力学三大基本观点
力学的三大基本观点及其应用

力学的三大基本观点及其应用一、力学的三个基本观点:力的观点: 牛顿运动定律、运动学规律动量观点:动量定理、动量守恒定律能量观点:动能定理、机械能守恒定律、能的转化和守恒定律例1.质量为M的汽车带着质量为m的拖车在平直公路上匀速前进,速度为v0 ,某时刻拖车突然与汽车脱钩,到拖车停下瞬间司机才发现.若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?小结:先大后小,守恒优先变1:质量为M的汽车带着质量为m的拖车在平直公路上以加速度a匀加速前进,当速度为v0时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现.若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?小结:涉及时间,动量定理优先变2: 质量为M的汽车带着质量为m的拖车在平直公路上匀速前进,中途拖车脱钩,待司机发现时,汽车已行驶了L 的距离,于是立即关闭油门.设运行过程中所受阻力与重力成正比,汽车牵引力恒定不变,汽车停下时与拖车相距多远?小结:涉及位移,动能定理优先二、力的观点与动量观点结合:例2.如图所示,长 12 m、质量为 50 kg 的木板右端有一立柱,木板置于水平地面上,木板与地面间的动摩因数为 0.1,质量为 50 kg 的人立于木板左端,木板与人均静止,当人以 4 m/s2的加速度匀加速向右奔跑至板右端时立即抱住立柱,(取 g=10 m/s2)试求:(1)人在奔跑过程中受到的摩擦力的大小.(2)人从开始奔跑至到达木板右端所经历的时间.(3)人抱住立柱后,木板向什么方向滑动?还能滑行多远的距离?三、动量观点与能量观点综合:例3.如图所示,坡道顶端距水平面高度为 h,质量为 m1的小物块 A 从坡道顶端由静止滑下,在进入水平面上的滑道时无机械能损失,为使 A 制动,将轻弹簧的一端固定在水平滑道延长线 M 处的墙上,另一端与质量为 m2的挡板 B 相连,弹簧处于原长时,B 恰位于滑道的末端 O 点.A 与 B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在 OM 段 A、B 与水平面间动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为 g,求:(1)物块 A 在与挡板 B 碰撞前瞬间速度 v 的大小.(2)弹簧最大压缩量为 d 时的弹性势能 E p(设弹簧处于原长时弹性势能为零).四、三种观点综合应用:例4.对于两物体碰撞前后速度在同一直线上,且无机械能损失的碰撞过程,可以简化为如下模型:A、B 两物体位于光滑水平面上,仅限于沿同一直线运动.当它们之间的距离大于等于某一定值 d 时,相互作用力为零,当它们之间的距离小于 d 时,存在大小恒为 F 的斥力.设 A 物体质量 m1=1.0 kg,开始时静止在直线上某点;B 物体质量 m2=3。
热点专题系列(5) 动力学、动量和能量观点在力学中的应用

热点专题系列(五)动力学、动量和能量观点在力学中的应用热点概述:处理力学问题的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律)。
熟练应用三大观点分析和解决综合问题是本专题要达到的目的。
[热点透析]动量与动力学观点的综合应用1.解动力学问题的三个基本观点(1)力的观点:用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题。
(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题。
(3)动量观点:用动量定理和动量守恒观点解题,可处理非匀变速运动问题。
2.力学规律的选用原则(1)如果要列出各物理量在某一时刻的动力学关系式,可用牛顿第二定律。
(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题。
(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和能量守恒定律(机械能守恒定律)去解决问题,但需注意所研究的问题是否满足守恒的条件。
(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能的量。
(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换,这种问题由于作用时间都极短,因此用动量守恒定律去解决。
(2020·湖北省七市州教科研协作体高三下学期5月联考)如图甲所示,在光滑水平面上有一小车,其质量M=2 kg,车上放置有质量m A=2 kg的木板A,木板上有可视为质点的物体B,其质量m B=4 kg。
已知木板A与小车间的动摩擦因数μ0=0.3。
A 、B 紧靠车厢前壁,A 的左端与小车后壁间的距离为x =2 m 。
现对小车施加水平向右的恒力F ,使小车从静止开始做匀加速直线运动,经过1 s 木板A 与车厢后壁发生碰撞,该过程中A 的速度—时间图象如图乙所示,已知重力加速度大小g =10 m/s 2,最大静摩擦力等于滑动摩擦力。
《力学三大基本观点》课件

