信号处理知识点总结资料整理
数字信号处理知识点

答:数字汇聚;远程会议系统;融合网络;数字图书馆;图像与文本合一的信息检索业务;多媒体通信;个 人信息终端 4、 数字信号处理器的实现方法?10’ 答:在通用的微型计算机上用软件实现;单片机实现;利用专门用于信号处理的可编程 DSP 芯片实现;利用 特殊用途的 DSP 芯片实现;用 FPGA 等可编程阵列产品实现;利用通用的计算机系统上加上加速卡来实现 5、数字信号处理器的结构特点? 答:哈佛结构及改进的哈佛结构;乘加流水线为核心的数据通路;片内片外两级存储体系;指令系统的多级 流水线;特殊的 DSP 指令 6、数字信号处理如何实现,或其特点或为什么 DSP 处理器与通用微处理器的相比较指令的执行速度快?6 点 答:系统主时钟频率大大提高;采用 RISC 精简指令系统;采用流水线并行执行指令结构;采用专用的硬件结 构加速指令的执行;采用先进的多总线结构与多种寻址方式;多字节的数据长度 7、设计一个实际应用的 DSP 系统的步骤? 答:首先,由性能一系列技术要求及应用要求选定芯片;其次,芯片选定后,系统硬件与软件的设计与调试 可同时进行;最后,利用硬件、软件的结果可以进行系统的集成,并进行系统的最后的试验与调试 8、哈佛结构与冯诺依曼结构相比有哪些优点? 答:哈佛结构是将数据和程序分别存储在不同相互独立的存储器中,每个存储器单独编址,独立访问;系统 设置了程序和数据总线,因此数据吞吐率提高一倍;而冯诺依曼结构则是指令、数据、地址存储在同一存储 器中,统一编址,因而取指令与取数据都访问同一存储器成为影响速度的瓶颈,使得数据吞吐率低 9、哈佛结构与流水线结构? 答:哈佛结构是并行运算,把程度和数据存储器分开,总线也分开,多组流水线并行工作; 流水线结构是指在流水线结构中,几条指令是并行执行,每条指令处于其执行过程中的不同状态 10、成为数字信号处理器的条件是什么? 答:必须能在一个指令周期内并行完成乘和累加这两个操作; 在进行算术运算的同时,可并行地完成数据的移动存储,并能自动修改地址指针; 具有高效的逻辑运算能力和程序分支跳转指令 11、数字系统中有哪几种因有限字长影响而引起的误差? 答:A/D 变换器将模拟输入信号变成一组离散电平时的量化效应;把系数用有限位二进制数表示时产生的量 化效应;在数字运算过程中,为限制位数而进行尾数处理以及防止溢出而压缩信号电平的有限字长效应,包 括低电平极限环振荡效应以及溢出振荡效应 12、研究有限长效应的目的? 答:如果数字信号处理是在通用计算机上实现时,字长已经固定,做误差分析为了知道结果的可信度,否则 要采取改进措施,但是一般计算机字长较长,可不考虑字长的影响 用专用硬件实现数字信号处理时,一般采用定点实现,涉及到硬件采用的字长问题,因而必须了解为达 到所需精度所必须选用的最小字长,以便在设备价格和达到精度之间作合适的折衷 ?13、用窗函数设计 FIR 滤波器的步骤?课本 P342 答:根据技术要求确定待求滤波器的单位取样响应 根据过渡带及阴带衰减的要求,选择窗函数的形式,并且估计窗口长度 N ,设待求滤波器的过渡带用 示,它近似于窗函数主辨宽度 计算滤波器的单位取样响应 验算技术指标是否满足要求。设计出的滤波器频率响应用下式计算 14、IIR 和 FIR 数字滤波器的比较? 答:1、在相同技术指标下,IIR 滤波器由于存在着输出对输入的反馈,所以可用比 FIR 滤波器较小的阶数满足指
信号处理技术的基础知识

信号处理技术的基础知识信号是工程学和科学研究中经常用到的一种概念,它可以指电信号、声音信号、图像信号等多种形式的信息。
信号处理技术是指通过数学、计算机、电子等手段对信号进行分析、处理和提取,以实现对信号的识别、转换、压缩等操作。
信号处理技术的应用场景非常广泛,如通信、音频处理、图像处理、生物医学、控制系统等领域。
因此,了解信号处理技术的基础知识非常重要。
一、信号的类型信号可以被分为模拟信号和数字信号两种类型。
模拟信号是指在一定时间内连续变化的信号,如声音信号、光信号等。
