中考数学专题复习资料--数与式
中考数学复习数与式课件

步骤
公因式;(2)二套:尝试使用公式法来分解因式; (3)三查:要检查多项式因式是否能继续分解,
要分解到每个多项式不能再分解为止
2021/7/12
第2讲┃ 整式与因式分解
10.下列分解因式正确的是(C ) A.2x2-xy-x=2x(x-y-1) B.-xy2+2xy-3y=-y(xy-2x-3) C.x(x-y)-y(x-y)=(x-y)2 D.x2-x-3=x(x-1)-3 11.分解因式:(1)16-y4=(_4_+__y_2)_(2_+__y_)(_2_-__y;) (2)2a3+4a2b2+2ab4=_2_a_(a_+__b_2)_2.
2021/7/12
第2讲┃ 整式与因式分解
12.分解因式或利用因式分解计算:
(1)7.292-2.712;
(2)x2-y2-x-y.
解:(1)原式=(7.29+2.71)(7.29-2.71) =10×4.58 =45.8. (2)原式=(x2-y2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y-1).
字母的指数__不__变____
整式的加减,先去括号,然后合并多项式中的同类项
2021/7/12
第2讲┃ 整式与因式分解
1.多项式 3x3y2-2xy3-1+23x2y 是___五_____次____四____项式,
它的最高次项是___3_x_3_y_2_,常数项是___-__1___,按 x 的降幂排列
单项式除 后,作为商的因式;只在被除式
以单项式 里含有的字母,则_连 __同__它__的__指__数_
一起作为商的一个因式
先把这个多项式的每一项分别
多项式除 除以_单__项__式___,再把所得的商
中考数学专题复习数与式-初三数学专题复习

(3) 9 的平方根是
;
2021/1/25
2 .数的运算
多以混合运算的方式考察学生对零指数幂、负整 指数幂、特殊角的三角函数值、同类二次根式等概念 的理解以及合理运用运算法则、运算律进行准确、迅 速计算的能力。
例如:[02北京海淀]
计算: 2(2cos 45 sin 90) (4 5 )0 ( 2 1)1
)
A. 42 32 4 3 0 B. 49 (7) 7
C. 1 1 1 1 5 D. 1 9 25 5
49 236
16 16 4
2.下列五个命题中正确的个数是_______ (1)零是最小的实数 (2)无理数就是带根号的数 (3)数轴上所有点都表示实数 (4)-1/8的立方根 是±1/2 (5)一个实数的平方根有两个,它们互 为相反数
2021/1/25
分母有理化
重点
•1 数的概念与性质 •2 数的运算 •3 式的概念与性质 •4 式的运算
2021/1/25
1. 数的概念与性 质
对这部分知识的考查,主要通过概念性强的题目或 设置易混、易错的陷阱,考查学生对概念的理解和分析 判断能力。
(1)近似数0.4850的有效数字是 ;
(2) 2 1的倒数与 2 3 的相反数的和
如果分式 x 1 的值为零, x2 3x 2
那么x等于( A )
(A) - 1 (B) 1 (C) - 1或1 (D)1或2
2021/1/25
▲例5: (1)(2002河北) 分解因式:a2+b2-2ab-1
2021/1/25
(2)(2002威海) 在实数范围内把9x2+6x-4分解因式, 结果为( ) (A)(3x-1- 5 )(3x-1+ 5 ) (B) (x+1+ 5 )(x+1- 5) (C) (3x+1+ 5)(3x+1- 5 ) (D) (x-1- 5 )(x-1+ 5)
(完整版)中考总复习《数与式》教案

中考总复习教案 第一章 数与式《数与式》是初中数学的基础知识,是中考命题的重要内容之一,年年考查,北京近三年来在新课标中考试题中“数与式”部分的权重:35%左右,分量之中,不容忽视!一、本章知识要点与课时安排(大致安排五课时左右) (一) 实数(一课时)(二) 整式与因式分解(一至两课时) (三) 分式与二次根式(两课时)(四) 数式规律的探索(可以揉到前面几讲中去讲,也可以单设一课时)说明:您可以根据自己学生的学习程度,合理安排复习内容。
二、课时教案第一课时 实数教学目的1.理解有理数的意义,了解无理数等概念.2.能用数轴上的点表示有理数,掌握相反数的性质,会求实数的绝对值. 3.会用科学记数法表示数.4.会比较实数的大小,会利用绝对值知识解决简单化简问题. 5.掌握有理数的运算法则,并能灵活的运用. 教学重点与难点重点:数轴、绝对值等概念及其运用,有理数的运算.难点:利用绝对值知识解决简单化简问题,实数的大小比较. 教学方法:用例习题串知识(复习时要注意知识综合性的复习). 教学过程(一)知识梳理1.⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧比较大小念平方根、算术平方根概绝对值相反数数轴实数的分类实数 2.⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧科学记数法运算律乘方、开方乘、除法加、减法法则实数的运算(二)例习题讲解与练习例1 在3.14,1-5,0,2π,cos30°,722,38-,0.2020020002…(数字2后面“0”的个数逐次多一个)这八个数中,哪些是有理数?哪些是无理数? (考查的知识点:有理数、实数等概念. 考查层次:易)(最基本的知识,由学生口答,师生共同归纳、小结) 【归纳】:(1)整数与分数统称为有理数(强调数字0的特点);无限不循环小数是无理数.注意:常见的无理数有三类①π,… ②3,5,… , (38-不是无理数) ③0.1010010001…(数字1后面“0”的个数逐次多一个).(2)一个无理数加、减、乘、除一个有理数(0除外)仍是无理数(2π是无理数). 注:此题可以以其它形式出现,如练习题中2或12题等例2 (1)已知a -2与2a+1互为相反数,求a 的值;(2)若x 、y 是实数,且满足(x -2)2+3y x +-=0,求(x+y)2的值.(考查的知识点:相反数的性质、二次根式的性质、非负数等概念. 考查层次:易)(这是基础知识,由学生解答,老师总结) 【总结】:(1)对于一个具体的数,要会求它的相反数(倒数、绝对值、平方根与算术平方根),对于一个代数式,也要会求它的相反数.解答是要注意从概念中蕴涵的数学关系入手:a 、b 互为相反数⇔a+b=0;a 、b 互为倒数⇔a ·b=1.(2)非负数概念:例3 (1)若数轴上的点A 表示的数为x ,点B 表示的数为-3,则A 与B 两点间的距离可表示为________________.(2)实数a 、b 在数轴上分别对应的点的位置如图所示,请比较a ,-b ,a-b ,a+b 的大小(用“<”号连接)___________________.(3)①化简=-π5_________;②347-=__________;③估计215-与0.5的大小关系是215- 0.5(填“ > ”、“=”、“<”) . (答案:(1)3x +;(2)a+b<a<-b<a-b ;(3)①7-π;②347-;③ >)(考查的知识点:数轴、绝对值、比较大小等概念,无理数的估算、有理数的运算法则等. 考查层次:中)(这是一组较为基础的题,(1)与(2)题注意数形结合,(3)题注意讲解无理数与有理数大小比较的方法,由学生探讨,老师适当的点拨、总结、归纳,)【归纳】:(1)问题(1)若数轴上的点A 表示的数为x 1,点B 表示的数为x 2,则A 与B 两点间的距离可表示为AB=12x x -,要会由数轴上两点间的距离,上升到坐标平面内两点间的距离(例如练习第10题)——数形结合.(2)问题(2)应先由数轴判断字母所表示的数的符号及绝对值的大小关系,再紧扣实数运算法则进行解答.(3)绝对值的意义:(4)估算一个无理数的方法:平方法、被开方数法.(5)比较大小的方法:数轴图示法、作差法、平方法,其中第(2)小题还可以采用赋值法. 练习一:(供选用)1.21的相反数是_____;-3的倒数是_____;-5的绝对值是_____;9的算术平方根是____;-8的立方根是____.2.有四张不透明的卡片如图,它们除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为 . 3.下列各式中正确的是( )2题图A .2)2(2-=-B .2121-=-C .()()22--=-+D .⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+-2121 4.(1)写出一个小于2-的数: ;(2)绝对值小于5的所有整数的和是_____. 5.下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是( )。
中考数学总复习数与式

1 第一章自我测试 数与式 一、选择题 1.(2016·盐城)-5的相反数是( B ) A.-5 B.5 C.-15 D.15 2.(2016·南充)如果向右走5步记为+5,那么向左走3步记为( B ) A.+3 B.-3 C.+13 D.-13 3.(2016·衢州)在2,-1,-3,0这四个实数中,最小的是( C ) A.2 B.-1 C.-3 D.0 4.(2016·北京)神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( C ) A.2.8×103 B.28×103 C.2.8×104 D.0.28×105
5.实数3.14159,4.· · ,227,3,π-3.14,25,0.1010010001…中,无理数有( C ) A.1个 B.2个 C.3个 D.4个 6.计算(-13x2y)3,结果正确的是( C ) A.-x6y39 B.-x5y9 C.-x6y327 D.x5y27 7.下列运算正确的是( C ) A.a3+a4=a7 B.(2a4)3=8a7 C.2a3·a4=2a7 D.a8÷a2=a4 8.下列运算中,正确的运算是( C ) A.a3+a3=a6 B.9-5=4 C.(-3)2=3 D.(a-b)2=a2-b2 9.(导学号 30042135)(2016·菏泽)当1<a<2时,代数式|a-2|+|1-a|的值是( B ) A.-1 B.1 C.3 D.-3 二、填空题 10.(2016·枣庄)计算:9-2-1+38-|-2|=__212__. 11.用“>”,“<”或“=”填空. (1)-(-5)__=__|-5| (2)-|+3|__<__+|-3| (3)-8.2__<__6.5 12.当x=__0__时,分式x2+2xx2-4的值为0. 13.(1)计算:(-2a2)·(-3a)=__6a3__. (2)计算:(x-y)(x2+xy+y2)=__x3-y3__. (3)分解因式:4x3-4x2y+xy2=__x(2x-y)2__. 14. 已知a,b为两个连续整数,且a<11<b,则a+b=__7__. 15.(导学号 30042136)|x-1|+(y+2)2=0,则(x+y)2000=__1__. 2
