2020版九年级数学下册第三章圆单元复习课课件(新版)北师大版

合集下载

新北师大版九年级数学下册《直线和圆的位置关系》教学课件

新北师大版九年级数学下册《直线和圆的位置关系》教学课件

1.看图判断直线l与⊙O的位置关系?
(1)
(2)
.O
.O
(3) .O
相离 (4) .O
相交
相交 (5)
? .O
相交
相切 注意:直线是可 以无限延伸的.
2.直线和圆相交,圆的半径为r,且圆心到直线的距离为5,则有( )
A. r < 5 B. r > 5 CB. r = 5 D. r ≥ 5
3. ⊙O的最大弦长为8,若圆心O到直线l的距离为d=5,则直线l与
O
应用格式
∵直线l是⊙O 的切线,A是切点,
A
l
∴直线l ⊥OA.
切线性质的证明
证法1:反证法.
小亮的理由是:直径AB与直线CD要么垂直,要么不垂直.
(1)假设AB与CD不垂直,过点O作一条
直径垂直于CD,垂足为M,
B
(2)则OM<OA,即圆心到直线CD的距离
O
小于⊙O的半径,因此,CD与⊙O相交.这
2
∴AC=OC= OB.
(2)解:由(1)可知OA=OC=AC, ∴△OAC为等边三角形, ∴∠AOB=60°, ∴在Rt△OAB中, ∠B=90°-60°=30°.
拓展提升
已知⊙O的半径r =7cm,直线l1 // l2,且l1与⊙O相切,
圆心O到l2的距离为9cm.求l1与l2的距离. 解:设 l2与l1的距离为m,
填写d的范围:
d > 5cm
(1)若AB和⊙O相离, 则 d = 5cm ;
((23))若若AABB和和⊙⊙OO相相切交,,则则 0cm≤d < 5cm ; .
典例精析 例1 在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm.

九年级数学下册 第三章 圆 3.8 圆内接正多边形课件 北师大下册数学课件

九年级数学下册 第三章 圆 3.8 圆内接正多边形课件 北师大下册数学课件
是_________,所以在圆内依次截取等于_________的。D。2.圆的两条弦AB,AC分别是它的内接正 三角形与内接正。★★3.(2019·徐州鼓楼区模拟(mónǐ))正六边形的周长为12,
Image
12/10/2021
第四十五页,共四十五页。
第四十页,共四十五页。
当圆周角的顶点(dǐngdiǎn)在优A B弧 18°.
上时,AB所对的圆周角为
当圆周角的顶点在劣弧 A B上时,AB所对的圆周角为 180°-18°=162°,
∴综上所述答案为:18°或162°.
答案:18°或162°
第四十一页,共四十五页。
【一题多变】
已已知知圆圆内内接接正正三三角角形形(zhè(nzɡhèsnāɡn sjāinǎojixǎíonɡx)í的n3ɡ)面的积面为积为,则,该则圆的该内圆接的正内 边边形形的的边边心心距距是是 (( B ))
径,外接圆半径和高的比是(
)D
A.1∶2∶ B.2∶3∶4 3
C.1∶ ∶2 D.1∶2∶3
3
第四十四页,共四十五页。
内容(nèiróng)总结
8 圆内接正多边形。正多边形:_______________,_______________的多边。这个圆叫做这
No 个正多边形的___________.这个多边形叫。2.尺规作图:(1)因为与半径相等的弦长所对的圆心角。
第三页,共四十五页。
第四页,共四十五页。
这个(zhè ge)圆叫做这个(zhè ge)正多边外形接的圆___________.这个多边形
做圆内接正多边形.
第五页,共四十五页。
【探究二】应用(yìngyòng)等分圆周的方法作正多边形: 1.应用量角器,根据相等的圆心角所对的弧____相__等__(_xi,āngděng) 把360°的圆心角n等分,依次连接各个分点,得到圆内 接正n边形.