在模拟信号处理过程中,需要对信号进行采样、量化和滤波等操作。
数字信号是指以数字形式表示的信号,如数字音频、数字图像等。
数字信号通常是通过采样和量化将模拟信号转化为数字信号,进而进行数字信号处理。
数字信号处理具有精度高、稳定性好、计算速度快等优点。
二、信号的表示方式信号可以通过时域、频域和复数域等方式进行表示。
时域表示法是指通过在时间轴上画出信号在一段时间内随时间变化的曲线,来表示信号的变化。
时域表示法常用于分析信号的尖峰、谷底、波形和周期等特征。
频域表示法是指将信号分解成各种不同频率的正弦波的加权和。
频域表示法常用于分析信号的频谱、频率组成等特征。
复数域表示法是指将信号表示为复数形式,以实部和虚部分别表示信号在两个方向上的变化。
复数域表示法常用于分析信号的相位差等特征。
三、信号处理的基本操作对信号进行处理的基本操作包括采样、量化、滤波和变换等。
采样是指将连续的模拟信号转化为离散的数字信号的过程。
采样频率越高,采样的信号精度就越高。
量化是指将信号的连续值转换成离散的数字值的过程。
量化级别越高,转换的数字精度就越高。
滤波是指对信号进行去除噪声、增强信号等处理。
滤波分为低通滤波、高通滤波、带通滤波和带阻滤波等多种类型。
变换是指将信号在时域和频域之间进行转换的过程。
变换包括傅里叶变换、小波变换、半波整流变换等多种类型。
四、信号处理的应用场景信号处理技术被广泛应用于通信领域、音频处理、图像处理、生物医学、控制系统等多个领域,具体应用场景包括:通信领域:信号处理技术被应用于数字通信、无线通信、卫星通信等多种通信方式中,可以通过处理信号实现数据的传输、解调、编解码、多路复用等功能。
数字信号处理知识点总结

N
1
x(n)
1 N
N 1
X
(k
)W
Nkn,0k0nN
1
2024/1/22
7
Discrete Fourier Transform
DFT Transform Pair
DFT的物理意义
X
(k
)
N 1
n0
x(n)W
k N
n,0
k
N
1
x(n)
1 N
N 1
X
(k
)W
N
k
n,0
k0
n
N
1
N 1
X (z) x(n)zn 1. z-Transform n0
将模拟信号转换为数字信号,并且保证采样前后信息部丢失—采样定理。
xa(t)
采样
量化
编码
x(n)
A/D转换器
xa t sin4 t
2024/1/22
4
采样频率
s
2
Ts
xa( t )|tnT x( n ) sin( nTs ) x( n ) sin(n )
时域离散 幅度量化
3
数字信号处理 Digital signal processing
复加次数: Nlog2N;
2024/1/22
11
FFT computation cost
Comparison between FFT and DFT in complex multiplication
N 16 512 2048
N2 (DFT) 256
262144 4194304
Nlog2N/2(FFT) 32
卷积
(3)
N
数字信号处理知识点总结

数字信号处理第0章绪论1.数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。
2.DSP系统构成输入抗混叠滤波A/DDSP芯片D/A平滑滤波输出输入信号首先进行带限滤波和抽样,然后进行A/D(Analog to Digital)变换将信号变换成数字比特流。
根据奈奎斯特抽样定理,为保证信息不丢失,抽样频率至少必须是输入带限信号最高频率的2倍。
DSP芯片的输入是A/D变换后得到的以抽样形式表示的数字信号。
3.信号的形式(1)连续信号在连续的时间范围内有定义的信号。
连续--时间连续。
(2)离散信号在一些离散的瞬间才有定义的信号。
离散--时间离散。
4.数字信号处理主要包括如下几个部分(1)离散时间信号与系统的基本理论、信号的频谱分析(2)离散傅立叶变换、快速傅立叶变换(3)数字滤波器的设计第一章离散时间信号一、典型离散信号定义1.离散时间信号与数字信号时间为离散变量的信号称作离散时间信号;而时间和幅值都离散化的信号称作为数字信号。
