02-误差及数据处理
分析化学 第二章 误差和分析数据处理(课后习题答案)

第二章 误差和分析数据处理(课后习题答案)1. 解:①砝码受腐蚀:系统误差(仪器误差);更换砝码。
②天平的两臂不等长:系统误差(仪器误差);校正仪器。
③容量瓶与移液管未经校准:系统误差(仪器误差);校正仪器。
④在重量分析中,试样的非被测组分被共沉淀:系统误差(方法误差);修正方法,严格沉淀条件。
⑤试剂含被测组分:系统误差(试剂误差);做空白实验。
⑥试样在称量过程中吸潮:系统误差;严格按操作规程操作;控制环境湿度。
⑦化学计量点不在指示剂的变色范围内:系统误差(方法误差);另选指示剂。
⑧读取滴定管读数时,最后一位数字估计不准:偶然误差;严格按操作规程操作,增加测定次数。
⑨在分光光度法测定中,波长指示器所示波长与实际波长不符:系统误差(仪器误差);校正仪器。
⑩在HPLC 测定中,待测组分峰与相邻杂质峰部分重叠:系统误差(方法误差);改进分析方法。
2. 答:表示样本精密度的统计量有:偏差、平均偏差、相对平均偏差、标准偏差、相对标准偏差。
因为标准偏差能突出较大偏差的影响,因此标准偏差能更好地表示一组数据的离散程度。
3. 答:定量分析结果是通过一系列测量取得数据,再按一定公式计算出来。
每一步测量步骤中所引入的误差都会或多或少地影响分析结果的准确度,即个别测量步骤中的误差将传递到最终结果中,这种每一步骤的测量误差对分析结果的影响,称为误差传递。
大误差的出现一般有两种情况:一种是由于系统误差引起的、另一种是偶然误差引起的。
对于系统误差我们应该通过适当的方法进行改正。
而偶然误差的分布符合统计学规律,即大误差出现的概率小、小误差出现的概率大;绝对值相等的正负误差出现的概率相同。
如果大误差出现的概率变大,那么这种大误差很难用统计学方法进行处理,在进行数据处理时,就会传递到结果中去,从而降低结果的准确性。
4. 答:实验数据是我们进行测定得到的第一手材料,它们能够反映我们进行测定的准确性,但是由于“过失”的存在,有些数据不能正确反映实验的准确性,并且在实验中一些大偶然误差得到的数据也会影响我们对数据的评价及对总体平均值估计,因此在进行数据统计处理之前先进行可疑数据的取舍,舍弃异常值,确保余下的数据来源于同一总体,在进行统计检验。
误差理论与数据处理课件(很实用)

报告审核与修改
对报告进行同行评审或专家审核,根据反馈 进行必要的修改和完善。
06
案例分析与实践
案例一:医学数据处理
总结词
医学数据处理是误差理论应用的重要领域,涉及临床 试验、诊断、治疗等多个方面。
详细描述
医学数据处理中,误差的来源包括测量误差、随机误 差和系统误差等。这些误差可能导致数据失真,影响 医学研究的准确性和可靠性。因此,医学数据处理需 要遵循严格的标准和规范,如临床试验数据管理规范 、医疗器械检测标准等。同时,医学数据处理也需要 采用各种误差处理技术,如数据清洗、数据变换、数 据筛选等,以减小误差对数据的影响。
数据预处理包括数据的排序、筛选、分组和编码等操作,为后续的数据分析提供 准确和一致的数据集。
03
误差的识别与控制
系统误差的识别与控制
系统误差的识别
系统误差通常表现为数据呈现一定的 规律性偏差,可以通过对比实验数据 与理论值、检查实验装置和环境条件 等方式进行识别。
系统误差的控制
控制系统误差的方法包括改进实验装 置、优化实验环境、采用标准仪器和 设备、定期校准和检测等措施,以减 小系统误差对数据的影响。
先滞后关系。
时间序列平稳性
检验时间序列数据的平 稳性,以确定是否适合
进行时间序列分析。
05
实验设计与数据分析
实验设计原则
01
02
03
04
科学性原则
实验设计应基于科学理论和实 践经验,确保实验的合理性和
可行性。
随机性原则
实验对象的分配应随机化,以 减少系统误稳定性和可靠性
案例二:金融数据分析
总结词
金融数据分析中,误差的来源包括数据采集、数据处 理和数据分析等多个环节。
第2章 误差及分析数据统计处理

相对标准偏差为: RSD
s 0.13% 100% 0.35% x 37.34%
16
2014-5-11
精密度(precision)是指在确定条件下,平行测定多次,
所得结果之间的一致程度。精密度的大小常用偏差表示。 精密度的高低还常用重复性(repeatability)和再现性 (reproducibility)表示。 重复性(r):同一操作者,在相同条件下,获得一系列结果之间 的一致程度。 再现性(R):不同操作者,在不同条件下,用相同的方法获得 单个结果之间的一致程度。
有较大偏离的数据(离群值或极值)?这些值是否该舍去?处理
的方法有: Q值检验法(Q-test)、Grubbs检验法和四倍法。 这些方法是建立在随机误差服从一定分布规律的基础上。
2014-5-11
20
(一) Q 检验法 于1951年由迪安(Dean)和犾克逊(Dixon)提出。 步骤: (1) 数据排列 X1 X2 …… Xn
Ea xi
Er Ea
(1)
相对误差Er (relative error)
100% 100% (2)
xi
绝对误差和相对误差都有正负,正值表示分析结果偏高,反之负值 偏低。实际工作中,真值并不知道,常把多次测定结果的平均值或标准 物质的理论值看作真值。
准确度(accuracy)是指测定结果的平均值与真值接近程 度,常用误差大小表示。误差小,准确度高。