中考数学复习数与式知识点总结

中考数学复习数与式知识点总结第一部分:教材知识梳理-系统复第一单元:数与式第1讲:实数知识点一:实数的概念及分类1.实数是按照定义和正负性来分类的。
其中,既不属于正数也不属于负数的数是零。
无理数有几种常见形式:含π的式子是正有理数;无限不循环小数是无理数;开方开不尽的数是无理数;三角函数型的数是实数。
有理数包括正有理数、负有理数和零。
负无理数和正无理数的定义很明确。
2.在判断一个数是否为无理数时,需要注意开得尽方的含根号的数属于无理数,而开得尽的数属于有理数。
3.数轴有三个要素:原点、正方向和单位长度。
实数与数轴上的点一一对应,数轴右边的点表示的数总比左边的点表示的数大。
4.相反数是具有相反符号的两个数,它们的和为0.数轴上表示互为相反数的两个点到原点的距离相等。
5.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.若|a|+b2=0,则a=b=0.绝对值等于该数本身的数是非负数。
知识点二:实数的相关概念2.数轴是一个直线,用来表示实数。
数轴上的每个点都对应着一个实数,反之亦然。
3.相反数是具有相反符号的两个数,它们的和为0.4.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.5.倒数是乘积为1的两个数互为倒数。
a的倒数是1/a(a≠0)。
6.科学记数法是一种表示实数的方法,其中1≤|a|<10,n为整数。
确定n的方法是:对于数位较多的大数,n等于原数的整数位减去1;对于小数,写成a×10n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)。
7.近似数是一个与实际数值很接近的数。
它的精确度由四舍五入到哪一位来决定。
例:用科学记数法表示为2.1×104.19万用科学记数法表示为1.9×10^5,0.0007用科学记数法表示为7×10^-4.知识点三:科学记数法、近似数科学记数法是一种表示极大或极小数的方法,它的基本形式是a×10^n,其中1≤a<10,n为整数。
中考数学数与式专题知识训练50题-含参考答案

中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.若||0a a +=,则a 可能是( ) A .1-B .2C .7D .232.下列说法正确的是( ) A .- 2是单项式B .- a 表示负数C .35ab的系数是3 D .π+1是多项式3.下列各式正确的是( ) A .(a+b )2=a2+b2 B .(x+6)(x ﹣6)=x2﹣6 C .(2x+3)2=2x2﹣12x+9D .(2x ﹣1)2=4x2﹣4x+14.下列实数中,属于无理数的是( )A .0B .C .3.1416D .207-5.下列从左到右的变形中,是因式分解且结果正确的是( )A .()321x x x x -=-B .22(2)44x x x -=-+C .23(3)x x x x +=+D .21(1)1x x x x ++=++6.下列运算正确的是( ) A .2x 3﹣x 3=xB .(3xy )3=9x 3y 3C .(﹣x )5÷(﹣x )3=﹣x 2 D7.下列运算中错误的有( )个A .1B .2C .3D .48.下列各式中,正确的是( ) A .-|-16|>0B .|0.2|>|-0.2|C .4577->- D .106-< 9.下列各式中,正确的是( ) A .550--=B .1( 1.25)104⎛⎫--+= ⎪⎝⎭C .222(5)(12)(13)-+-=-D .5371173522⎛⎫⎛⎫÷+=⨯+ ⎪ ⎪⎝⎭⎝⎭10.13的相反数是( )A .3B .﹣3C .13D .13-11.我国天问一号火星探测器于2021年5月15日成功着陆火星表面.经测算,地球跟火星最远距离400000000千米,其中400000000用科学记数法表示为( ) A .9410⨯B .74010⨯C .8410⨯D .90.410⨯12.据考证,它是1983年出土的我国已知最早的西汉初期的数学专著,它用竹简写成,是一部数学问题集,全书有近70个题名(标题),用算数命名,这部竹简算书的书名是( ) A .《九章算术》B .《算术书》C .《许商算术》D .《周髀算经》13.如果a 是非零实数,则下列各式中一定有意义的是( )A B .C D 14.下列各式中,从左到右的变形是因式分解的是( ) A .22212(1)1a a a a -+=-+ B .()()22x y x y x y +-=-C .()22693x x x -+=-D .()2222x y x y xy +=-+15.若a -b -1,ab ,则代数式(a -1)(b +1)的值等于( )A .2B .2C .D .216.下列计算或化简正确的是( )A .(22=9 B=C a b =+D 2π=-17.下列计算中正确的是( ) A .462-+= B .330--= C .111326-+=-D .3154312⎛⎫-+-=- ⎪⎝⎭18.若关于x 的二次三项式21x ax 4++是完全平方式,则a 的值是( )A .1B .1±C .12D .12±19.已知13x x +=,则2421x x x ++的值是( )A .9B .8C .19D .18二、填空题20.-2+1=__________.21.如果有理数a ,b 满足()2310a b -++= ,那么a-b =____. 22.函数y=13x +中自变量x 的取值范围是____________23在两个连续整数a 和b 之间,a b <<,那么=a _________,b =__________.24.若m =3n +2,则m 2﹣6mn +9n 2的值是________25.一种细菌的半径为0.0004m ,用科学记数法表示为____________m . 26.比较大小:()23-___________|-10|.(填“>”“<”或“=”)27_____. 28.对任意有理数a b ,,规定222a b a ab b ⊕=--,则()21⊕-的值是 _____. 29.若a m =2,a n =3,则a m ﹣n 的值为_____.30.数轴上表示1-的点沿数轴移动4个单位长度后所对应的数是____________. 31.已知关于x 的分式方程311m x -=+的解是负数,则m 的取值范围是____.32.任何实数a ,可用[a ]表示不超过a 的最大整数,如现对72进行如下操作:721→第次]=82→第次3→第次]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行____次操作后变为1.33.已知22x +()的立方根是2,则37x +()的平方根是____________ . 34.y x .y 3.y 2.y =y 10,则x = ________35.12.5亿用科学记数法表示为______________.36.若有理数a 、b 满足||a b b a -=-,则2021a b b a ----的值为________.37.已知13x y =⎧⎨=⎩是关于x ,y 的二元一次方程组()2715ax y x b y +=⎧⎨--=-⎩的解,则1123a b -的值为____________.38.计算:()()2421x x -+=______.三、解答题 39.化简下列各式: (1)34(2)xy xy xy ---;(2)223()(23)2(3)a b b a b a +---+.40.计算:(2)(2)()(8)m n m n m n m n +---+. 41.计算:(1)|3;(2)m •m 3•m 5+(﹣2m 2)3•2m 3; (3)(x ﹣y )2﹣x (x ﹣y ); (4)(﹣4m 4+2m 3n )÷(﹣2m 3).4220y +=,求()()()22x y x y x y x ⎡⎤-++-÷⎣⎦的值. 43.小明有5张写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是______. (2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是______. (3)从中取出4张卡片,用学过的运算方法,使结果为24.写出运算式子:______. 44.计算:3.2+45.(1|2 (2)求x 的值:2225x46.在一条不完整的数轴上从左到右有点A ,B ,C ,其中21AB BC ==,,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p 的值.(3)若原点O 到A 、C 两点距离相等,A 点对应的数为a ,B 点对应的数为b ,求a b -的值.47.计算:(1()32112⎛⎫-+- ⎪⎝⎭(2)()()()23x x y x y x y -++-48.阅读:已知a +b =﹣4,ab =3,求a 2+b 2的值. 解:①a +b =﹣4,ab =3,①a 2+b 2=(a +b )2﹣2ab =(﹣4)2﹣2×3=10.已知a +b =6,ab =2,请你根据上述解题思路求下列各式的值. (1)a 2+b 2; (2)a 2﹣ab +b 2.参考答案:1.A【分析】由a a=-表示a的绝对值是它的相反数,故a是0或负数.【详解】由题意a a=-可知a的绝对值是它的相反数,因此a是0或者负数,故选:A.【点睛】本题主要考查绝对值的意义,熟练掌握绝对值的意义是解决本题的关键.2.A【分析】根据单项式的定义,单项式的系数的定义,以及多项式的定义对各选项分析判断后利用排除法.【详解】解:A、-2是单项式,故该选项符合题意;B、-a表示负数、零、正数,故该选项不符合题意;C、35ab的系数是35,故该选项不符合题意;D、π+1是单项式,故该选项不符合题意;故选:A.【点睛】本题主要考查了单项式与多项式的概念以及单项式系数的概念.