2.序列离散时间信号-时间上不连续上的一个序列。
通常定义为一个序列值的集合{x(n)},n 为整型数,x(n)表示序列中第n 个样值,{·}表示全部样本值的集合。
离散时间信号可以是通过采样得到的采样序列x(n)=x a (nT),也可以不是采样信号得到。
二.常用离散信号1.单位抽样序列(也称单位冲激序列))(n δ⎩⎨⎧≠==0,00,1)(n n n δδ(n):在n=0时取值为12.单位阶跃序列)(n u ,⎩⎨⎧<≥=0,00,1)(n n n u 3.矩形序列,⎩⎨⎧=-≤≤=其它n N n n R N ,010,1)(4.实指数序列,)()(n u a n x n =,a 为实数5.正弦型序列)sin()(φω+=n A n x 式中,ω为数字域频率,单位为弧度。
15On 1-10()0sin nω()t 0sin Ω16.复指数序列nj e n x )(0)(ωσ+=7.周期序列如果对所有n 存在一个最小的正整数N ,使下面等式成立:)()(N n x n x +=,则称x(n)为周期序列,最小周期为N 。
数字信号处理主要知识点整理复习总结

求出对应
的各种可能的序列的表达式。
解: 有两个极点,因为收敛域总是以极点为界,因此收敛域有以下三种情况: 三种收敛域对应三种不同的原序列。
时,
(1)当收敛域
令
,因为c内无极点,x(n)=0;
,C内有极点0,但z=0是一个n阶极点,改为求圆外极点留数,圆外极点有
数字信号处理课程 知识点概要
第1章 数字信号处理概念知识点
1、掌握连续信号、模拟信号、离散时间信号、数字信号的特点及相互关系(时间和幅度的连续性考量) 2、数字信号的产生; 3、典型数字信号处理系统的主要构成。
量化、编码 ——————
采样 ————
模拟信号
离散时间信号
数字信号
5、部分分式法进行逆Z变换 求极点 将X(z)分解成部分分式形式 通过查表,对每个分式分别进行逆Z变换 注:左边序列、右边序列对应不同收敛域 将部分分式逆Z变换结果相加得到完整的x(n)序列 6、Z变换的性质 移位、反向、乘指数序列、卷积
常用序列z变换(可直接使用)
7、DTFT与Z变换的关系
(a) 边界条件 时,是线性的但不是移不变的。
(b) 边界条件 时,是线性移不变的。
令
….
所以:
….
所以:
可见 是移一位的关系, 亦是移一位的关系。因此是移不变系统。
代入差分方程,得:
……..
所以:
因此为线性系统。
3. 判断系统是否是因果稳定系统。
Causal and Noncausal System(因果系统) causal system: (1) 响应不出现于激励之前 (2) h(n)=0, n<0 (线性、时不变系统) Stable System (稳定系统) (1) 有界输入导致有界输出 (2) (线性、时不变系统) (3) H(z)的极点均位于Z平面单位圆内(因果系统)
信号处理知识点总结

第一章信号1.信息是消息的内容,消息是信息的表现形式,信号是信息的载体2.信号的特性:时间特性,频率特性3.若信号可以用确定性图形、曲线或数学表达式来准确描述,则该信号为确定性信号若信号不遵循确定性规律,具有某种不确定性,则该信号为随机信号4.信号分类:能量信号,一个信号如果能量有限;功率信号,如果一个信号功率是有限的5.周期信号、阶跃信号、随机信号、直流信号等是功率信号,它们的能量为无限6.信号的频谱有两类:幅度谱,相位谱7.信号分析的基本方法:把频率作为信号的自变量,在频域里进行信号的频谱分析第二章连续信号的频域分析1.周期信号频谱分析的常用工具:傅里叶三角级数;傅里叶复指数2.利用傅里叶三角级数可以把周期信号分解成无穷多个正、余弦信号的加权和3频谱反映信号的频率结构,幅频特性表示谐波的幅值,相频特性反映谐波的相位4.周期信号频谱的特点:离散性,谐波性,收敛性5.周期信号由无穷多个余弦分量组成周期信号幅频谱线的大小表示谐波分量的幅值相频谱线大小表示谐波分量的相位6.