北师大版九年级数学下册第三章3.5确定圆的条件课件(共28张PPT)

北师大版九年级数学下册第三章3.5确定圆的条件课件(共28张PPT)

判断:
1、经过三点一定可以作圆。(× )
2、三角形的外心就是这个三角形两边垂直平分 线的交点。(√ )
3、三角形的外心到三边的距离相等。(× )
4、等腰三角形的外心一定在这个三角形内。 (×)
1、某一个城市在一块空地新建了三个 居民小区,它们分别为A、B、C,且三个 小区不在同一直线上,要想规划一所中学,
书P125 练习
小结:
课后日记: 今天学了什么:___________ 今天的收获是:______________ 有不明白的地方吗?_______ 它是:_________________
A
如图:⊙O是△ABC的
外接圆, △ABC是⊙O
的内接三角形,点O是
O C △ABC的外心
B
外心是△ABC三条边的垂
直平分线的交点,它到三角
形的三个顶点的距离相等。
如图,请找出图中圆的圆 心,并写出你找圆心的方法?
A
O C
B
画出过以下三角形的顶点的圆
A
O ●
B
C
(图一)
A
O ●

B
C
(图二)
A O ●
(1)只有确定了圆心和圆的半径,这个圆的位 置和大小才唯一确定。
(2)经过一个已知点能作无数个圆!
(3)经过两个已知点A、B能作无数个圆!这 些圆的圆心在线段AB的垂直平分线上。
(4)不在同一直线上的三个点确定一个圆。
(5)外接圆,外心的概念。
巩固新知 应用新知
2、如图,
一 根 5m 长 的 绳
于直角三角形斜边中点,钝角三角形的外心位于三角形外.
老师期望:
作三角形的外接圆是必备基本技能,定要熟练掌握.

北师大版九年级数学下册第三章《第三章 第1节 圆》优质课件

北师大版九年级数学下册第三章《第三章 第1节 圆》优质课件

当OA=1cm时,点A在 ⊙O内 ; 点在圆上,点在圆 内.
当OB=4cm时,点B在 ⊙O外 .
例2.已知:如图,矩形ABCD的对角 线相交于点O, 试猜想:矩形的四个顶点能在同一 个圆上吗?
AA
DD
OO
BB
CC
答:在矩形ABCD中,有OA=OB=OC=OD,四个顶点 在同一个圆上,故矩形四个顶点能在同一个圆上.
2.(新疆建设兵团·中考)如图,王大爷家屋后有一块
长12m,宽8m的矩形空地,他在以BC为直径的半圆内种
菜,他家养的一只羊平时拴在A处,为了不让羊吃到菜,
拴羊的绳子可以选用( )
A.3m
B.5m
C.7m
D.9m
答案:A
3.(泉州·中考) 已知三角形的三边长分别为3,4,5, 则它的边与半径为1的圆的公共点个数所有可能的情况是 ________.(写出符合的一种情况即可) 【解析】∵圆心的位置不确定,∴交点个数共有5种情况即 0、1、2、3、4.故答案为0或1或2或3、4. 答案:2(符合答案即可)
善性是难能可贵的,也是高尚和值得称赞 的。
——亚里士多德
You made my day!
这一 样个 的人 人所 才受 有的 学教 问育 。超
过 了 自 己 的 智 力 ,
我们,还在路上……
【规律方法】1.判断点与圆的位置关系的方法:
设⊙O的半径为r,则点P与⊙O的位置关系有
(1)点P在⊙O上
OP=r
(2)点P在⊙O内
OP<r
(3)点P在⊙O外
OP>r
2.要证明几个点在同一个圆上,只要证明这几个点到同一
个定点的距离相等.
通过本课时的学习,需要我们掌握:
1.从运动和集合的观点理解圆的定义. 2.点与圆的位置关系. 3.证明几个点在同一个圆上的方法.