2014-5-11
17
五、准确度与精密度的关系
如图:
真值37.40
甲 乙 丙
丁
36.00 36.50 37.00 37.50 38.00
准确度好的结果要 求精密度好,精密度 好的结果准确度不一 定好。所以,有好的 精密度才可能有好的 准确度。
第2章 分析化学中的误差及数据处理

本章所要解决的问题:
对分析结果进行评价,判断误 差产生的原因,尽量采取措施减少 误差。
2013-6-28 1
2.1 定量分析中的误差
• • •
•
误差客观存在 定量分析数据的归纳和取舍(有效数字) 计算误差,评估和表达结果的可靠性和精密 度 了解原因和规律,减小误差,测量结果→真 值(true value)
19
1. 系统误差(systematic error)
由一些固定的原因所产生,其大小、正 负有重现性,也叫可测误差。 1.方法误差 分析方法本身所造成的 误差。 2.仪器和试剂误差 3.操作误差 4.主观误差
2013-6-28
20
系统误差的性质可归纳为如下三点:
1)重现性 2)单向性 3)数值基本恒定 系统误差可以校正。
2013-6-28 15
7、重复性
r 2 2Sr
R 2 2SR
8、再现性
SR
2013-6-28
j 1 i 1
m
n
( xij x j )
m( n 1)
16
2.1.3 准确度和精密度的关系
准确度(accutacy):测量值与真实值相接 近的程度。用误差来评估。 精密度(precision):各个测量值之间相 互接近的程度。用偏差来评估。 实际工作中并不知道真实值,又不刻意区 分误差和偏差,习惯把偏差称做误差。但 实际含义是不同的。 系统误差是分析误差的主要来源,影响结 果的准确度 偶然误差影响结果的精密度
4. 校正方法 (correction result ) 用其它方法校正某些 分析方法的系统误差。
第二章 误差与数据处理

x1
1
x2
x2
这里的P就是在x1~x2这个范围内测量值出现的 概率, 在正态分布曲线图上表现为曲线下x=x1和 x=x2两条直线之间所夹的面积。
为了把一个普通的正态分布转换为标准正态分布,
xμ 设 u u称为标准正态变量 σ
x为测定值,µ 为总体平均值,σ总体标准偏差。
二 偶然误差(随机误差)
由不确定原因产生
1.特点:
1)不具单向性(大小、正负不定)
2)不重复、不可测定 3)不可消除(原因不定)
但可减小(测定次数↑)
4) 分布服从统计学规律(正态分布)
二 偶然误差(随机误差)
偶然误差的分布
消除系统误差后,同样条件下重复测定,偶然
重复性和再现性的差别
在相同条件下,对同一样品进行多次重复测定,所
得数据的精密度称为方法的重复性。 在不同条件下,用同一方法对相同样品重复测定多 次,所得数据的精密度称为分析方法的再现性。
2-4 随机误差的分布规律
测量值x的分布规律——正态(高斯)分布曲 x 线 1
2
y f x
解: x 10 .43 %
d
n
di
0 .036 % × dr%= d × 100 % 100 % 0 . 35 % x 10 .43 %
s
0 . 18 % 0 . 036 % 5
d i2 n 1
8 .6×10 7 4 .6 ×10 4 0 .046 % 4
准确度低 精密度高
准确度高 精密度差
准确度高 精密度高
准确度低 精密度差
测量点
实验数据误差分析和数据处理

第二章实验数据误差分析和数据处理第一节实验数据的误差分析由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。
人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。
为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。
由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。
一、误差的基本概念测量是人类认识事物本质所不可缺少的手段。
通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。
科学上很多新的发现和突破都是以实验测量为基础的。
测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。
1.真值与平均值真值是待测物理量客观存在的确定值,也称理论值或定义值。
通常真值是无法测得的。
若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。
再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。
但是实际上实验测量的次数总是有限的。
用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种:(1) 算术平均值 算术平均值是最常见的一种平均值。
设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为nx n x x x x ni in ∑==+⋅⋅⋅++=121(2-1)(2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。