周期信号的功率谱等于幅值谱平方和的一半,功率谱反映周期信号各次谐波的功率分配关系,周期信号在时域的平均功率等于其各次谐波功率之和7.非周期信号可看成周期趋于无穷大的周期信号8.周期T0增大对频谱的影响:谱线变密集,谱线的幅度减少9.非周期信号频谱的特点:非周期信号也可以进行正交变换;非周期信号完备正交函数集是一个无限密集的连续函数集;非周期信号的频谱是连续的;非周期信号可以用其自身的积分表示10.常见奇异信号:单位冲激信号,单位直流信号,符号函数信号,单位阶跃信号11.周期信号的傅里叶变换:周期信号:一个周期绝对可积◊傅里叶级数◊离散谱非周期信号:无限区间绝对可积◊傅里叶变换◊连续谱12.周期信号的傅立叶变换是无穷多个冲激函数的线性组合脉冲函数的位置:ω=nω0 , n=0,±1,±2, …..脉冲函数的强度:傅里叶复指数系数的2π倍周期信号的傅立叶变换也是离散的;谱线间隔与傅里叶级数谱线间隔相同13.信号的持续时间与信号占有频带成反比14.信号在时域的翻转,对应信号在频域的翻转15.频域频移,时域只有相移,幅频不变;时域相移,只导致频域频移,相位不变第三章连续信号分析1.正弦信号的性质:两个同频正弦信号相加,仍得同频信号,且频率不变,幅值和相位改变;频率比为有理整数的正弦信号合成为非正弦周期信号,以低频(基频f0)为基频,叠加一个高频 (频nf0)分量2.函数f(t)与冲激函数或阶跃函数的卷积: f(t)与冲激函数卷积,结果是f(t)本身; f(t)与冲激偶的卷积,δ(t)称为微分器 f(t)与阶跃函数的卷积, u(t)称为积分器 3. 函数正交的充要条件是它们的内积为0第二章 离散傅里叶变换及其快速算法1.时域上周期序列的离散傅里叶级数在频域上仍是一个周期序列2.周期卷积特性:同周期序列的时域卷积等于频域的乘积同周期序列的时域乘积等于频域的卷积3.周期卷积与线性卷积的区别:线性卷积在无穷区间求和;周期卷积在一个主值周期内求和4.有限长序列隐含着周期性5.有限长序列的循环移位导致频谱线性相移而对频谱幅度无影响6.FFT 的计算工作量:FFT 算法对于N 点DFT,仅需(N/2)log2N次复数乘法运算和Nlog2N 次复数加法第三章 随机信号分析与处理1 随机信号是随时间变化的随机变量,用概率结构来描述。
2020年信号处理知识点总结

第一章信号1.信息是消息的内容,消息是信息的表现形式,信号是信息的载体2.信号的特性:时间特性,频率特性3.若信号可以用确定性图形、曲线或数学表达式来准确描述,则该信号为确定性信号若信号不遵循确定性规律,具有某种不确定性,则该信号为随机信号4.信号分类:能量信号,一个信号如果能量有限;功率信号,如果一个信号功率是有限的5.周期信号、阶跃信号、随机信号、直流信号等是功率信号,它们的能量为无限6.信号的频谱有两类:幅度谱,相位谱7.信号分析的基本方法:把频率作为信号的自变量,在频域里进行信号的频谱分析第二章连续信号的频域分析1.周期信号频谱分析的常用工具:傅里叶三角级数;傅里叶复指数2.利用傅里叶三角级数可以把周期信号分解成无穷多个正、余弦信号的加权和3频谱反映信号的频率结构,幅频特性表示谐波的幅值,相频特性反映谐波的相位4.周期信号频谱的特点:离散性,谐波性,收敛性5.周期信号由无穷多个余弦分量组成周期信号幅频谱线的大小表示谐波分量的幅值相频谱线大小表示谐波分量的相位6.周期信号的功率谱等于幅值谱平方和的一半,功率谱反映周期信号各次谐波的功率分配关系,周期信号在时域的平均功率等于其各次谐波功率之和7.非周期信号可看成周期趋于无穷大的周期信号8.周期T0增大对频谱的影响:谱线变密集,谱线的幅度减少9.非周期信号频谱的特点:非周期信号也可以进行正交变换;非周期信号完备正交函数集是一个无限密集的连续函数集;非周期信号的频谱是连续的;非周期信号可以用其自身的积分表示10.常见奇异信号:单位冲激信号,单位直流信号,符号函数信号,单位阶跃信号11.周期信号的傅里叶变换:周期信号:一个周期绝对可积◊傅里叶级数◊离散谱非周期信号:无限区间绝对可积◊傅里叶变换◊连续谱12.