第三观点:波动力学
1
波的传播和叠加
2
动的基本概念
描述波传播的基本特征,如波长、振幅、波 速等。
声波和光波的本质差异
比较声波和光波的性质和传播特点。
结语
三大基本观点的重要性和意 义
牛顿定律、能量守恒定律和波动力 学是力学研究的基石,对理解和解 释物体的运动至关重要。
3 牛顿第三定律(作用反作用定律)
任何作用力都会有一个相等大小、方向相反的反作用力。
第二观点:能量守恒定律
机械能守恒定律
在没有外力做功和能量损失的情 况下,物体的机械能保持不变。
动量守恒定律
在没有外力作用的情况下,系统 的总动量保持不变。
能量守恒定律在实际 问题中的应用
能量守恒定律可以应用于碰撞、 机械振动、弹性势能等实际问题。
《力学三大基本观点》 PPT课件
力学是物理学的一个重要分支,它研究物体的运动和力的相互作用。在这个 课件中,我们将介绍力学的三大基本观点,以及它们在实际问题中的应用。
第一观点:牛顿定律
1 牛顿第一定律(惯性定律)
物体在没有外力作用下保持匀速直线运动或静止。
2 牛顿第二定律(运动定律)
物体的运动状态受到作用于它上面的力的影响。
实际问题中的应用举例
我们将介绍力学三大基本观点在真 实世界中的应用,例如运动物体的 控制和工程设计。
总结和展望
总结三大基本观点的核心要点,并 展望力学将来的发展方向和应用领 域。
力学三大基本观点尚洪汉

• 变式1:如图所示,将质量均为m厚度不计的两物块A、 变式1 如图所示, 用轻质弹簧相连接, 高处, B用轻质弹簧相连接,只用手托着B物块于H高处,A在 弹簧弹力的作用下处于静止,将弹簧锁定. 弹簧弹力的作用下处于静止,将弹簧锁定.现由静止 物块着地时解除弹簧锁定, 释放A、B ,B物块着地时解除弹簧锁定,且B物块的速 度立即变为0 度立即变为0,在随后的过程中当弹簧恢复到原长时A 物块运动的速度为υ0,且B物块恰能离开地面但不继 续上升. 续上升.已知弹簧具有相同形变量时弹性势能也相 .(1 物块着地后, 向上运动过程中合外力为0 同.(1)B物块着地后,A向上运动过程中合外力为0 ;(2 时的速度υ1;(2)B物块着地到B物块恰能离开地面 但不继续上升的过程中, 物块运动的位移Δ 但不继续上升的过程中,A物块运动的位移Δx; (3)第二次用手拿着A、B两物块,使得 第二次用手拿着A 两物块, 弹簧竖直并处于原长状态,此时物块B 弹簧竖直并处于原长状态,此时物块B离 地面的距离也为H 地面的距离也为H,然后由静止同时释放 A、B,B物块着地后速度同样立即变为 求第二次释放A 刚要离地时A 0.求第二次释放A、B后,B刚要离地时A 的速度υ 的速度υ2.
• 随堂练习1:(2004年·广东)如图所示,轻弹簧的一端 随堂练习1 固定,另一端与滑块B相连,B静止在水平导轨上,弹 簧处在原长状态,另一质量与B相同的滑块A,从导轨 上的P点以某一初速度向B滑行,当A滑过距离L1时,与 B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但 互不粘连,已知最后A恰好返回出发点P并停止.滑块A 和B与导轨的滑动摩擦因数都为µ,运动过程中弹簧最大 形变量为L2,求A从P出发时的初速度v0.
二、力学综合题 的解题方法: 的解题方法: 找状态 明过程 选规律 列方程 求 解
力学三大观点教学设计