单项式是数与字母的乘积,单独一个数或一个字母也是单项式.3.D【详解】A、①(a+b)2=a2+2ab+b2,①选项A不正确;B、①(x+6)(x-6)=x2-62,①选项B不正确;C、①(2x+3)2=4x2-12x+9,①选项C不正确;D、①(2x-1)2=4x2-4x+1,①选项D正确;故选D.【点睛】考查了平方差公式以及完全平方公式;熟记平方差公式和完全平方公式是解决问题的关键.4.B【分析】根据无理数的定义:无理数,也称为无限不循环小数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环,即可判定. 【详解】A .0是整数,属于有理数,故本选项不合题意;B .=,是无理数,故本选项符合题意;C .3.1416是有限小数属于有理数,故本选项不合题意;D .207-是分数,属于有理数,故本选项不合题意. 故选:B .【点睛】此题主要考查对无理数的理解,熟练掌握,即可解题. 5.C【分析】根据因式分解的定义及方法逐项分析即可.【详解】A. ()321x x x x -=-=x(x+1)(x-1),故错误;B. 22(2)44x x x -=-+是乘法运算,不是因式分解,故错误;C. 23(3)x x x x +=+,正确;D. 21(1)1x x x x ++=++不是因式分解,故错误; 故选C.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;①公式法;①十字相乘法;①分组分解法. 因式分解必须分解到每个因式都不能再分解为止. 6.D【分析】根据合并同类项法则、幂的乘方、同底数幂的除法及二次根式的性质逐一判断即可得.【详解】解:A .2x 3﹣x 3=x 3,原选项错误,不符合题意; B .(3xy )3=27x 3y 3,原选项错误,不符合题意;C .(﹣x )5÷(﹣x )3=(﹣x )2=x 2,原选项错误,不符合题意;D 33-=,原选项正确,符合题意;故选:D .【点睛】本题考查了整式的运算和二次根式的性质,解题关键是熟练运用相关性质,准确进行计算.【分析】利用二次根式的加减运算法则逐一计算即可.【详解】=4,故错误;①错误的有2个,故选:B.【点睛】本题主要考查二次根式的运算,掌握二次根式的运算法则是解题的关键.8.C【分析】有理数大小比较的法则:①正数都大于0;①负数都小于0;①正数大于一切负数;①两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵﹣|﹣16|=﹣16,∴﹣|﹣16|<0,∴选项A不正确;∵|0.2|=0.2,|﹣0.2|=0.2,∴|0.2|=|﹣0.2|,∴选项B不正确;∵﹣47>﹣57,∴选项C正确;∵|﹣6|=6,∴|﹣6|>0,∴选项D不正确.故选C.【点睛】此题主要考查了绝对值的含义和求法,以及有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;①负数都小于0;①正数大于一切负数;①两个负数,绝对值大的其值反而小.【分析】根据有理数的运算法则计算各选项后判断即可.【详解】解:A. 因为–5–5=–10,故不正确;B. 因为(–1.25)–(1+14)=(–54)–54=–52,故不正确;C. 因为(–5)2+(–12)2=169,(–13)2=169,所以(–5)2+(–12)2=(–13)2,故正确;D. 因为1÷(23+57)=1×2129=2129,37101=2529⎛⎫⨯+⎪⎝⎭故不正确;故选C.【点睛】有理数混合运算顺序是:先乘方,再乘除,最后加减,有括号的先算括号里的,再算括号外的.10.D【分析】在一个数前面放上“﹣”,就是该数的相反数.【详解】解:13的相反数为﹣13.故选:D.【点睛】本题考查了相反数的概念,求一个数的相反数只要改变这个数的符号即可.11.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将400000000这个数用科学记数法表示为:8410⨯.故选:C.【点睛】此题考查了科学记数法,熟练掌握科学记数法的基本要求并正确确定a及n的值是解题的关键.12.B【分析】根据各书数目内容、成书年代逐项判断即可.【详解】A.《九章算术》成书于公元一世纪,共计收录了246个与生产生活相关的实际数学应用问题,故A项与描述不符;B.《算术书》,1983年出土与湖北荆州,成书于西汉初年,全书有68个标题,主要涉及整数、分数的运算等知识,B项与描述相符;C.《许商算术》共计26卷成书于西汉末期,作者是汉朝许商,C项与描述不符;D .《周脾算经》成书于公元前一世纪,内容涵盖天文学和数学,主要介绍并证明的勾股定理,故D 项与描述不符; 故选:B .【点睛】本考查了我国数学史的相关知识,知晓各书成书年代是解答本题的关键. 13.D【分析】根据被开方数是非负数逐项分析即可.【详解】A.当a<0B. 当a>0时,-a<0,此时C. 当a≠0时,-a 2<0D. 当a 是非零实数时,210a > 故选D.)0a ≥的式子叫二次根式,熟练掌握二次根式成立的条件是解答本题的关键. 14.C【分析】根据因式分解的定义逐项判断即可.【详解】解:A. 22212(1)1a a a a -+=-+,没有将多项式化为乘积形式,不是因式分解,不合题意;B. ()()22x y x y x y +-=-,是整式乘法,不是因式分解,不合题意;C. ()22693x x x -+=-,是因式分解,符合题意;D. ()2222x y x y xy +=-+,没有将多项式化为乘积形式,不是因式分解,不合题意; 故选:C【点睛】本题考查了因式分解的定义:将一个多项式转化为几个整式的积的形式,熟知因式分解的定义是解题关键. 15.B【详解】(a -1)(b +112-=. 故选B. 16.Ba 进行逐一分析求解即可.【详解】解:A 、(22=A 项错误;B 2253===-B 项正确;C C 项错误;D 2π=-,故D 项错误;故选B .a ,熟练掌握分母有理化是解题的关键.17.A【分析】根据有理数加减混合运算的顺序计算即可.【详解】①46642-+=-=①选项A 正确; ①333(3)6--=-+-=-,①选项B 错误; ①1123132666-+=-+=, ①选项C 错误;①319413(-)(-)=43121212-+=-+-, ①选项D 错误;故选A.【点睛】本题考查了有理数的加减混合运算,熟练运用混合运算的基本法则是解题的关键. 18.B【分析】利用完全平方公式的结构特征判断即可求出a 的值.【详解】解:①关于x 的二次三项式21x ax 4++是完全平方式, ①1a 2=12=±⨯± , 故选:B .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.19.D 【分析】根据13x x += 可知21()9x x += 即2217x x += ,把2421x x x ++ 分子、分母同时除以2x 得2217x x += ,把2217x x +=代入即可. 【详解】由13x x+=得21()9x x +=,即2217x x += 2421x x x ++=22111x x ++, 把2217x x +=代入得22111x x ++=11178=+ , 故选D【点睛】本题考查利用恒等变形求分式的值,利用分式的性质,找到可以等量代换的代数式是解题关键.20.-1.【详解】试题分析:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,故-2+1=-1.考点:有理数加法计算.21.4【分析】根据平方以及绝对值的非负性,即可求得3a =,1b,代入进行计算,即可求得结果.【详解】解:①()230a -≥,10b +≥,且()2310a b -++=,①()230a -=,10b +=,①30a -=,10b +=,解得:3a =,1b , ①()314a b -=--=,故答案为:4.【点睛】本题主要考查的是平方以及绝对值的非负性,此题型属于初中重点考查题型. 22.x≠3【分析】根据分母不等于0列式进行计算即可求解.【详解】解:根据题意得,x+3≠0,解得x≠-3.故答案为x≠-3.23. 2 3的范围,即可求解.【详解】①4<7<9,①23<<①a b <①2a =,3b =,故答案为:2,3.的范围是解题的关键.24.4【分析】直接利用完全平方公式配方进而将m =3n +2代入求出即可.【详解】解:①m =3n +2,①2222269(3)(323)24m mn n m n n n -+=-=+-==.故答案为:4【点睛】此题主要考查了公式法的应用,熟练掌握完全平方公式是解题关键.25.4410-⨯【详解】由科学记数法定义知:0.0004=4410-⨯,故答案为4410-⨯26.<【分析】先整理数据,()23-=9,|-10|=10,进而得出大小关系.【详解】解:①()23-=9,|-10|=10,又9<10,①()23-<|-10|.故答案为:<.【点睛】本题考查有理数的比较大小,本题需要先整理数据,再进行比较即可,题目较简单.27.【点睛】本题主要考查了二次根式的化简,熟练掌握相关方法是解题关键.28.7【分析】根据新定义,代入数据进行计算即可求解.【详解】解:①222a b a ab b ⊕=--,①()21⊕-=()()22222114417-⨯⨯---=+-=, 故答案为:7.【点睛】本题考查了代数式求值,理解新定义的运算法则是解题的关键.29.23.【分析】根据同底数幂的除法底数不变指数相减,可得答案.【详解】am ﹣n =am ÷an =2÷3=23, 故答案为23. 【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.30.5-或3【分析】分向左移和向右移两种情况讨论求解即可.【详解】解:当向左移时,数轴上表示1-的点沿数轴移动4个单位长度后所对应的数是145--=-,当向右移时,数轴上表示1-的点沿数轴移动4个单位长度后所对应的数是143-+=, 综上所述,数轴上表示1-的点沿数轴移动4个单位长度后所对应的数是5-或3, 故答案为:5-或3.【点睛】本题主要考查了用数轴表示有理数,利用分类讨论的思想求解是解题的关键. 31.m <4且m ≠3【分析】直接解分式方程,然后根据分式的解为负数,再利用x ≠﹣1求出答案.【详解】解:①311m x -=+, ①解得:x =m ﹣4.①关于x 的分式方程31m x -=+1的解是负数, ①m ﹣4<0,解得:m <4,当x =m ﹣4=﹣1时,方程无解,则m ≠3,故m 的取值范围是:m <4且m ≠3.故答案为m <4且m ≠3.