周期信号的傅立叶变换是无穷多个冲激函数的线性组合脉冲函数的位置:ω=nω0 , n=0,±1,±2, …..脉冲函数的强度:傅里叶复指数系数的2π倍周期信号的傅立叶变换也是离散的;谱线间隔与傅里叶级数谱线间隔相同13.信号的持续时间与信号占有频带成反比14.信号在时域的翻转,对应信号在频域的翻转15.频域频移,时域只有相移,幅频不变;时域相移,只导致频域频移,相位不变第三章 连续信号分析1.正弦信号的性质:两个同频正弦信号相加,仍得同频信号,且频率不变,幅值和相位改变;频率比为有理整数的正弦信号合成为非正弦周期信号,以低频(基频f0)为基频,叠加一个高频 (频nf0)分量2.函数f(t)与冲激函数或阶跃函数的卷积: f(t)与冲激函数卷积,结果是f(t)本身; f(t)与冲激偶的卷积,δ(t)称为微分器 f(t)与阶跃函数的卷积, u(t)称为积分器 3. 函数正交的充要条件是它们的内积为0第二章 离散傅里叶变换及其快速算法1.时域上周期序列的离散傅里叶级数在频域上仍是一个周期序列2.周期卷积特性:同周期序列的时域卷积等于频域的乘积同周期序列的时域乘积等于频域的卷积3.周期卷积与线性卷积的区别:线性卷积在无穷区间求和;周期卷积在一个主值周期内求和4.有限长序列隐含着周期性)()()(t f t t f '='*δ⎰∞-=*td f t u t f λλ)()()(5.有限长序列的循环移位导致频谱线性相移而对频谱幅度无影响6.FFT的计算工作量:FFT算法对于N点DFT,仅需(N/2)log2N次复数乘法运算和Nlog2N 次复数加法第三章随机信号分析与处理1 随机信号是随时间变化的随机变量,用概率结构来描述。
数字信号处理知识点

数字信号处理知识点1. 引言数字信号处理(Digital Signal Processing,DSP)是应用数字计算技术来过滤、压缩、存储、生成、识别和其他方式处理信号的科学领域。
本文旨在概述数字信号处理的核心技术和知识点,为学习和应用DSP提供明确的指导。
2. 信号的基本概念2.1 模拟信号与数字信号2.2 信号的时域和频域特性2.3 采样定理(奈奎斯特定理)2.4 量化和编码2.5 信号重构3. 离散时间信号与系统3.1 离散时间信号的定义3.2 线性时不变(LTI)系统3.3 卷积和系统响应3.4 Z变换及其应用3.5 差分方程4. 傅里叶分析4.1 傅里叶级数4.2 傅里叶变换4.3 快速傅里叶变换(FFT)4.4 频谱分析5. 滤波器设计5.1 滤波器的基本概念5.2 理想滤波器5.3 窗函数法5.4 IIR滤波器设计5.5 FIR滤波器设计6. 信号的检测与估计6.1 信号检测理论6.2 最小二乘估计6.3 卡尔曼滤波6.4 信号的自适应滤波7. 语音与图像处理7.1 语音信号的特性7.2 语音编码技术7.3 图像信号的基本概念7.4 图像压缩技术7.5 图像增强技术8. 实时数字信号处理系统8.1 DSP芯片的特性8.2 实时操作系统8.3 硬件与软件协同设计8.4 系统性能评估9. 应用实例9.1 通信系统中的DSP应用9.2 生物医学信号处理9.3 音频和视频处理9.4 雷达和声纳系统10. 结论数字信号处理是一个多学科交叉的领域,涉及信号理论、数学、计算机科学和电子工程。
掌握DSP的基础知识对于理解和设计现代通信系统、音频和视频处理系统以及其他相关应用至关重要。
请注意,本文仅为数字信号处理知识点的概述,每个部分都需要深入学习才能完全理解和应用。
读者应参考相关教材、课程和实践项目,以获得更全面和深入的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章信号
1.信息是消息的内容,消息是信息的表现形式,信号是信息的载体
2.信号的特性:时间特性,频率特性
3.若信号可以用确定性图形、曲线或数学表达式来准确描述,则该信号为确定性信号
若信号不遵循确定性规律,具有某种不确定性,则该信号为随机信号
4.信号分类:能量信号,一个信号如果能量有限;功率信号,如果一个信号功率是有限的