北师大版九年级下册数学《车轮为什么做成圆形》圆复习说课教学课件

北师大版九年级下册数学《车轮为什么做成圆形》圆复习说课教学课件

情境导入
你会比较两个梯子哪个更陡吗?你有哪些办法?
知识讲解
实例1:如图①②,梯子AB和EF哪个更陡?你是怎样 判断的?你有几种判断方法?
图①
图②
实例2:如图③④,梯子AB和EF哪个更陡?你是怎样判断的?
梯子的铅直高度与其水平距离 的比相同时,梯子就一样陡.
你能设法验证这个结论吗?
比值大的梯子陡.
(1)
(2)
).
(6).如图 (2)
). tan A 0.7,
( ).
). tan A 0.7或 tan A 0.7
知识点 2 正切的应用
议一议 如图,梯子AB的倾斜程度与
B
C 1.当梯子与地面所成的角为锐角A时,
梯子的竖直高度 水平宽度 ,
因此可用梯子的倾斜角的正切值来描述梯子的倾斜程度. 2.当倾斜角确定时,其对边与邻边之比随之确定,这一比值 只与倾斜角的大小有关,而与物体的长度无关.
A.都没有变化
BA.都扩大为原来的2倍
C.都缩小为原来的一半 D.不能确定是否发生变化
5、如图,在网格中,小正方形的边长均为1,点A,B,C都在格
点上,则∠ABC的正切值是( D )
A.2 B. 2 5 C. 5 D. 1
5
5
2
课堂小结
1、理解了正切与坡度的概念. 2、 3、数形结合的方法;构造直角三角形的意识. 4、“一般 → 特殊 → 一般” 数学思想方法.
BC 15
用勾股定理表示出第三边AC=8a,再用正切的定义求解得
BC 15 . AC 8
2、如图,在R 3
4
根据题意得∠BCD=∠CAB,
所以
BC 6 3 .
AC 8 4

北师大版初中九年级下册数学课件 《圆》

北师大版初中九年级下册数学课件 《圆》

知1-练
4 下列图形中,四个顶点一定在同一个圆上的是( B ) A.菱形、平行四边形 B.矩形、正方形 C.正方形、菱形 D.矩形、平行四边形
知识点 2 与圆有关的概念
知2-讲
弦:连接圆上任意两点的线段(如图中的AC)叫做弦,
经过圆心的弦(如图中的AB)叫做直径.
注意: 1.弦和直径都是线段. 2.直径是弦,是经过圆心的特殊弦,是
(1)圆的两种定义中确定圆的条件是相同的,即圆心和 半径.两者缺一不可; (2)“点在圆上”和“圆过点”表示的意义都是:这个点在 圆周上. 特别提醒:圆是“圆周”,而非“圆面”.
知1-练
1 体育老师想利用一根3m长的绳子在操场上画一个 半径为3m的圆,你能帮他想想办法吗?
解:将绳子的一端A固定,然后拉紧绳子的另一端B,并绕
知2-练
2 【中考·杭州】如图,已知AC是⊙O的直径,点B在圆 周上(不与点A,C重合),点D在AC的延长线上,连 接BD交⊙O于点E,若∠AOB=3∠ADB,则(D ) A.DE=EB B. DE2=EB C. DE3=DO D.DE=OB
知2-练
3 【中考·潍坊】点A,C为半径是3的圆周上两点,点B ︵
A
B.F,G,H
C.G,H,E
D.H,E,F
知3-练
3 【中考·贵港】如图,已知P是⊙O外一点,Q是⊙O上的动点,
线段PQ的中点为M,连接OP,OM. 若⊙O的半径为2,OP=4,
则线段OM的最小值是( )
A.0
B
B.1
C.2
D.3
知3-练
4 如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在
归纳
知1-导
1. 圆心为O、半径为r的圆可以看成是所有到定 2. 点O的距离等于定长r的点的集合. 3. 确定一个圆的两个要素:圆心、半径.圆心确 4. 定圆的位置,半径确定圆的大小.