力学三大观点教学设计引言:力学是物理学的一个重要分支,用于研究物体的运动和相互作用。
在力学教学中,教师可以采用不同的教学方法和教学设计来帮助学生理解和掌握力学的基本概念和观点。
本文将介绍一种力学教学的设计方案,重点讨论力学的三大观点,并提供相应的教学活动和资源。
一、力学的三大观点概述在力学中,有三个基本的观点需要学生理解和掌握,分别是:牛顿第一定律(惯性定律)、牛顿第二定律(动量定律)和牛顿第三定律(作用-反作用定律)。
这些观点是力学理论的核心,是学生理解力学世界的关键。
1. 牛顿第一定律(惯性定律)牛顿第一定律指出,一个物体如果没有外力作用,将保持静止或匀速直线运动。
这意味着物体的运动状态只有在外力作用下才会改变。
在教学中,可以通过以下教学活动帮助学生理解惯性定律:- 启发性问题:车辆在没有外力作用下,能否保持匀速直线行驶?- 实验活动:在水平桌面上放置一个小物体,观察其在没有推动力的情况下是否保持静止。
2. 牛顿第二定律(动量定律)牛顿第二定律指出,物体的加速度与作用在物体上的合力成正比,与物体的质量成反比。
这意味着,物体的加速度由作用在物体上的合力决定。
以下是一些可以用于教学的活动和资源:- 知识澄清:加速度与物体质量之间的关系是什么?- 实验活动:改变物体质量,并测量物体在不同质量下的加速度。
3. 牛顿第三定律(作用-反作用定律)牛顿第三定律指出,两个物体之间的相互作用力大小相等、方向相反。
这意味着,每个力都有一个同等大小但方向相反的反作用力。
以下是一些可以用于教学的活动和资源:- 图像识别:观察图像,找出其中的作用力和相应的反作用力。
- 实验活动:用弹簧秤测量拉力和弹力,验证作用-反作用定律。
二、教学设计基于上述力学三大观点,以下是一种教学设计方案,帮助学生理解和掌握这些观点。
1. 预习环节:在学生预习阶段,教师可以提供相关的教学材料,如课本章节、视频资源等,要求学生在课前自学相关内容,并准备好问题和讨论。
高中物理压轴题:用力学三大观点处理多过程问题(解析版)

压轴题用力学三大观点处理多过程问题1.用力学三大观点(动力学观点、能量观点和动量观点)处理多过程问题在高考物理中占据核心地位,是检验学生物理思维能力和综合运用知识解决实际问题能力的重要标准。
2.在命题方式上,高考通常会通过设计包含多个物理过程、涉及多个力学观点的复杂问题来考查学生的综合能力。
这些问题可能涉及物体的运动状态变化、能量转换和守恒、动量变化等多个方面,要求考生能够灵活运用力学三大观点进行分析和解答。
3.备考时,学生应首先深入理解力学三大观点的基本原理和应用方法,掌握相关的物理公式和定理。
其次,要通过大量的练习来提高自己分析和解决问题的能力,特别是要注重对多过程问题的训练,学会将复杂问题分解为多个简单过程进行分析和处理。
考向一:三大观点及相互联系考向二:三大观点的选用原则力学中首先考虑使用两个守恒定律。
从两个守恒定律的表达式看出多项都是状态量(如速度、位置),所以守恒定律能解决状态问题,不能解决过程(如位移x,时间t)问题,不能解决力(F)的问题。
(1)若是多个物体组成的系统,优先考虑使用两个守恒定律。
(2)若物体(或系统)涉及速度和时间,应考虑使用动量定理。
(3)若物体(或系统)涉及位移和时间,且受到恒力作用,应考虑使用牛顿运动定律。
(4)若物体(或系统)涉及位移和速度,应考虑使用动能定理,系统中摩擦力做功时应用摩擦力乘以相对路程,动能定理解决曲线运动和变加速运动特别方便。
考向三:用三大观点的解物理题要掌握的科学思维方法1.多体问题--要正确选取研究对象,善于寻找相互联系选取研究对象和寻找相互联系是求解多体问题的两个关键。
选取研究对象后需根据不同的条件采用隔离法,即把研究对象从其所在的系统中抽离出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体进行研究;或将隔离法与整体法交叉使用。
通常,符合守恒定律的系统或各部分运动状态相同的系统,宜采用整体法;在需讨论系统各部分间的相互作用时,宜采用隔离法;对于各部分运动状态不同的系统,应慎用整体法。
2025高考物理总复习用三大观点解决力学问题