即n nx x x x ⋅⋅⋅⋅=21几(2-2)(3)均方根平均值 nxnxx x x ni in∑==+⋅⋅⋅++=1222221均(2-3)(4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。
设两个量1x 、2x ,其对数平均值21212121lnln ln x x x x x x x x x -=--=对(2-4)应指出,变量的对数平均值总小于算术平均值。
第02讲 误差与分析数据的处理1

1.66 1.63 1.54 1.66 1.64 1.64 1.64 1.62 1.62 1.65
1.60 1.63 1.62 1.61 1.65 1.61 1.64 1.63 1.54 1.61 1.60 1.64 1.65 1.59 1.58 1.59 1.60 1.67 1.68 1.69 数据以1.62为中心,按上述规律分布。 小于1.62的数据39个,大于1.62的数据有44个,等于1.62的数据 有7个。
三、过失误差
杜绝过失误差
在分析测定过程中因操作者的失误而引起的分析误差,称为 过失误差。 例如: 损失试样;
加错试剂;
记录或计算错误等。 存在过失误差的数据,无论好坏,均无任何分析价值,应舍弃。
课堂练习
下列情况各引起什么误差?如何消除? 1.砝码腐蚀。 仪器误差,校正或更换新砝码。 2.称量时试样吸收了空气中的水分。 试剂误差。对照试验。 3.称量过程中,天平的零点稍有变动。 随机误差。增加平行测定次数。 4.读取滴定管读数时,最后一位估测不准。 随机误差。增加平行测定次数。 5.以含≈98%的金属锌作为基准物质,标定EDTA的浓度。 试剂误差。提纯或更换试剂。 6.试剂中含有微量被测组分。 试剂误差。更换试剂或做空白试验。
滴定分析的量器或仪表的刻度不准而又未校正。
(三)试剂误差 提纯试剂或对照试验 由于试剂不纯或使用的溶剂中含有微量杂质所引起分析误差, 称为试剂误差。
(四)操作误差
空白试验和对照试验
在正常操作情况下,由于分析工作者掌握的操作规程与正确 的控制条件稍有出入而引起的测量误差,称为操作误差。 例如: 使用缺乏代表性的试样; 试样分解不完全;
个可变的偏差。自由度也可以理解为:数据中可供对比的数目。
分析化学第二章误差与分析数据处理

根据待测组分的性质和含量选择合适的分析 方法。
空白实验
通过扣除空白值来减小误差。
标准化样品分析
使用标准样品对实验过程进行质量控制。
回收率实验
通过添加已知量的标准物质来评估分析方法 的准确性。
04
有效数字及其运算规则
有效数字的定义与表示
01
有效数字是指测量或计算中能够反映被测量大小的部分数字 ,其位数与被测量的精密度有关。
数据统计
计算平均值、中位数、众数等统计量,以反映数据的集 中趋势和离散程度。
实验结果的评价与表达
误差分析
计算误差、偏差、相对误差 等,评估实验结果的可靠性
。
1
精密度与偏差
通过多次重复实验,评估实 验结果的精密度和偏差。
置信区间
根据实验数据,计算结果的 置信区间,反映结果的可靠 性。
结果表达
选择合适的单位和量纲,将 实验结果以表格、图表等形 式表达,便于分析和比较。
02
表示有效数字时,需保留一位不确定位,采用指数或修约的 形式表示。
03
有效数字的表示方法:科学记数法(a x 10^n)或一般表示法。
有效数字的运算规则
加减法
以小数点后位数最少的数字为标准,对 其他数字进行修约,然后再进行运算。
乘方和开方
运算结果的有效数字位数与原数相同。
乘除法
以有效数字位数最少的数为标准,对 其他数字进行修约,然后再进行运算。
THANKS
准确度检验
通过标准物质或标准方法对比,检验分析结 果的准确性。
线性检验
验证测量系统是否符合线性关系,确保数据 在一定范围内准确可靠。
范围检验
评估分析方法在一定浓度或含量范围内的适 用性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、误差及数据处理(277题)一、选择题( 共120题)1. 2 分(0201)下列表述中,最能说明随机误差小的是-------------------------------------------------------( )(A) 高精密度(B) 与已知的质量分数的试样多次分析结果的平均值一致(C) 标准差大(D) 仔细校正所用砝码和容量仪器等2. 2 分(0202)以下情况产生的误差属于系统误差的是-----------------------------------------------------( )(A) 指示剂变色点与化学计量点不一致(B) 滴定管读数最后一位估测不准(C) 称样时砝码数值记错(D) 称量过程中天平零点稍有变动3. 2 分(0203)下列表述中,最能说明系统误差小的是-------------------------------------------------------( )(A) 高精密度(B) 与已知的质量分数的试样多次分析结果的平均值一致(C) 标准差大(D) 仔细校正所用砝码和容量仪器等4. 2 分(0204)下列各项定义中不正确的是--------------------------------------------------------------------( )(A) 绝对误差是测定值与真值之差(B) 相对误差是绝对误差在真值中所占的百分比(C) 偏差是指测定值与平均值之差(D) 总体平均值就是真值5. 