北师大版九年级数学下册ppt课件:3.7 切线长定理

2.如图,直线PA过半圆的圆心O,交半圆于A,B两点,PC切半圆于点C.已知PC=3,PB=1,则
该半圆的半径为 4 .
PPT模板:/moban/
PPT背景:/beijing/
PPT下载:/xiazai/
资料下载:/ziliao/
历史课件:/kejian/lishi/
第三章
3.7 切线长定理
知识要点基础练
综合能力提升练
拓展探究突破练
-6-
7.已知☉O的半径是4,P是☉O外的一点,且PO=8,从点P引☉O的两条切线,切点分别是
A,B,则AB= ( C )
B.4 2
A.4
C.4 3
D.2 3
8.(重庆中考)如图,已知AB是☉O的直径,点P在BA的延长线上,PD与☉O相切于点D,过
第三章
3.7 切线长定理
知识要点基础练
综合能力提升练
解:(1)连接OD.
∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.
又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.
又∵OD=OB,OC=OC,
∴△COD≌△COB,∴∠CDO=∠CBO.
∵BC是☉O的切线,∴∠CBO=90°,
线AB= 4 cm.
12.如图,在Rt△ABC中,∠ABC=90°,D是边BC上一点,以BD为直径的半圆与边AC相切
于点E.若AB=3,BC=4,则BD= 3 .
第三章
3.7 切线长定理
知识要点基础练
综合能力提升练
拓展探究突破练
-10-
13.如图,AB是半圆O的直径,C是半圆O上一点,CD⊥AB于点D,从C,B两点分别作半圆O
设CD=CB=x,
在Rt△ABC中,有(x+2)2=x2+42,解得x=3,

九年级数学下册北师大教学课件:3.8 圆内接正多边形 (共21张PPT)

13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/312021/8/312021/8/312021/8/318/31/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月31日星期二2021/8/312021/8/312021/8/31 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月2021/8/312021/8/312021/8/318/31/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/8/312021/8/31August 31, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/8/312021/8/312021/8/312021/8/31
5.正多边形都是轴对称图形,如果边数是偶数那么它 还是中心对称图形. 6.正n边形的中心角和它的每个外角都等于360°/n, 每个内角都等于(n-2)·180°/n . 7.边数相同的正多边形相似,周长比、边长比、半径 比、边心距比、对应对角线比都等于相似比,面积 比等于相似比的平方.
➢书本P96. 习题3.9 第2,4题
因此,亭子地基的周长 L =4×6=24(m).
在Rt△OPC中,OC=4,PC=2.利用勾股定理, F
E
可得边心距 r 42222( 3m ) .
A
O
D
亭子地基的面积
S1 2lr1 2 2 4 234 1 .6 (m 2) B.
r P
R C
正多边形的性质 1.各边相等,各角相等. 2.圆的内接正n边形的各个顶点把圆分成n等份. 3.圆的外切正n边形的各边与圆的n个切点把圆分成 n等份. 4.每个正多边形都有一个内切圆和外接圆,这两个 圆是同心圆,圆心就是正多边形的中心.

九年级数学北师大版初三下册--第三单元3.2《圆的对称性》课件

在同圆或等圆中,如果两条弦相等,你能得出什么 结论?
归纳
知2-导
1.在同圆或等圆中,相等的圆心角所对的弧相等,所对 的弦相等.
2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦 中有一组量相等,那么它们所对应的其余各组量都分 别相等.
(来自教材)
知2-讲
例2 下列命题中,正确的是( C ) ①顶点在圆心的角是圆心角;
形、圆、等腰三角形,这些图形中只是轴对称图
形的有( A )
A.1个
B.2个
C.3个
D.4个
知1-练
4 【2017·黄石】下列图形中既是轴对称图形,又是 中心对称图形的是( D )
知2-导
知识点 2 圆心角与所对的弧、弦之间的关系
在同圆或等圆中,如果两个圆心角所对的弧相等,那 么它们所对的弦相等 吗?这两个圆心角相等吗?你是怎 么想的?
②相等的圆心角所对的弧也相等;
③在等圆中,圆心角不等,所对的弦也不等.
A.①和②
B.②和③
C.①和③
D.①②③
知2-讲
导引:①根据圆心角的定义知,顶点在圆心的角是圆心角, 故正确;②缺少条件,必须是在同圆或等圆中,相等 的圆心角所对的弧才相等,故错误;③根据弧、弦、 圆心角之间的关系定理,可知在等圆中,若圆心角相 等,则所对的弦相等,若圆心角不等,则所对的弦也 不等,故正确.
总结
知2-讲
本题考查了对弧、弦、圆心角之间的关系的理解,对于 圆中的一些易混易错结论应结合图形来解答.特别要注 意:看是否有“在同圆或等圆中”这个前提条件.
知2-练
1 下面四个图形中的角,是圆心角的是( D )
知2-练
2 如图,AB为⊙O的弦,∠A=40°,则A︵B所对的 圆心角等于( C ) A.40° B.80° C.100° D.120°