【点睛】本题考查了分式方程的解,正确得出分母不为零是解题的关键.32.3【分析】根据可用[a]表示不超过a 的最大整数,可得答案.【详解】,,,故答案为3.【点睛】本题考查了估算无理数的大小,利用了任何实数a ,可用[a]表示不超过a 的最大整数.33.±4 【分析】根据立方根的立方得2x 2+的值,计算出x 的值,然后代入3x 7()+,求出平方根即可.【详解】解:①2x 2+()的立方根是2,①2x 2+=8,解得x=3,①3x 7+=3×3+7=16,16的平方根是±4.故答案为±4.【点睛】本题考查立方根、平方根,利用立方根的立方解得x 的值是解题关键. 34.4【详解】①y 10=yx +3+2+1=y 4.y 3.y 2.y ,①x =4.点睛:本题主要考查了同底数幂的乘法,同底数幂相乘,底数不变,指数相加.35.91.2510⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,用原数的整数位数减1即可.由此即可解答.【详解】12.5亿=1 250 000 000=1.25×109.故答案为1.25×109.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值36.2021【分析】先根据||a b b a -=-,可得0,b a -≥ 0,20210a b a b ,再化简绝对值即可. 【详解】解: ||a b b a -=-,0,b a0,20210a b a b2021a b b a ∴----2021a b b a20212021.a b b a故答案为:2021.【点睛】本题考查的是绝对值的性质,化简绝对值,去括号,整式的加减运算,熟练的化简绝对值是解本题的关键.37.0【分析】结合题意,根据二元一次方程组的性质,将13x y =⎧⎨=⎩代入到原方程组,得到关于a 和b 的二元一次方程组,通过求解即可得到a 和b ,结合代数式的性质计算,即可得到答案.【详解】①13x y =⎧⎨=⎩是关于x ,y 的二元一次方程组()2715ax y x b y +=⎧⎨--=-⎩的解 ①将13x y =⎧⎨=⎩代入到()2715ax y x b y +=⎧⎨--=-⎩,得()2371315a b +=⎧⎨--=-⎩ ①23a b =⎧⎨=⎩①1111023a b -=-= 故答案为:0.【点睛】本题考查了二元一次方程组、代数式的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.38.2464x x --【分析】直接利用多项式乘以多项式运算法则化简进而得出答案.【详解】()()22x 42x 14x 6x 4-+=--,故答案为24x 6x 4--.【点睛】本题考查了整式的混合运算,正确掌握相关运算法则是解题关键.39.(1)xy(2)22b b -【分析】(1)先去括号,然后再合并同类项即可;(2)先去括号,然后再合并同类项即可.【详解】(1)解:34(2)xy xy xy ---342xy xy xy =-+xy =;(2)解:223()(23)2(3)a b b a b a +---+22332326a b b a b a =+-+--22b b =-.【点睛】本题主要考查了整式的加减运算,解题的关键是熟练掌握去括号法则和合并同类项法则.40.247n mn -【分析】根据整式乘法的平方差公式和多项式乘以多项式去括号,再计算加减法.【详解】解:原式()2222(2)88m n m mn mn n ⎡⎤=--+--⎣⎦()()2222478m n m mn n =--+-2222478m n m mn n =---+247n mn =-.【点睛】此题考查整式的混合运算,正确掌握整式乘法的平方差公式和多项式乘以多项式法则是解题的关键.41.(1)3(2)9-15m(3)2-+xy y(4)2m n-【分析】(1)先化简各数,然后再进行计算即可;(2)按照运算顺序,先算乘方,再算乘法,最后算加减即可;(3)先去括号,再找同类项,最后合并同类项即可;(4)根据多项式除以单项式的运算法则进行计算即可.(1)3=+333=3(2)35233⋅⋅+-⋅(2)2m m m m m963=-⋅m m m8299=-m m169=-;15m(3)2---()()x y x x y222=-+-+x xy y x xy22=-+;xy y(4)433-+÷-=-.(42)(2)2m m n m m n【点睛】本题考查了实数的运算,整式的混合运算,准确熟练地进行计算是解题的关键. 42.120y +=易得x =-1,y =-2,然后将()()()22x y x y x y x ⎡⎤-++-÷⎣⎦先化简,再代值计算即可.【详解】解:20y +=,①2020y x y +=⎧⎨-=⎩, 解得:12x y =-⎧⎨=-⎩, ①()()()22x y x y x y x ⎡⎤-++-÷⎣⎦=2222[2()]2x xy y x y x -++-÷=2(22)2x xy x -÷=x y -=1(2)---=1.【点睛】本题的解题要点有:(1)一个代数式的绝对值和算术平方根都是非负数,两个非负数的和为0,则这两个非负数都为0;(2)熟记“乘法的完全平方公式和平方差公式及多项式除以单项式的法则”.43.(1)15 (2)53- (3)[−3−(−5)]×3×4=24(答案不唯一)【分析】(1)观察这五个数,要找乘积最大的就要找符号相同且数值最大的数,所以选−3和−5;(2)2张卡片上数字相除的商最小就要找符号不同,且分子绝对值越大越好,分母绝对值越小越好,所以就要选3和−5,且−5为分子;(3)从五张卡片中抽出4张,用加减乘除只要答数是24即可.(1)解:−3×(−5)=15,故答案为:15;(2) 解:5(5)(3)3-÷+=-, 故答数为:53-; (3)解:抽取−3、−5、3、4,这四张卡片,[−3−(−5)]×3×4=24,故答案为:[−3−(−5)]×3×4=24(答案不唯一).【点睛】本题考查了有理数的混合运算,考查的知识点有:有理数的乘法、除法,是基础知识要熟练掌握.44.(1)-1.62【分析】(1)先计算算术平方根与乘方,然后进行加减运算即可;(2)先计算绝对值,算术平方根,立方根,然后进行加减运算即可.(1)解:原式0.42=-1.6=-(2)解:原式2523++-2=【点睛】本题考查了算术平方根,乘方,绝对值,立方根等知识.解题的关键在于正确的计算.45.(1)5(2)17x =,23x =-【分析】(1)先根据算术平方根的意义、立方根的意义、绝对值的意义分别化简各项,再进行实数加减运算即可得解;(2)根据平方根的意义方程两边直接开平方得到关于x 的两个一元一次方程,进一步解一元一次方程即可得解.【详解】解:(1|2-(742=-+742=-+5= (2)2225x25x -=±,25x -=,25x -=-,①17x =,23x =-.【点睛】本题考查了算术平方根的意义、立方根的意义、绝对值的意义、实数的加减运算、根据平方根的意义解简单的二元一次方程,属于中档题型,认真计算是解决问题的关键.46.(1)若以B 为原点,则C 表示1,A 表示2-,1p =-,若以C 为原点,4p =-(2)88-(3)2【分析】(1)根据数轴的性质,求得、、A B C 对应的数,求解即可;(2)根据题意,求得C 表示28-,求出AB 、表示的数,即可求解; (3)求得AB 、表示的数,代入求解即可. 【详解】(1)解:若以B 为原点,则C 表示1,A 表示2-.①1021p =+-=-.若以C 为原点,则A 表示3-,B 表示1-,①3104p =--+=-.(2)解:若原点O 在图中数轴上点C 的右边,且28CO =则C 表示28-,B 表示29-,A 表示31-.①31292888p =---=-.(3)解:若原点O 到A 、C 两点距离相等,3AC AB BC =+=,则C 点表示数的为1.5,A 点表示的数为 1.5-,B 点表示数的为0.5,则 1.5a =-,0.5b =, ①2a b -=【点睛】此题考查了数轴的应用,涉及了绝对值的化简,数轴上两点间的距离,解题的关键是掌握数轴上两点间的距离公式.47.(1)18-;(2)2223x y - 【分析】(1)先化简二次根式,求立方根及乘方的计算,然后再按照有理数的加减混合运算法则进行计算;(2)先进行整式乘法的计算,然后合并同类项.【详解】解:(1)原式=13(2)18⎛⎫+--+- ⎪⎝⎭=13218--- =18- (2)原式=222233x xy x xy xy y -+-+-=2223x y -【点睛】本题考查实数的混合运算及整式乘法,掌握运算法则正确计算是本题的解题关键. 48.(1)32(2)30【分析】(1)结合题意,()2222a b a b ab +=+-,代入即可得出答案;(2)由(1)可知,2232a b +=,ab =2,代入即可得出答案.(1)解:①a +b =6,ab =2,①()2222262232a b a b ab +=+-=-⨯=;(2)解:由(1)可知,2232a b +=,ab =2,①222232230a ab b a b ab -+=+-=-=.【点睛】本题考查了完全平方公式的应用,结合条件对完全平方公式变形是本题的关键.。
专题69 数与式中的新定义问题(原卷版)-2023年中考数学重难点解题大招复习讲义-新定义问题
