案。
无线测温原理

无线测温原理无线测温技术是一种通过无线传输数据来实现测温的技术手段,它在工业生产、医疗保健、环境监测等领域有着广泛的应用。
无线测温原理是指利用无线传感器和无线通信技术,实现对目标温度的实时监测和数据传输的工作原理。
本文将对无线测温原理进行详细介绍,包括无线测温技术的基本原理、工作流程和应用前景等方面进行阐述。
无线测温技术的基本原理是利用无线传感器来感知目标物体的温度,并通过无线通信技术将采集到的温度数据传输到监测端。
无线传感器通常由温度传感器、微处理器和无线通信模块组成。
温度传感器用于感知目标物体的温度,微处理器负责对采集到的温度数据进行处理和存储,无线通信模块则实现了温度数据的无线传输。
在工作过程中,无线传感器通过温度传感器感知目标物体的温度,并将采集到的数据通过微处理器进行处理和存储,最终通过无线通信模块将数据传输到监测端,实现对目标温度的实时监测和数据传输。
无线测温技术的工作流程通常包括传感器端和监测端两个部分。
传感器端是指安装在目标物体上的无线传感器,它负责感知目标物体的温度并将采集到的数据传输到监测端。
监测端则是指接收传感器端传输过来的数据并进行处理和显示的设备。
在工作过程中,传感器端通过温度传感器感知目标物体的温度,并将采集到的数据通过无线通信技术传输到监测端,监测端接收到数据后进行处理并显示目标物体的温度信息。
无线测温技术在工业生产、医疗保健、环境监测等领域有着广泛的应用前景。
在工业生产领域,无线测温技术可以实现对生产设备和产品温度的实时监测,有助于提高生产效率和产品质量。
在医疗保健领域,无线测温技术可以实现对患者体温的实时监测,有助于提高医疗护理水平。
在环境监测领域,无线测温技术可以实现对环境温度的实时监测,有助于保障环境安全和生态平衡。
总的来说,无线测温技术是一种通过无线传感器和无线通信技术实现对目标温度的实时监测和数据传输的技术手段。
它的工作原理是利用无线传感器感知目标物体的温度,并通过无线通信技术将采集到的数据传输到监测端。
开关柜触头无源无线测温与除湿方案资料课件

案例二:某变电站的测温与除湿改造
背景介绍
某变电站的开关柜已经使用了多年,存在过热和湿度异常的问题 ,需要进行改造。
解决方案
采用无源无线测温与除湿方案,对开关柜内的触头进行实时监测, 及时发现过热和湿度异常问题,并进行相应的改造。
应用效果
通过该方案的实施,有效解决了开关柜的过热和湿度异常问题,提 高了设备的使用寿命和安全性。
变化。
温度传感芯片
测温探头内置温度传感芯片,该 芯片能够实时监测被测物体的温 度,并将温度信号转化为电信号
传输给接收设备。
无线传输技术
测温探头与接收设备之间采用无 线传输技术,如蓝牙、WiFi等,
实现温度信号的实时传输。
实施方案
安装测温探头
在开关柜触头上安装测温探头, 确保探头与触头紧密接触,同时 考虑电磁感应器件的方向和位置
设计原理
利用无线传感器技术,实现对 触头温度和湿度的实时监测。
技术路线
选择合适的传感器、设计电路 、制作测温与除湿模块、集成
到开关柜中。
实施流程
安装传感器
将无线温度传感器和湿度传感 器分别安装在开关柜的触头上 。
调试与测试
对系统进行调试和测试,确保 数据准确无误。
准备工作
准备所需材料和工具,包括无 线传感器、电路板、电源等。
06
总结与建议
研究成果总结
创新性
本方案在开关柜触头无源无线测温与除湿领域具有创新性,成功 解决了传统测温与除湿方法存在的问题。
实用性
本方案具有较高的实用价值,能够实现对开关柜触头的实时监测 与控制,提高设备运行安全性和可靠性。
可扩展性
本方案具有较强的可扩展性,可以应用于不同类型的开关柜触头 监测与除湿,具有较好的适应性。
无源无线测温系统课件

电力行业测温的必要性和意义
在线测温的意义?