北师大版九年级下册数学《圆周角和圆心角的关系》圆PPT课件教学课件(第2课时)


北京师范大学出版社 九年级 | 下册
北京师范大学出版社 九年级 | 下册
课时小结:
1.本节课我们探索了圆的对称性. 2.利用圆的轴对称性研究了垂径定理及其逆定理. 3.垂径定理和勾股定理相结合,构造直角三角形,可解决弦长、半径、 弦心距等计算问题.
北京师范大学出版社 九年级 | 下册
课后作业:
(一)课本习题3.2,1、2.试一试1. (二) 预习课本:P94~97内容
新课讲解
知识点2 直角所对的弦是直径
在如图中,圆周角∠A=90°,弦BC是直径吗?为什么?
新课讲解
90°的圆周角所对的弦是直径.
新课讲解
典例分析
例 如图,已知经过原点的⊙P与x轴、y轴分别交于A,B 两点,点C是劣弧OB上一点,则∠ACB等于( B ) A.80° B.90° C.100° D.无法确定
拓展与延伸
已知在半径为4的⊙O中,弦AB=4 3 ,点P在圆上,则 ∠APB=_6_0_°__或__1_2_0_°_.
第3单元 · 圆
圆的对称性
北京师范大学出版社 九年级 | 下册
问题: 前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?
我们是用什么方法研究轴对称图形的?
北京师范大学出版社 九年级 | 下册
交点,即垂足. 4.将纸打开,新的折痕与圆交于另一点B,如图.
问题:(1)右图是轴对称图形吗? 如果是,其对称轴是什么?
(2)你能发现图中有哪些等量关系? 说一说你的理由。
北京师范大学出版社 九年级 | 下册
总结得出垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的 弧。 推理格式:如图所示 ∵CD⊥AB,CD为⊙O的直径 ∴AM=BM,AD BD, AC BC .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,A为60°角与直尺交点,
AB=3,则光盘的直径是 ( D )
A.3
B.3 3
C.6 D.6 3
【专家这样说】 教材习题及中考题考查了切线的性质,切线长定理, 锐角三角函数定义,以及特殊角的三角函数值,是数 学应用于生活的典型,熟练掌握性质及定理是解此类 题的关键.
解:连接AO,∵CD为☉O的直径,AB⊥CD,AB=10,
∴AE= 1AB=5,设半径长为x,则OA=x,OE=x-1,
2
∴x2=(x-1)2+52,解得x=13,∴直径CD=2x=26.
答:直径CD的长为26寸.
【中考这样考】 (2019·北部湾中考)《九章算术》
作为古代中国乃至东方的第一部自 成体系的数学专著,与古希腊的 《几何原本》并称现代数学的两大源泉.在《九章算术》
考点2 切线的性质考查方式:由切线的性质,切线长 定理转化为解直角三角形
【教材这样教】(P91习题第3题) 为了测量一个光盘的直径,小明把直尺、光盘和三角 尺按图所示放置于桌面上,并量出AB=6 cm.这张光盘 的直径是多少?

【中考这样考】
(2018·深圳中考)如图,一把直
尺,60°的直角三角板和光盘如
单元复习课 第三章 圆
考点1 圆的有关概念考查方式:由弦和直径的位置关 系,构建直角三角形
【教材这样教】(P76习题第1题) “圆材埋壁”是我国古代数学名著 《九章算术》中的一个问题:“今 有圆材,埋在壁中,不知大小.以 锯锯之,深一寸,锯道长一尺,问:径几何?”转化
为现在的数学语言就是:如图,CD为☉O的直径,弦 AB⊥CD,垂足为E,CE=1寸,AB=10寸,求直径CD的长.
中记载有一问题“今有圆材埋在壁中,不知大小,以 锯锯之,深一寸,锯道长一尺,问几何?”小辉同学 根据原文题意,画出圆材截面如图所示,已知:锯口 深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为 ___2_6___寸.
【专家这样说】 用含未知数的代数式表示相关线段,要由勾股定理列 方程求解.
相关文档
最新文档