1 分(0205)在定量分析中,精密度与准确度之间的关系是----------------------------------------------( )(A) 精密度高,准确度必然高(B) 准确度高,精密度也就高(C) 精密度是保证准确度的前提(D) 准确度是保证精密度的前提6. 2 分(0206)当对某一试样进行平行测定时,若分析结果的精密度很好,但准确度不好,可能的原因是----------------------------------------------------------------------------------------------------------( )(A) 操作过程中溶液严重溅失(B) 使用未校正过的容量仪器(C) 称样时某些记录有错误(D) 试样不均匀7. 2 分(0207)下列有关随机误差的论述中不正确的是----------------------------------------------------( )(A) 随机误差具有随机性(B) 随机误差具有单向性(C) 随机误差在分析中是无法避免的(D) 随机误差是由一些不确定的偶然因素造成的8. 2 分(0208)分析测定中随机误差的特点是----------------------------------------------------------------( )(A) 数值有一定范围(B) 数值无规律可循(C) 大小误差出现的概率相同 (D) 正负误差出现的概率相同9. 2 分 (0209)以下关于随机误差的叙述正确的是-----------------------------------------------------------( )(A) 大小误差出现的概率相等 (B) 正负误差出现的概率相等(C) 正误差出现的概率大于负误差 (D) 负误差出现的概率大于正误差10. 2 分 (0210)在量度样本平均值的离散程度时, 应采用的统计量是------------------------------------( )(A) 变异系数 CV (B) 标准差 s(C) 平均值的标准差 s x (D) 全距 R11. 2 分 (0211)对置信区间的正确理解是-----------------------------------------------------------------------( )(A) 一定置信度下以真值为中心包括测定平均值的区间(B) 一定置信度下以测定平均值为中心包括真值的范围(C) 真值落在某一可靠区间的概率(D) 一定置信度下以真值为中心的可靠范围12. 2 分 (0212)测定铁矿中 Fe 的质量分数, 求得置信度为 95%时平均值的置信区间为35.21%±0.10%。
对此区间的正确理解是--------------------------------------------------------------------( )(A) 在已测定的数据中有95%的数据在此区间内(B) 若再作测定, 有95%将落入此区间内(C) 总体平均值μ落入此区间的概率为95%(D) 在此区间内包括总体平均值μ的把握有95%13. 2 分 (0213)实验室中一般都是进行少数的平行测定,则其平均值的置信区间为------------------( )(A) μσ=±x u (B) μσ=±x u n(C) μα=±x t s f , (D) μα=±x t s n f ,14. 2 分 (0214)指出下列表述中错误的表述--------------------------------------------------------------------( )(A) 置信水平愈高,测定的可靠性愈高(B) 置信水平愈高,置信区间愈宽(C) 置信区间的大小与测定次数的平方根成反比(D) 置信区间的位置取决于测定的平均值15. 1 分 (0215)若已知一组测量数据的总体标准差σ,要检验该组数据是否符合正态分布,则应当用--------------------------------------------------------------------------------------------------( )(A) t 检验 (B) u 检验 (C) F 检验 (D) Q 检验16. 1 分 (0216)有两组分析数据,要比较它们的精密度有无显著性差异,则应当用---------------------( )(A) F 检验 (B) t 检验 (C) u 检验 (D) Q 检验17. 1 分 (0217)有一组平行测定所得的数据,要判断其中是否有可疑值,应采用------------------------( )(A) t 检验 (B) u 检验 (C) F 检验 (D) Q 检验18. 2 分 (0218)以下各项措施中,可以减小随机误差的是----------------------------------------------------( )(A) 进行仪器校正(B) 做对照试验(C) 增加平行测定次数(D) 做空白试验19. 2 分(0219)称取含氮试样0.2g,经消化转为NH4+后加碱蒸馏出NH3,用10 mL 0.05 mol/LHCl吸收,回滴时耗去0.05 mol/L NaOH 9.5 mL。