5.周期信号、阶跃信号、随机信号、直流信号等是功率信号,它们的能量为无限
6.信号的频谱有两类:幅度谱,相位谱
7.信号分析的基本方法:把频率作为信号的自变量,在频域里进行信号的频谱分析
第二章连续信号的频域分析
1.周期信号频谱分析的常用工具:傅里叶三角级数;傅里叶复指数
2.利用傅里叶三角级数可以把周期信号分解成无穷多个正、余弦信号的加权和
3频谱反映信号的频率结构,幅频特性表示谐波的幅值,相频特性反映谐波的相位
4.周期信号频谱的特点:离散性,谐波性,收敛性
5.周期信号由无穷多个余弦分量组成
周期信号幅频谱线的大小表示谐波分量的幅值
相频谱线大小表示谐波分量的相位
6.周期信号的功率谱等于幅值谱平方和的一半,功率谱反映周期信号各次谐波的功率分配关系,周期信号在时域的平均功率等于其各次谐波功率之和
7.非周期信号可看成周期趋于无穷大的周期信号
8.周期T0增大对频谱的影响:谱线变密集,谱线的幅度减少
9.非周期信号频谱的特点:非周期信号也可以进行正交变换;
非周期信号完备正交函数集是一个无限密集的连续函数集;
非周期信号的频谱是连续的;
非周期信号可以用其自身的积分表示
10.常见奇异信号:单位冲激信号,单位直流信号,符号函数信号,单位阶跃信号
11.周期信号的傅里叶变换:周期信号:一个周期绝对可积◊傅里叶级数◊离散谱
非周期信号:无限区间绝对可积◊傅里叶变换◊连续谱
12.周期信号的傅立叶变换是无穷多个冲激函数的线性组合
脉冲函数的位置:ω=nω0,n=0,±1,±2,…..
脉冲函数的强度:傅里叶复指数系数的2π倍
周期信号的傅立叶变换也是离散的;
谱线间隔与傅里叶级数谱线间隔相同
13.信号的持续时间与信号占有频带成反比
14.信号在时域的翻转,对应信号在频域的翻转
15.频域频移,时域只有相移,幅频不变;时域相移,只导致频域频移,相位不变
第三章连续信号分析
1.正弦信号的性质:两个同频正弦信号相加,仍得同频信号,且频率不变,幅值和相位改变;
频率比为有理整数的正弦信号合成为非正弦周期信号,以低频(基频f0)为基频,叠加一个高频(频nf0)分量
2.函数f(t)与冲激函数或阶跃函数的卷积:f(t)与冲激函数卷积,结果是f(t)本身
;f(t)与冲激偶的卷积,δ(t)称为微分器f(t)与阶跃函数的卷积,u(t)称为积分器3.函数正交的充要条件是它们的内积为0
第二章离散傅里叶变换及其快速算法
1.时域上周期序列的离散傅里叶级数在频域上仍是一个周期序列
2.周期卷积特性:同周期序列的时域卷积等于频域的乘积
同周期序列的时域乘积等于频域的卷积
3.周期卷积与线性卷积的区别:线性卷积在无穷区间求和;周期卷积在一个主值周期内求和
4.有限长序列隐含着周期性
5.有限长序列的循环移位导致频谱线性相移而对频谱幅度无影响
6.FFT 的计算工作量:FFT 算法对于N 点DFT,仅需(N/2)log2N
)
()()(t f t t f '='*δ⎰∞-=*t
d f t u t f λ
λ)()()(
次复数乘法运算和Nlog2N次复数加法
第三章随机信号分析与处理
1随机信号是随时间变化的随机变量,用概率结构来描述。
对于离散型随机变量,用概率述;对于连续型随机变量,用概率密度描述。
2方差:用于表明随机信号各可能值对其平均值的偏离程度,是随机信号取值分散性的度量
3平稳随机信号的均值、方差、均方值是与时间无关的常量,相关函数及协方差仅是时移τ的函数,与随机信号的起止时刻t无关。
平稳随机信号最重要的特点是随机信性。
在不同时刻具有相同的统计特征。
与平稳随机信号相反,非平稳随机信号的统计特性是随着时间的推移而变化的。
4平稳随机信号的每一个样本都同样地经历了随机信号其它样本的各种可能状态,因而从一个样本的统计特性(时间平均)就能得到全部样本的统计特性(集平均),此类信号称为各态遍历性随机信号。
5可以用时间充分长的单个样本函数的时间平均统计参数来代替总体的平均统计值
6离散时间信号功率谱的特点:
1)功率谱是周期性的,因此可作傅立叶级数分解;
2)反演变换的积分区间是-p---p。