例题精讲【例1】.定义一种新运算:,例如.若,则k=.变式训练【变1-1】.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4,如果,则x的取值范围是()A.5≤x<7B.5<x<7C.5<x≤7D.5≤x≤7【变1-2】.规定:符号[x]叫做取整符号,它表示不超过x的最大整数,例如:[5]=5,[2.6]=2,[0.2]=0.现在有一列非负数a1,a2,a3,…,已知a1=10,当n≥2时,a n=a n﹣1+1﹣5([]﹣[]),则a2022的值为.【例2】.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi的数叫做复数,其中a叫做这个复数的实部,b叫做这个复数的虚部.它的加、减、乘法运算与整数的加、减、乘法运算类似.例如计算:(4+i)+(6﹣2i)=4+6+i﹣2i=10﹣i(2﹣i)(3﹣i)=6﹣2i﹣3i+i2=6﹣5i﹣1=5﹣5i根据以上信息计算(1+2i)(2﹣i)+(2﹣i)2=.变式训练【变2-1】.贾宪是生活在北宋年间的数学家,著有《黄帝九章算法细草》《释锁算书》等书,但是均已失传.所谓“贾宪三角”指的是如图所示的由数字所组成的三角形,称为“开方作法本源”图,也称为“杨辉三角”.贾宪发明的“开方作法本源“图作用之一,是为了揭示二项式(a+b)n(n=1,2,3,4,5)展开后的系数规律,即(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,(a+b)4=a4+4a3b+6a2b2+4ab3+b4,(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.则二项式(a+b)n(n为正整数)展开后各项的系数之和为()A.2n﹣1+1B.2n﹣1+2C.2n D.2n+1【变2-2】.已知n行n列(n≥2)的数表中,对任意的i=1,2,…,n,j=1,2,…,n,都有a ij=0或1.若当a st=0时,总有(a1t+a2t+…+a nt)+(a s1+a s2+…+a sn)≥n,则称数表A为典型表,此时记表A中所有a ij的和记为S n.(1)若数表,,其中典型表是;(2)典型表中S5的最小值为.1.对任意两个实数a,b定义两种运算:a⊕b=,a⊗b=,并且定义运算顺序仍然是先做括号内的,例如:(﹣2)⊕3=3,(﹣2)⊗3=﹣2,((﹣2)⊕3)⊗2=3⊗2=2,则等于()A.B.3C.D.22.对于两个不相等的实数a、b,我们规定符号Min{a,b}表示a、b中较小的值,如Min{2,4}=2,按照这个规定,方程Min{}=的解为()A.1或3B.1或﹣3C.1D.33.定义:如果a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记做x=log a N.例如:因为72=49,所以log749=2;因为53=125,所以log5125=3.则下列说法正确的个数为()①log61=0;②log323=3log32;③若log2(3﹣a)=log827,则a=0;④log2xy=log2x+log2y(x>0,y>0).A.4B.3C.2D.14.我们把称作二阶行列式,规定它的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2,请你计算的值为.5.对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+1)◎(m ﹣2)=16,则m=6.设n为正整数,记n!=1×2×3×4×…×n(n≥2),1!=1,则+++…++=.7.新定义:任意两数m,n,按规定y=﹣m+n得到一个新数y,称所得新数y为数m,n 的“愉悦数”.则当m=2x+1,n=x﹣1,且m,n的“愉悦数”y为正整数时,正整数x 的值是.8.对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式23=8可以转化为对数式3=log28,对数式2=log636,可以转化为指数式62=36.计算log39+log5125﹣log232=.9.对于正整数m,我们规定:若m为奇数,则f(m)=3m+3;若m为偶数,则f(m)=.例如f(5)=3×5+3=18,f(8)==4.若m1=1,m2=f(m1),m3=f(m2),m4=f(m3),…,依此规律进行下去,得到一列数m1,m2,m3,m4,…,m n,…(n为正整数),则m1+m2+m3+…+m2021=.10.如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序数对(a,b)为点P的斜坐标.(1)点P(x,y)关于原点对称的点的斜坐标是;(2)在某平面斜坐标系中,已知θ=60°,点P的斜坐标为(2,4),点N与点P关于x 轴对称,则点N的斜坐标是.11.欧拉是18世纪瑞士著名的数学家,他的贡献不仅遍及高等数学的各个领域,在初等数学中也留下了他的足迹.下面是关于分式的欧拉公式:=(其中a,b,c均不为零,且两两互不相等).(1)当r=0时,常数p的值为.(2)利用欧拉公式计算:=.12.任何一个正整数n都可以进行这样的分解:(s、t是正整数,且s≤t),如果在n的所有这种分解中两因数之差的绝对值最小,我们就称是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:①F(2)=;②F(48)=;③F(n2+n)=;④若n非0整数,则F(n2)=1,其中正确说法的是(将正确答案的序号填写在横线上).13.对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)min{sin30°,cos60°,tan45°};(2)若M{﹣2x,x2,3}=2,求x的值.14.定义为二阶行列式,规定它的运算法则为:=ad﹣bc.例如:=5×8﹣6×7=﹣2.(1)求的值.(2)若=20,求m的值.15.材料:对于一个四位正整数m,如果满足百位上数字的2倍等于千位与十位的数字之和,十位上数字的2倍等于百位与个位的数字之和,那么称这个数为“相邻数”.例如:∵3579中,2×5=3+7=10,7×2=5+9=14,∴3579是“相邻数”.(1)判断7653,3210是否为“相邻数”,并说明理由;(2)若四位正整数n=1000a+100b+10c+d为“相邻数”,其中a,b,c,d为整数,且1≤a≤9,0≤b≤9,0≤c≤9,0≤d≤9,设F(n)=2c,G(n)=2d﹣a,若为整数,求所有满足条件的n值.16.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的相关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;根据以上规律,解答下列问题:(1)(a+b)5展开式共有项,系数和为.(2)求(2a﹣1)5的展开式;(3)利用表中规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1(不用表中规律计算不给分);(4)设(x+1)17=a17x17+a16x16+…+a1x+a0,则a1+a2+a3+…+a16+a17的值为.17.若规定f(n,m)=n×(n+1)×(n+2)×(n+3)×…×(n+m﹣1),且m,n为正整数,例如f(3,1)=3,f(4,2)=4×5,f(5,3)=5×6×7.(1)计算f(4,3)﹣f(3,4);(2)试说明:;(3)利用(2)中的方法解决下面的问题,记a=f(1,2)+f(2,2)+f(3,2)+…+ f(27,2),b=f(1,3)+f(2,3)+f(3,3)+…+f(11,3).①a,b的值分别为多少?②试确定a b的个位数字.18.请阅读以下材料,解决问题.我们知道:在实数体系中,一个实数的平方不可能为负数,即a2≥0.但是,在复数体系中,如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,那么形如a+bi (a、b为实数)的数就叫做复数,a叫做这个复数的实部,b叫做这个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算类似,例如计算:(3+i)i=3i+i2=3i﹣1(2+i)+(3﹣4i)=(2+3)+(1﹣4)i=5=3i;若两个复数,它们的实部和虚部分别相等,则称这两个复数相等;若它们的实部相等,虚部互为相反数,则称这两个复数共轭,如1+2i的共轭复数为1﹣2i.根据材料回答:(1)填空:①(2+i)(3i﹣1)=;②将m2+9(m为实数)因式分解成两个复数的积:m2+9=;(2)若a+bi是(1+2i)2的共轭复数,求(b﹣a)2022的值;(3)已知(a+i)(b+i)=2﹣4i,求(a2﹣b2)(i2+i3+i4+…+i2023)的值.19.式子“1+2+3+4+…+100”表示从1开始的连续100个正整数的和,由于上述式子比较长,书写不方便,为了简便起见,可以将上述式子表示为,这里“∑”是求和的符号.例如“1+3+5+7+…+99”用“∑”可以表示为,“13+23+33+…+103”用“∑”可以表示为.(1)把写成加法的形式是;(2)“2+4+6+8+…+100”用“∑”可以表示为;(3)计算:.20.好学的小贤同学,在学习多项式乘以多项式时发现:(x+4)(2x+5)(3x﹣6)的结果是一个多项式,并且最高次项为:x•2x•3x=3x3,常数项为:4×5×(﹣6)=﹣120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:×5×(﹣6)+2×(﹣6)×4+3×4×5=﹣3,即一次项为﹣3x.请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算(x﹣5)(3x+1)(5x﹣3)所得多项式的一次项系数为.(2)若计算(x2+x﹣1)(x2﹣2x+a)(2x+3)所得多项式的一次项系数为2,求a的值;(3)若(x+1)2022=a0x2022+a1x2021+a2x2020+…+a2021x+a2022,则a2021=.21.阅读下列材料.材料一:对于一个四位正整数,如果百位数字大于千位数字,且个位数字大于十位数字,则称这个数是“双增数”;如果百位数字小于千位数字,且个位数字小于十位数字,则称这个数是“双减数”.例如:3628、4747是“双增数”,5231、9042是“双减数”.材料二:将一个四位正整数m的百位数字和十位数字交换位置后,得到一个新的四位数m',规定:F(m)=m﹣m',例如:F(2146)=2146﹣2416=﹣270.(1)最大的“双增数”是,最小的“双减数”是;(2)已知“双增数”s=1000x+100(y+4)+10y+6(1≤x≤9,0≤y≤9,x、y是整数),“双减数”t=3000+20a+b(0≤a≤9,0≤b≤9,a、b是整数),且t的各个数位上的数字之和能被12整除,现规定k=F(s)+F(t),求k的最大值.。
中考数学复习-专题一数与式-精品课件
元.请你以亿.元.为单位用科学记数法表示去年我国的国内生产总
值(结果保留两个有效数字)
(D )
A.3.9×1013
B.4.0×1013
C.3.9×105
D.4.0×105
│ 归类示例
科学记数法的表示方法: (1)当原数的绝对值大于或等于 1 时,n 等于原数的整 数位数减 1. (2)当原数的绝对值小于 1 时,n 是负整数,它的绝对 值等于原数中左起第一位非零数字前零的个数(含小数点 前的 0). (3)有数字单位的科学记数法,先把数字单位化去, 再用科学记数法表示.