1、提升设备安全保障,及时、持续、准确反映设备运行状态下的健康程度, 降低设备事故率,符合“无人职守变电站”目标;
在线测温解决方案构架高压配电室方案1
工作站 通信管理服务器
无线接收主机
RS485总线
......
无线温度传感器
无线温度传感器
在线测温解决方案构架低压配电室方案2
工作站 通信管理服务器
集中接收主机
……
无线温度传感器
无线温度传感器
无线温度传感器
无线温度传感器
配网无线测温方案结构图 DTU
工作站
ห้องสมุดไป่ตู้GSM网络 DTU
无线温度传感器
……
无线温度传感器
软件系统
软
件
功
实时数 定温
温升
历史数
能
据采集 报警
报警
据显示
系统软件功能(实时温度数据)
系统软件功能(历史曲线图)
系统软件功能(历史数据分析)
产品安装与施工
开关柜内主要发热点 动静触点的结合部位
母排之间压接处 出线电缆与铜排压接处
对应数目 6个 3个 3个
安装部位 触头
当前测温手段的不足之处和难点?
1、中高压开关柜温度监测最大的难点为高压隔离,通过光纤隔离存在着沿面放 电问题,需较长的沿面爬电距离,无法很好的解决高压隔离问题,特别是在环 境不好的应用场合光纤表面容易受到污染。
2、光纤测温安装繁琐,需在每个测温点布一条光纤到主机,而无线测温只需将 无线温度传感器安装测温点处即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无线无源开关柜温度监测系统
必要性:
高压开关柜作为电力系统中非常重要的电气设备。
现代电力系统对电能质量的要求越来越高,相应地对高压开关柜的可靠性也提出了更高的要求。
开关柜的温升超标,直接影响设备的安全稳定运行,而且,过热问题是一个不断发展的过程,如果不加以控制,过热程度会不断加剧,并对绝缘件的性能及设备寿命产生很大的影响。
随着传感器技术、信号处理技术、计算机技术、人工智能技术的发展,使得对开关柜温度状态进行在线监测,及时发现故障隐患并对累计性故障做出预测成为可能。
它对于保证开关柜的正常运行,减少维修次数,提高电力系统的运行可靠性和自动化程度具有重要意义。
由于高压开关触头处于高电压、高温度、强磁场以及极强的电磁干扰环境中,要实现对触头的测温,必须解决电子测量装置在上述恶劣环境条件下的适应性。
而开关柜内有裸露高压,空间封闭狭小,无法进行人工巡查测温。
SC-TempMonitor-SG无线无源开关柜温度监测系统采用先进成熟的传感技术
和独特先进的无线通讯技术进行高压隔离和信号传输,利用其固有的绝缘性和抗电磁场干扰性能,从根本上解决了高压开关柜内触点运行温度不易监测的难题。
具有极高的可靠性和安全性,隔离彻底,价格低廉,安装简便,可以安装到每台高压开关柜上,数据可以直接显示读取。
也可无线传输记录入电力网络系统,实现远程预警功能。
无线无源测温与其他测温方式比较:
无线无源测温与光纤测温:光纤温度传感器采用光导纤维传输温度信号,光导纤维具有优异的绝缘性能,能够隔离开关柜内的高压,因此光纤温度传感器能够直接安装到开关柜内的高压触点上,准确测量高压触点的运行温度,实现开关柜触点运行温度的在线监测。
然而,用于隔离高压的光纤表面可能受到污染,将导致光纤沿面放电。
这使得光纤测温系统用于室外开关设备的测温应用受到限制。
无线测温系统采用电磁波传输信号,传感器直接安装在高压设备上,温度测量准确,可以解决电气绝缘问题,无线测温系统的特点是不受气候环境的影响,可以测量室外开关和母线接点的温度。
无线无源测温与红外测温:红外测温为非接触式测温,易受环境及周围的电磁场干扰,另外开关柜内的空间非常狭小,无法安装红外测温探头(因为探头必须与被测物体保持一定的安全距离,并需要正对被测物体的表面),而无线测温系统却不受开关柜体结构的限制。
测温原理:
温度传感装置由以下部分组成:装在变电箱内测试点的SAW传感器、能无
线连接多个温度传感器的读入器。
读入器的天线嵌在变电箱内壁,这样以来可以屏蔽外部的电波干扰。