0.5,其他摩擦和阻力均不计,各滑块均可视为质
点,弹簧的弹性势能Ep=12kx2 (x为形变量),重力
则滑块a、b碰撞过程损失的能量 ΔE=12mvF2-12mva2-12×3mvb2 解得ΔE=0
(3)若滑块a碰到滑块b立即被粘住, 求碰撞后弹簧最大长度与最小长度 之差Δx。 答案 0.2 m
若滑块a碰到滑块b立即被粘住,则由动量守恒知a、b 碰后的共同速度v满足:mvF=4mv 解得v=2.5 m/s 当弹簧被压缩到最短或者伸长到最长 时有共同速度v′, 有 4mv=6mv′,解得 v′=53 m/s
设当弹簧被压缩到最短时压缩量为x1, 由能量守恒有12×(m+3m)v2=12× (m+3m+2m)v′2+12kx12 解得x1=0.1 m 系统能量守恒,弹簧最长或最短时,系统动能相等,所以弹簧最长和 最短时形变量相等,则弹簧最大长度与最小长度之差Δx=2x1=0.2 m。
例3 (2023·江苏徐州市第七中学校考)如图所示,质量m=1 kg的小球用 长L=1 m的轻绳悬挂在固定点O上,足够长的木板C置于光滑水平地面上, 两物块A、B放置在C上,A置于C的左端,B与A相距0.5 m。现将小球拉 至与竖直方向成37°角由静止释放,小球在最低点与A发生弹性碰撞,一 段时间后,A与B碰撞后粘在一起,两次碰撞时间均可忽略。已知A与C、 B与C间的动摩擦因数μ=0.2,A、B、C的质量 mA=mB=mC=1 kg,重力加速度g取10 m/s2, sin 37°=0.6,cos 37°=0.8,不计空气阻力。求:
力学三大基本观点

统一单位、结果说明
回顾考题,体验方法
题2.(05全国理综Ⅲ,25)如图所示,一对杂技演员(都视 为质点)乘秋千(秋千绳处于水平位置)从A点由静止出发 绕O点下摆,当摆到最低点B时,女演员在极短时间内将男 演员沿水平方向推出,然后自已刚好能回到高处A 。求男演 员落地点C 与O 点的水平距离S。已知男演员质量m1,和女 演员质量m2之比m1:m2=2:1,秋千的质量不计,秋千的摆长为 R , C 点比O 点低5R。
在电磁学中只要涉及到 力的问题都可以运用三 大观点来解题
练习. 两个材料相同、高度相同、上表面粗糙程度相同的A、B紧 靠着放在光滑水平面上,质量分别是 mA =5kg 、 mB=3kg ,如图 所示,另一质量 mC=2kg的铅块(体积可忽略)以相对于地面的 水平初速度 v0=8m/s沿 A 表面运动,最后停在 B 上. C 在 A 上滑过 的 时 间 t=0.8s , 且 滑 过 A 时 相 对 于 地 的 速 度 为 vC=3m/s , 取 g=10m/s.求: ① 木块B的最大速度 ② C与A、B的动摩擦因数 ③ 要使C不从B上滑出,B的长度最小是多少? (保留两位小数)
例2 (97年全国卷25题)质量为m的钢板与直立轻弹簧 的上端连接,弹簧下端固定在地上.平衡时,弹簧 的压缩量为x0,如图下图所示.一物块从钢板正上方 距离为3x0的A处自由落下,打在钢板上并立刻与钢板 一起向下运动,但不黏连.它们到达最低点后又向 上运动.已知物块质量也为m时,它们恰能回到O 点.若物块质量为2m,仍从A 处自由落下, 则物块与钢板回到O点时,还具 有向上的速度.求物块向上运动 到达的最高点与O点的距离?
2 4R 1 gt , S v1t 2
2 m2 gR 1 m v 2 2 2