例 2 当 0<x<1 时,x2,x,x1的大小顺序是
A. 1x<x<x2
B. x1<x2<x
C.x2<x<x1
D.x<x2<x1
( C)
│ 归类示例
[解析] 解法一:采用“特殊值法”来解:令 x=12,则 x2 =14,1x=2,∴1x>x>x2.
解法二:可用“差值比较法”来解:当 0<x<1 时,1-x>0, x-1<0,x+1>0,∴x-x2=x(1-x)>0,∴x>x2.又 x-1x=x2-x 1 =x+1xx-1<0,∴x<1x,∴x2<x<1x.
│ 归类示例
[解析] 纸环的个数为 5 的倍数,而前面有 8 个,最后又 有 4 个,把四个选项中的数加上12 能被 5 整除的是 2013,因 为 2013+12=2025,故选 D.
此类探究实数规律性问题的特点是给定一列数或等式或 图形,要求进行适当地计算,必要地观察、猜想、归纳、验 证,利用从特殊到一般的数学思想,分析特点,探索规律, 总结结论.
中考数学易错题专题复习数与式.doc
数与式易错点1:有理数、无理数与实数的有关概念理解错误;对于相反数、倒数、绝对值的意义分不清.例:在实数兰,0.3 ,禹,(>/2)0 , tan 60°20.01001001……,0.010010001……(相邻两个1之间依次多一个0)中,无理数有……()A.2个B. 3个C. 4个D. 5个错解:D正解:B赏析:错误的主要原因是没有真正理解无理数的概念,只看形式,而没有化简后再判断, 无理数的常见类型有:①根号型(开方开不尽),如血,逅等;②定义型,如1.010010001……(相邻两个1之间依次多一个0)等;“龙”型,如-兀等;③三角函数型,如tan 60° , sin45°等.易错点2:在实数的有关运算中,由于对运算顺序理解不清,不正确使用运算律或没有把握好符号的处理从而出现计算错误.例:计算:2tan60°- V3-2 -^27+(-)-2.2错解:原式=2X +2— >/3 —3 >/3 +4=6—2 >/3 .正解:原式=2X希一2+巧一3 +4=2.赏析:错误的主要原因是把绝对值化简后没有处理好前面的负号.正确的解法应是先化简:tan60°= >/3 , ^3-2 =2—JL 厉=3 (丄尸=十一=4,再算乘法:2tan60°2 (R2=2巧,然后进行加减混合运算•其中关于负整数指数幕的计算也易出错,其计算公式是严=丄佔0, Q为正整数),女叭丄尸=J-=4,易错误地计算为(-)~2 =-.a p2J\2 2 4(2}易错点3:平方根、算术平方根、立方根的意义与区别.例:将7的平方根和立方根按从小到大的顺序排列为______________________ .错解:・ V5<V5<V5.正解:-馅<亦 <厉.赏析:本题主要从“同一个正数(除1夕卜)的平方比立方要小”而得出“同一个正数的平方根也比立方根要小”的错误结论,应是“同一个正数(除1外)的平方根比立方根要大” •本题中的三个数,可先根据正数大于负数得出■亦最小,再比较皓与亦的大小,其方法是:••• V5 < V8,而驱=2, :•躬<2,又・・・2=扬,.••皓 <扬,又V V4 <>/5, ・••皓 <亦・易错点4:求分式的值时易忽略分母不为零的条件.例:分式込三的值为零,则;r的值为....................................... () x + 2A. 2B.・2C. ±2D.任意实数错解:C正解:A赏析:本题错解考虑到了分子卜|一2为零,而忽视了分式有意义的条件一一分母x+2 不为零•分式的值为零的条件应是分子为零且分母不为零,.••由卜|一2 = 0,解得x=±2,又由丸+2H0,得2,・・」=2.还有分式无意义的条件是分母为零.易错点5:分式的运算:①运算法则和符号的变化;②分子或分母是多项式时要分解因式且要分解到不能分解为止;③结果应化为最简分式.r2— 2 r + 4 r2 + 4 r 4- 4例:先化简,再求值:( ------------ +2 —%) 4 -- --------------- ,其中“满足x—4x+x~\ \ — X3=0.错解:原式=[*-2卄4 —(―2)(—I)〕•上罕x — 1 x — \(兀 + 2)_ x2— 2兀 + 4 —兀~ —3x + 2 1 —xx — 1(x + 2)~_-(5x-6) . _(x_l)x — 1 (x+2)~5x — 6-(x+2)2 'T# —4/+3 二0, (x—1)(x—3) =0, 匕=1,A2=3.又 T L IHO,xH 1.“ [.H-u 5x3 - 6 9• •当 x — 3 时,k 式= ---- =—(3 + 2)2 25_ x 2— 2兀 + 4 —兀~ + 3x — 2 1 — x% — 1 (x + 2)~-U-1)0+2)2=__1x + 2・・・/一4+二0, 匕一1)匕一3) =0,JTi = 1,出=3.又V %-1^0, ,+4卄4H0, ・—工1, x 丰-2.・••当 %=3 时,原式= =- —-— =x+2 3+2 5赏析:本题一处错误是在去括号时,符号出现了错误,括号前面是“ - ”,去掉括号和 它前面的“ - ”号,括号里面的每一项都要改变符号,二处错误是原式有意义的条件只考虑 了分母不为零,即x —1H0,而忽视了除数不能为零的条件,即/+4/+4H0.易错点6:非负数的性质:几个非负数的和为零,则每个非负数都为零;整体代入;完 全平方式.例:若(x+y)2+2 (x+y) —8=0,则 /+/= ________________ ・ 错解:2或・4 正解:2赏析:本题错误的主要原因是没有注意到题中隐含的条件 A/&0,同时把#+声整体 运用也很重要.本题可以用因式分解法來解:(#+_/),+2(#+_/)—8 = 0, (#+#+4)( /+/—2)=0, /./+/+4=0 sg /+/-2 = 0, A x+y= -4 或 Ay =2, V/+y >0, .*./+/= 2.或者用换元法来解:设则原方程化为扌+2白一8 = 0,・・・3+4)3—2)=0,正解: 原式=[x~ — 2 兀+ 4 (兀-2)(x_l)] 兀一1 \ — X (兀 +2)2・・・(自+4)= 0 或(自一2)=0,・••曰=・4, $=2,即 /+/ =・4 或丿+#=2, vAy>0, .•./+/易错点7:五类计算:绝对值;零指数幕;负整数指数幕;二次根式的化简计算;锐角 三角函数.例:计算:R&错解:原式坷+皿宀吕+2=^~^+2分母有理化时,分母是(、存+1)( A /3-1) = (A /3)2-1=2,而不是1,错误地理解为分母有理化时分母就是1.同时,逆用二次根式性质3计算辰x£ =(32x£ =讽=2更简便.二次根式的计算通常先化简,不是最简二次根式化成最简二次根式,分母中有根号时要分母有理化,这一步中熟练掌握二次根式的四条性质和 分母有理化的方法很重要,同吋还要理解最简二次根式的概念,然后按运算顺序计算,遇有 除法时通常先化为乘法再计算,能约分的尽量先约分,在加减计算中要常握同类二次根式的 概念,其合并正解: 原式=羽_\(73 + 1)(73-1)赏析:本题错在将二次根式冲方法与合并同类项的方法相似•还有,特殊角的三角函数值也易弄错,如sin30°与sin60°,应牢记30° , 45° , 60°角的三角幣数值.特殊角的三角函数值如下表:易错练1 •代数式——有意义,则才的取值范围是 ....................................... ()X —2A. A^-l H 详2B. /H2C. x^2 且 x#-2D. x>22. ............................................................................................................................ 下列四个多项式中,能因式分解的是 .................................................. () A. a 2+b':B.孑一計0.25C. x+4yD. x~4y3. 已知点/、B 、C 在同一条数轴上,点外表示的数是- 2,点〃表示的数是1,若AC=\,则BC= .................................................................... ( )A.3 或 4B. 1 或 4C. 2 或 3D. 2 或 44. 已知Q+b)2=l, (a -b)2=5,则必的值为 ........................................... ()A. -4B. 4C. - 1D. 1A. a~ I DB. lj —aC. abD. - ab6. ____________________________ 据报载,2014年我国发展固定宽带接入新用户250000000户,其屮250000000用科学记 数法表示为 .7. 若丄丄2,则分式x y2y^lxy-2x8. 若J 页是整数,则正整数〃的最小值为 ________________5.化简ab 1- ba 2a-b的结果为9.计算:(25—|—3| —(―7T)() +2014.10•化简求值:(%+!)*+ (x+1)匕一1) — 3/(/—1),其屮x= V3 —1.a 111.先化简,再求值:( —— )-— ,英屮^=72-1.(1 +1 ci — 1 1 —cC12.计算:V48 -s- A/6+J— x VT2 —-^18 .参考答案易错练1.A解析:由题意,得/+1M0且2H0,解得且/工22.B 解析:5-a+O. 25 = a-2XaX - + (1)2 =(a--)22 2 23.D解析:•・•点/!表示的数是・2, AC=l f :.C点表示的数是・1或・3,又•.•点〃表示的数是:・BC=2或4.4. C 解析:将两个等式相减,得(a+b):-(d-b)2=l-5,化简得4处=-斗〉:.ab= - 1.6. 2.5X103^7. -±解析:由丄-丄=2,得l 尸-2“,・••原式=(「)')—2心二仝"土11 x y -2(x-y) + 7xy 1 \xy 11 8. 6解析:*.* V24/? = A /4X 6X /2且位整数,.I 最小正整数〃=6. 9. 解:原式=5 — 3 — 1+2014= 201510. 解:原式=#+2/+1 + #—1—3#+3/= - x +5^,当 x=4z —1 时,原式=・(73-1)2 + 5(73-1)=2希 _4 + 5 希 _5 =7 巧 一9.z Q11. ---------------- 解:原式 -- -- •(d + l)(d -l) = 3a-a2.(a + l)(a_l)当 a= V2 —1 时,原式=3(血一1) —(7行一I),—3 A /2 -3-3+2 V25.D 解析:ab° —bX _ -ab(a - b)。