而读入器的其他部分(接收箱)则安装在变电箱的外面。
因而可以保证在变电箱非通电的情况下也能正常工作。
读入器由单独的电源供电,并向变电箱内发射短射频信号。
如果射频脉冲的频率与温度传感器预设的频率相同,传感器就能收到该射频信号,并且改变和被动地反射脉冲信号。
返回的脉冲信号由于受到了传感器自身温度的影响因而携带了传感器的温度信息。
温度数据可以通过有线或无线方式传回中央控制室。
传感器表面波技术应用了晶体材料的物理特性。
晶体的物理特性的改变通过压电感应原理被自动转化成了电信号。
传感器的工作原理是将射频信号发射到压电材料的表面,然后将受到温度影响了的反射波再转回电信号而获取温度数据。
表面波技术的最大好处是利用了传感器的被动工作原理-即在非常规的运行环境
下(高电压,高电流)实现无线温度数据采集。
无线表面波温度采集解决方案包括一个与传感器有电磁联系的读入器。
标准的温度采集过程包括如下步骤:
● 无线读入器通过它的天线发射射频脉冲。
● 脉冲信号被传感器上的天线收到后,通过INTERDIGITALTRANSDUCER(IDT)
在压电感应器的表面激活一个表面波。
● 传感器表面波的频率由于受到传感器本身温度的影响发生了变化。
正是
由于频率受温度变化的机制,使得温度数据测量得以实现。
● IDT再将表面波的频率振荡转化成射频信号。
此射频信号由读入器上的天
线收到后进行处理。
● 由于谐振器的高质量特性,即使访问波具有50HZ的带宽,也确保了反射
回来的信号包含了精确的射频信息。
● 反射回来的射频频率变化与温度的变化成比例关系。
系统的主要特点:
● 连续性
本系统具备不间断温度监控特性,因而能够有效监测变电箱的温度变化,
防止事故发生。
● 低成本
该系统比传统的温度监控系统成本可大大降低。
● 无季节性影响
温度传感器通过匹配软件的校正后就已经补偿了传感器制作过程中的偏
差。
传感器可在任何工作温度范围内的温度进行调试,因而不会受季节
因素影响。
通常情况下,传感器只在安装后调试一次,并保持多年不需
再校正。
● 灰尘
灰尘堆积不会对SAW传感器测温产生影响
● 环境无害
SAW传感器采用被动感应方式,无需电池驱动。
因而不会对生态环境造
成影响。
应用解决方案:
1、传感器reader自带485接口,变电站内所有开关柜的温度传感器通过485
传输数据。
2、温度监测仪作为可选项,安装在每个开关柜,并通过485接口传输数据;
3、每个变电站控制室安装一个485转TCP/IP转换设备,温度数据通过该设备
接入电力公司局域网;
对于网络不通的变电站可采用一个带GPRS的终端将数据传回服务器。
4、服务器根据管理需要可设置于集控站、供电局等地点,它通过TCP/IP协议
读取各变电站各开关柜的温度数据,并通过后台管理软件实现温度传感器设置以及温度告警等高级功能。
5、局网中任意客户端均可通过登录系统进行温度监控。
产品及技术参数:
温度监测仪
● 功能定位
温度监测仪主要完成温度的本地显示和告警功能,根据情况可安装于变电站内及户外开关柜、箱式变电站等场所。
同时,带GPRS功能的温度监测仪同时可作为终端安装在变电站主控室,当变电站未铺设光纤网络时将温度数据通过移动公网传回主站。
● 温度显示
显示设备:LED显示屏
显示内容:当前温度、历史温度、温度变化曲线
● 状态指示
电源、温度数值测量情况、数据上传情况
● 报警功能
告警方式:声音(蜂鸣)、指示灯、短信*
告警内容:温度超上限、温度三相不平衡率*、温度上升率*
● 通信接口
下行:RS485,与传感器reader
上行:
1) RS485,与485-TCP/IP转换装置连接
2) GPRS/CDMA,当地无法接入网络,直接通过移动公网将数据上传至后台主站
● 参数设定
传感器温度校准
各类预警值:温度上升率,三相不平衡率,温度上限
时间
温度采集频率
传感器发射功率
信号接受门限
监测仪复位(数据区、硬件)
● 数据存储
存储历史温度测量值。
存储周期可设定。