若想提高测定准确度, 可采取的有效方法是----( )(A) 增加HCl溶液体积 (B) 使用更稀的HCl溶液(C) 使用更稀的NaOH溶液 (D) 增加试样量20. 2 分(0220)可用下列何种方法减免分析测试中的系统误差--------------------------------------------( )(A) 进行仪器校正(B) 增加测定次数(C) 认真细心操作(D) 测定时保持环境的温度一致21. 2 分(0221)测定试样中CaO 的质量分数, 称取试样0.908 g,滴定耗去EDTA 标准溶液20.50 mL, 以下结果表示正确的是--------------------------------------------------------------------------------( )(A) 10%(B) 10.1%(C) 10.08%(D) 10.077%22. 2 分(0222)分析SiO2的质量分数得到两个数据:35.01%,35.42%, 按有效数字规则其平均值应表示为----------------------------------------------------------------------------------------------------------( )(A) 35.215%(B) 35.22%(C) 35.2%(D) 35%23. 2 分(0223)测定某有机物, 称取0.2000 g, 溶解后加入0.01000 mol/L I2标准溶液10.00 mL, 回滴I2时消耗0.01000 mol/L Na2S2O3 19.20 mL, 则此测定的相对误差约是---------------------( )(A) 千分之几(B) 百分之几(C) 百分之几十(D) 百分之百24. 2 分(0224)已知某溶液的pH值为11.90,其氢离子浓度的正确值为----------------------------------( )(A) 1×10-12 mol/L (B) 1.3×10-12 mol/L(C) 1.26×10-12 mol/L (D) 1.258×10-12 mol/L25. 2 分(0225)下列算式的结果应以几位有效数字报出-----------------------------------------------------( )0.1010(25.00-24.80)───────────1.0000(A) 五位(B) 四位(C) 三位(D) 二位26. 1 分(0226)下列各数中,有效数字位数为四位的是-------------------------------------------------------( ) 27. 1 分(0227)以下计算式答案x应为-------------------------------------------------------------------------( )11.05+1.3153+1.225+25.0678 = x(A) 38.6581 (B) 38.64 (C) 38.66 (D) 38.6728. 2 分(0228)c·V·M某组分的质量分数按下式计算而得: w(X) = ───────,m×10若c = (0.1020±0.0001)mol/L, V = (30.02±0.02)mL, M = (50.00±0.01)g/mol, m = (0.2020±0.0001)g ,则对w(X)的误差来说--------------------------------------------------( )(A) 由“V”项引入的最大(B) 由“c”项引入的最大(C) 由“M”项引入的最大(D) 由“m”项引入的最大29. 1 分(0281)为了消除0.001000 kg 中的非有效数字,应正确地表示为----------------------( )(A)1g (B)1.0g (C)1.00g (D)1.000g30. 1 分(0285)下列数据中有效数字不是四位的是--------------------------------------------------- ( )(A)0.2400 (B)0.0024 (C)2.004 (D)20.4031. 1 分(0286)下列数据中有效数字是四位的是----------------------------------------------------- ( )(A) 0.780 (B)0.078 (C)7.0080 (D)7.80032. 2 分(0290)四位学生用重量法同时对分析纯BaCl2⋅2H2O试剂中Ba的质量分数各测三次,所得结果及标准偏差如下[M r(BaCl2⋅2H2O)=244.3, A r(Ba)=137.3],其中结果最好的是---( )(A)x=55.42 s=1.5 (B)x=56.15 s=2.1(C)x=56.14 s=0.21 (D)x=55.10 s=0.2033. 2 分(0291)对阿波罗11号从月球上取回的土样中碳的质量分数w(C) 作了四次平行测定,得到的数据(%)为1.30×10-4,1.62×10-4,1.60×10-4和1.22×10-4。