中考数学复习《数与式》考点及测试题(含答案)
中考数学复习《数与式》考点及测试题(含答案)【专题分析】本专题的主要考点有实数的有关概念,科学记数法,非负数的性质,实数的运算;幂的运算,整式的运算,因式分解;分式的概念,分式的加减,分式的混合运算;二次根式的有关概念,二次根式的性质,二次根式的运算等.中考中数与式的考查一般以客观张题为主,但分式的化简求值经常有开放型题目.数与式的考查常见题型以选择题或填空题为主,整式和分式的化简求值一般以解答题的形式进行考查.数与式在中考中所占比重约为20%~25%. 【解题方法】解决数与式问题的常用方法有数形结合法,特殊值法,分类讨论法,整体代入法,设参数法,逆向思维法等. 【知识结构】【典例精选】:计算:2-1-3tan 60°+(π-2 015)0+⎪⎪⎪⎪⎪⎪-12.【思路点拨】根据负整数指数幂、特殊角的三角函数、零次幂以及绝对值的概念计算即可.【自主解答】解:原式=12-3×3+1+12=-1.把x 2y -2y 2x +y 3分解因式正确的是( )A.y(x2-2xy+y2) B.x2y-y2(2x-y)C.y(x-y)2 D.y(x+y)2【思路点拨】首先提取公因式y,再利用完全平方公式进行二次分解即可.答案:C规律方法:利用两种方法结合的分解因式题目,提公因式后不要忘记利用公式法二次分解,分解因式要在规定的范围内分解彻底.先化简,再求值:(x+3)(x-3)+2(x2+4),其中x= 2.【思路点拨】原式第一项利用平方差公式展开,第二项去括号,合并同类项得到最简结果,将x的值代入计算即可求出代数式的值.【自主解答】解:原式=x2-9+2x2+8=3x2-1.当x=2时,原式=3×(2)2-1=5.规律方法:整式的计算,要根据算式的特点选择合适的方法,可先选择乘法公式展开,然后合并;或先因式分解,然后计算.先化简,再求值:m-33m2-6m÷⎝⎛⎭⎪⎫m+2-5m-2,其中m是方程x2+3x+1=0的根.【思路点拨】在化简时要先算括号里面的,再把除法变为乘法,然后分解因式并约分,最后相乘.【自主解答】解:原式=m-33m m-2÷m2-9m-2=m-33m m-2×m-2m+3m-3=13m m+3.∵m是方程x2+3x+1=0的根,∴m2+3m+1=0,∴m2+3m=-1,即m(m+3)=-1,∴原式=13×-1=-13.规律方法:1.本题采用了整体代入法求解,这是求代数式的值常用的方法,体现了整体思路的应用.2.分式的化简求值是先化简,再求值;化简时一定要化到最简,结果是最简分式或整式.【能力评估检测】一、选择题1.已知空气的单位体积质量是0.001 239 g/cm 3,则用科学记数法表示该数为( A )A .1.239×10-3g/cm 3B .1.239×10-2 g/cm 3C .0.123 9×10-2 g/cm 3D .12.39×10-4 g/cm 3 2.下列运算错误的是( B )A. ⎝ ⎛⎭⎪⎫120=1 B .x 2+x 2=2x 4C .|a |=|-a | D. ⎝ ⎛⎭⎪⎫b a 23=b3a63.下列运算错误的是( D )A.a -b 2b -a2=1 B.-a -ba +b=-1 C. 0.5a +b 0.2a -0.3b =5a +10b 2a -3b D. a -b a +b =b -a b +a4.下列二次根式中,不能与2合并的是( C ) A.12B. 8C. 12D.18 5.若m =22×(-2),则有( C )A .0<m <1B .-1<m <0C .-2<m <-1D .-3<m <-26.(2015·绍兴鲁迅中学模拟)下列三个分式12x 2,5x -14m -n ,3x的最简公分母是( D )A .4(m -n )xB .2(m -n )x 2C. 14x2m -nD .4(m -n )x 27.已知x -1x =3,则4-12x 2+32x 的值为( D )A .1 B. 32 C. 52 D. 72【解析】把x -1x =3两边同乘x ,得x 2-1=3x ,即x 2-3x =1,所以4-12x 2+32x =4-12(x 2-3x )=4-12×1=72. 8.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .252【解析】观察前四个表格中的数字,第1个表格中 9=2×4+1,第2个表格中20=3×6+2,第3个表格中35=4×8+3,第4个表格中54=5×10+4,且每个表格中左下角的数字是右上角数字的一半,左上角的数字比左下角数字小1,所以b =12×20=10,a =b -1=9,x =20×10+9=209.故选C.答案: C9.实数a ,b 在数轴上对应的点的位置如图所示,计算|a -b |的结果为( C )A .a +bB .a -bC .b -aD .-a -b【解析】由图可知,a <0,b >0,所以a -b <0,所以 |a -b |=-(a -b ),C 正确.10.如图,在边长为2a 的正方形中央剪去一边长为 (a +2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( C )第1个 第2个 第3个 第4个 … … …A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2【解析】平行四边形的面积为(2a )2-(a +2)2=4a 2-(a 2+4a +4)=4a 2-a 2-4a -4=3a 2-4a -4.故选C.11.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”,其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边的长为1x,矩形的周长为2⎝ ⎛⎭⎪⎫x +1x ;当矩形成为正方形时,就有x =1x (x >0),解得x =1.这时矩形的周长2⎝ ⎛⎭⎪⎫x +1x =4最小, 因此x +1x (x >0)的最小值是2.模仿张华的推导,你求得式子x 2+9x(x >0)的最小值是( )A .2B .4C .6D .10【解析】∵x >0,∴在原式中分母分子同除以x ,即x 2+9x =x +9x ,在面积是9的矩形中设矩形的一边长为x ,则另一边长为9x ,矩形的周长为2⎝⎛⎭⎪⎫x +9x ;当矩形成为正方形时,就有x =9x (x >0),解得x =3.这时矩形的周长2⎝⎛⎭⎪⎫x +9x =12最小,因此x +9x(x >0)的最小值是6.故选C.答案: C 二、填空题12.分解因式:9x 3-18x 2+9x =9x (x -1)2 . 13.若式子2-xx有意义,则实数x 的取值范围是x ≤2且x ≠0 .14.计算:-36+214+327=-32. 15.已知(a +6)2+b 2-2b -3=0,则2b 2-4b -a 的值为12.【解析】由题意知,∵(a +6)2≥0,b 2-2b -3≥0.而(a +6)2+b 2-2b -3=0,∴(a +6)2=0且b 2-2b -3=0.整理,得a =-6,b 2-2b =3,∴2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12.三、解答题16.计算:||-3-12+2sin 60°+⎝ ⎛⎭⎪⎫13-1.解:原式=3-23+2×32+3=3. 17.先化简,再求值:(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =33. 解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2. 当x =-1,y =33时,原式=-1+1=0. 18.先化简,再求值:⎝⎛⎭⎪⎫1-1x +2÷x 2+2x +1x +2,其中x =3-1. 解:原式=x +1x +2÷x +12x +2=x +1x +2·x +2x +12=1x +1. 当x =3-1时,原式=13-1+1=13=33.19.探究下面的问题:(1)在图甲中,阴影部分的面积和为a 2-b 2(写成两数平方差的形式); (2)将图甲中的第①块割下来重新与第②块拼成如图乙所示的一个长方形,那么这个长方形的长是a +b ,宽是 a -b ,它的面积是(a +b )(a -b )(写成两个多项式的形式);(3)由这两个图可以得到的乘法公式是(a +b )(a -b )=a 2-b 2(用式子表示);(4)运用这个公式计算:(x -2y +3z )(x +2y -3z ).(x -2y +3z )(x +2y -3z )=[x -(2y -3z )]·[x +(2y -3z )]=x 2-(2y -3z )2=x 2-4y 2+12yz -9z 2.20.如果10b =n ,那么b 为n 的劳格数,记为b =d (n ),由定义可知:10b=n 与b =d (n )所表示的b ,n 两个量之间的同一关系.(1)根据劳格数的定义,填空:d (10)=1,d (10-2)=-2; (2)劳格数有如下运算性质:若m ,n 为正数,则d (mn )=d (m )+d (n ),d ⎝ ⎛⎭⎪⎫m n =d (m )-d (n ).根据运算性质,填空:d a 3d a=3(a 为正数),若d (2)=0.301 0,则d (4)=0.602 0,d (5)=0.6990,d (0.08)=-1.097.(3)如表中与数x 对应的劳格数d (x )有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5 3 5 6 8 9 12 27 d (x ) 3a -b +c 2a -ba +c1+a -b -c3-3a -3c4a -2b3-b -2c6a -3b解:(1)1 -2(2)d a 3d a =3d a d a=3.由运算性质可得,d (4)=0.602 0,d (5)=d (10)-d (2)= 1-0.301 0=0.699 0,d (0.08)=-1.097.(3)若d (3)≠2a -b ,则d (9)=2d (3)≠4a -2b ,d (27)=3d (3)≠6a -3b ,从而表中有三个劳格数是错误的,与题设矛盾,∴d (3)=2a -b ;若d (5)≠a +c ,则d (2)=1-d (5)≠1-a -c , ∴d (8)=3d (2)≠3-3a -3c ,d (6)=d (3)+d (2)≠1+a -b -c ,表中也有三个劳格数是错误的,与题设矛盾.∴d(5)=a+c.∴表中只有d(1.5)和d(12)的值是错误的,应纠正为:d(1.5)=d(3)+d(5)-1=3a-b+c-1,d(12)=d(3)+2d(2)=2-b-2c.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 第一轮中考复习——数与式 知识梳理: 一.实数和代数式的有关概念 1.实数分类:
实数无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数 2.数轴:规定了原点、正方向和单位长度的直线。数轴上所有的点与全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。
3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数是0。数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且与原点的距离相等。
4.倒数:1除以一个数的商,叫做这个数的倒数。一般地,实数a的倒数为a1。0没有倒数。两个互为倒数的数之积为1.反之,若两个数之积为1,则这两个数必互为倒数。
5.绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。
a=0000aaaaa,绝对值的几何意义:数轴上表示一个数到原点的距离。
6.实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大。 (1)正数大于零,零大于负数。 (2)两正数相比较绝对值大的数大,绝对值小的数小。 (3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。
-2 -1 0 1 2 -2 -1 0 1 2 2
(4)对于任意两个实数a和b,①a>b,②a=b,③a有一种成立。 7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。单独的一个数或字母也是代数式。
8.整式:单项式与多项式统称为整式。 单项式:只含有数与字母乘积形式的代数式叫做单项式。一个数或一个字母也是单项式。单项式中数字因数叫做这个单项式的系数。一个单项式中所有字母的指数的和叫做这个单项式的次数。 多项式:几个单项式的代数和多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。多项式里,次数最高的项的次数就是这个多项式的次数。一个多项式有n项且次数是m,我们就称这个多项式为m次n项式。
9.分式:一般地,用A,B表示两个整式,若B中含有字母,且B≠0,则式子BA叫做分式。 10.有理式:整式和分式统称为有理式。 11.无理式:根号里含有字母的代数式叫做无理式。 12.a0=1(a≠0),ap=ap1(a≠0,p是正整数)。
13.平方根:若x2=a(a≥0),则x叫做a的平方根(或二次方根)。一个整数有两个平方根,它们互为相反数,整数a的平方根记为+a和—a;0的平方根是0;负数没有平方根。 若x2=a(a≥0),则x=±a。 14.算术平方根:整数a的正的平方根+a叫做a的算术平方根,+a可简记为a。0的算术平方根仍为0.
15.立方根:若x3=a,则x叫做a的立方根(或三次方根),记为3a,即x=3a。正数的立方根是正数,0的立方根是0,负数的立方根是负数。
16.有理数的开方: a2=a(a≥0),a2=a=)0()0(0)0(aaaaa
17.科学记数法:把一个数写成a×10n(1≤a<10,n是整数),叫做科学记数法。 3
18.有效数字:从最左边的不是零的数字算起,到最后一位要保留的数字为止。 19.运算律: (1)加法交换律:a+b=b+a。 (2)加法结合律:(a+b)+c=a+(b+c)。 (3)乘法交换律:a*b=b*a。 (4)乘法结合律:(a*b)*c=a*(b*c)。 (5)乘法分配律:(a+b)*c=a*c+b*c。
20.am*an=anm,am÷an=anm(a≠0),amn=amn,abn=an*bm。
21.平方差公式:(a+b)(a-b)=a2-b2 完全平方公式:ba2=a2+2ab+b2,ba2=a2-2ab+b2 22.十字相乘法:x2+bx+c=(x+m)(x+n)其中b=m+n,c=mn。 23.最简分式:一个分式的分子与分母没有公因式时,这种分式叫做最简分式。
24.分式的加减法:(1)同分母的分式相加减,分母不变,把分子相加减。 (2)异分母的分式相加减,先通分,变成同分母的分式,然后相加减。
25.分式的乘除法:(1)分式乘分式,用分子的积作为分子,分母的积作为分母。 (2)分式除以分式,等于被除式乘除式的倒数。
26.二次根式:形如a(a≥0)的式子,叫做二次根式。
27.二次根式的性质: (1)a2 =a(a≥0);(2)a2=a =)0()0(0)0(aaaaa
(3)ab=ab (a≥0, b≥0);(4)ba=ba( a≥0, b>0)。 28.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式。 (1)被开方数的因数是整数,因式是整式。 (2)被开方数中不含能开得尽的因数或因式。
29.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。 4
30.分母有理化:把分母中的根号化去,叫做分母有理化。 注意:分母有理化时,分子与分母需要同时乘分母的有理化因式。
经典例题解析:
例1. 在在,,,,,中,无理数的个数为2031308010174..() A. 1 B. 2 C. 3 D. 4 例2. 已知下列5个命题 (1)零是最小的实数 (2)数轴上所有的点都表示实数 (3)两个无理数的和仍然是无理数 ()412713的立方根是± (5)任何实数都有两个互为相反数的平方根 其中正确命题的个数是( ) A. 1 B. 2 C. 3 D. 4
例3. 已知、、是实数,且满足,求的值。xyzxyzzxyz()||42102
例4. 计算:×()()()13200422116121102
5
例5. xpxqxxpxqx1120011133时,代数式的值为,则当时,代数式 的值为( )
例6. 计算÷·xxxxxxxxxxxxyy22222224423429922
课堂练习: 一、选择题: 1. 下列各组数中,相等的是_________
A. ()13和1 B. ()12和-1 C. ()12和-1 D. ()||11和 2. 设a,b为两实数,则下列命题中是假命题的是_________ A. 若a+b=0,则|a|=|b| B. 若|a|+|b|=0,则a=b=0 C. 若a2+b2=0,则a=b=0 D. 若|a+b|=0,则a=b=0 3. 一天的时间共86400秒,用科学记数法表示应为_________ A. 864104.×秒 B. 864103.×秒 C. 864102.×秒 D. 864105.×秒 4. 如果2(x+3)的值与3(1-x)的值互为相反数,那么x等于_________ A. 9 B. 2 C. 3 D. 4 5. 已知xaxbmn,,(其中x≠0,m、n为正整数),则xmn32的值等于______ 6
A. 32ab B. ab33 C. ab32 D. ab32 6. 若a<0,代简||aa2的结果正确的是_________ A. 0 B. 2a C. -2a D. 2a或-2a 7. 化简()3201的结果为: A. 12 B. -2 C. 1 D. 32 8. 如果表示a、b两个实数的点在数轴上的位置如图所示,那么化简||()abab2的结果等于__________ 0 b a A. 2a B. 2b C. -2a D. -2b 9. 已知||||xyxyxy320,,且·,则的值等于_________ A. 5或-5 B. 1或-1 C. 5或1 D. -5或-1 10. 数轴上表示12的点到原点的距离是_________ A. 12 B. 12 C. -2 D. 2 11. 已知二次三项式22xbxc分解因式为231()()xx,则b、c的值为________ A. bc31, B. bc62, C. bc64, D. bc46, 12. 已知a+b=3,ab=1,则ab44的值是________ A. 7 B. 47 C. 49 D. 81 13. 将aabacbc2分解因式,结果正确的是________ A. ()()abac B. ()()abac C. ()()abacD. ()()abac 14. 已知xy<0,则xy2化简后为_________ A. xy B. xy C. xy D. xy 二、填空题: 7
1. 若实数m,n满足()mn1302,则m=_________,n=________ 2. 将207670保留三个有效数字,其近似值是_________ 3. x平方的3倍与-5的差,用代数表示为___________
4. 如果ama29是一个完全平方式,则m=________ 5. 如果分式xx32无意义,则x=______
6. 如果分式xxx2781的值为0,则x=___________ 7. 计算:xxx111÷()________ 8. 若代数式xx22的值等于零,则x=________; 若代数式()()xx21的值等于零,则x=________
9. 已知113xy,则分式2322xxyyxxyy的值为__________ 10. 已知aaaa13122,则_________ 三、解答题:
1. 计算:xxxxxx2211212÷
2. 已知aaaaaaaa1312121222,求的值。 3. 若ababab2222,求的值。