用牛顿定律解决问题二
牛顿第二定律例子

牛顿第二定律例子牛顿第二定律的例子包括:1.高空自由落体:一个物体在高空中自由落体,只受到重力作用。
根据牛顿第二定律,物体的加速度与它所受的合外力之间成正比。
在这个例子中,合外力就是物体所受的重力。
根据牛顿第二定律的公式F = ma,其中F表示合外力(即重力),m表示物体的质量,a表示物体的加速度。
2.斜劈A的例子:静止于粗糙的水平面上的斜劈A的斜面上,一物体B沿斜面向上做匀减速运动。
把A和B看作一个系统,在竖直方向受到向下的重力和竖直向上的支持力,在水平方向受到的摩擦力的方向未定。
劈A的加速度,物体B的加速度沿斜面向下,将分解成水平分量和竖直分量,,对A、B整体的水平方向运用牛顿第二定律有:与同方向。
而整体在水平方向的合外力只有受到的摩擦力,故的方向水平向左。
3.连接体问题:巧用牛顿第二定律解决连接体问题。
把研究对象看作一个整体,应用牛顿第二定律列式,然后对整体内的各个物体进行隔离分析,单独列出牛顿第二定律的方程。
4.跨过定滑轮的绳的一端挂一吊板:已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计。
取重力加速度g =lOm/s2.当人以440 N的力拉绳时,人与吊板的加速度 a和人对吊板的压力F分别为() A.a=1.0m/s,F=260N B.a=1.0m/s,F=330N C.a=3.0m/s,F=110N D.a=3.0m/s,F=50N5.气球的问题:科研人员乘气球进行科学考察,气球、座舱、压舱物和科研人员的总质量为990kg。
气球在空中停留一段时间后,发现气球漏气而下降,及时堵住。
堵住时气球下降速度为1m/s,且做匀加速运动,4s内下降了12m。
为使气球安全着陆,向舱外缓慢抛出一定的压舱物,此后发现气球做匀减速运动,下降速度在5分钟内减少了3m/s。
以上就是运用牛顿第二定律解决的一些实际例子,希望对您有帮助。
牛顿第二定律难题例题及解答

1. 在粗糙的水平面上,物体在水平推力的作用下,由静止开始做匀加速直线运动,经过一段时间后,将水平推力逐渐减小到零(物体不停止),那么,在水平推力减小到零的过程中A. 物体的速度逐渐减小,加速度逐渐减小B. 物体的速度逐渐增大,加速度逐渐减小C. 物体的速度先增大后减小,加速度先增大后减小D. 物体的速度先增大后减小,加速度先减小后增大变式1、2. 如下图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的摩擦力恒定,则A. 物体从A到O先加速后减速B. 物体从A到O加速,从O到B减速C. 物体运动到O点时,所受合力为零D. 以上说法都不对变式2、3. 如图所示,固定于水平桌面上的轻弹簧上面放一重物,现用手往下压重物,然后突然松手,在重物脱离弹簧之前,重物的运动为A. 先加速,后减速B. 先加速,后匀速C. 一直加速D. 一直减速问题2:牛顿第二定律的基本应用问题:4. 2003年10月我国成功地发射了载人宇宙飞船,标志着我国的运载火箭技术已跨入世界先进行列,成为第三个实现“飞天”梦想的国家,在某一次火箭发射实验中,若该火箭(连同装载物)的质量,启动后获得的推动力恒为,火箭发射塔高,不计火箭质量的变化和空气的阻力。
(取)求:(1)该火箭启动后获得的加速度。
(2)该火箭启动后脱离发射塔所需要的时间。
5. 如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向角,球和车厢相对静止,球的质量为1kg。
(g取,,)(1)求车厢运动的加速度并说明车厢的运动情况。
(2)求悬线对球的拉力。
6. 如图所示,固定在小车上的折杆∠A=,B端固定一个质量为m的小球,若小车向右的加速度为a,则AB杆对小球的作用力F为()A. 当时,,方向沿AB杆B. 当时,,方向沿AB杆C. 无论a取何值,F都等于,方向都沿AB杆D. 无论a取何值,F都等于,方向不一定沿AB杆问题3:整体法和隔离法在牛顿第二定律问题中的应用:7. 一根质量为M的木杆,上端用细线系在天花板上,杆上有一质量为m的小猴,如图所示,若把细线突然剪断,小猴沿杆上爬,并保持与地面的高度不变,求此时木杆下落的加速度。
牛顿第二定律应用题型

整体法、隔离法求解连接体问题(两个或以上物体具有相同的加速度)例1:如图所示,在两块相同的竖直木板间,有质量均为m的四块相同的砖,用两个大小均为F的水平力压木板,使砖静止不动,则左边木板对第一块砖,第二块砖对第三块砖的摩擦力分别为A.4mg、2mg B.2mg、0 C.2mg、mg D.4mg、mg例2:如图所示,木块A、B质量分别为m、M,用一轻绳连接,在水平力F的作用下沿光滑水平面加速运动,求A、B间轻绳的张力T。
例3:如图所示,五个木块并排放在水平地面上,它们的质量相同,与地面的摩擦不计。
当用力F推第一块使它们共同加速运动时,第2块对第3块的推力为__________。
例4:如图所示,A、B质量分别为m1,m2,它们在水平力F的作用下均一起加速运动,甲、乙中水平面光滑,两物体间动摩擦因数为μ,丙中水平面光滑,丁中两物体与水平面间的动摩擦因数均为μ,求A、B间的摩擦力和弹力。
例5:如图所示,质量为M 的斜面A在水平向左的推力F 作用下,A 与B 物体B 的质量为m ,则它们的加速度a A. ()(,sin μθ++==g m M F g a B. θθcos )(,cos g m M F g a +==C. ()(,tan μθ++==g m M F g aD. g m M F g a )(,cot +==μθ例6:如图所示,质量为m 2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m 1的物体,与物体1相连接的绳与竖直方向成θ角,则( )A. 车厢的加速度为θsin gB. 绳对物体1的拉力为θcos 1gmC. 底板对物体2的支持力为g m m )(12-D. 物体2所受底板的摩擦力为θtan 2g m例1总质量为M,环的质量为m面的压力为()A. Mg + mgB. Mg—例2:如图所示,一只质量为mA. gB.gMmC.gMmM+极限法:例1:如右图,质量m=lkg的物块放在倾角为θ的斜面上,斜面体质量M=2kg,斜面与物块的动摩擦因数μ=0.2,地面光滑,θ=370,现对斜面体施一水平推力F,要使物体m相对斜面静止,力F 应为多大?(设物体与斜面的最大静摩擦力等于滑动摩擦力,g取10m/s2例2:小车内固定有一个倾角为370的光滑斜面,用—根平行于斜面的细线系住一个质量为m=2kg的小球(如右图所示).若①小车向右的加速度a l=5m/s2时;②小车向右的加速度为a2=15m/s2时,求细线上的拉力的大小.例3:质量为M的木板上放一质量为m的木块,木块与木板间动摩擦因数为μ1,木板与水平地面间动摩擦因数为μ2,现加木板上力F,问F至少多大才能将木板从木块下抽出?共点力的平衡:静态平衡:例1:沿光滑的墙壁用网兜把一个足球挂在A点(右图所示),足球的质量为m,网兜的质量不计,足球与墙壁的接触点为B,悬绳与墙壁的夹角为α,求悬绳对球的拉力和墙壁对球的支持力.动态平衡:例1:如右图所示.挡板AB和竖直墙之间夹有小球,球的质量为m,则挡板与竖直墙壁之间的夹角θ缓慢增加至θ=90°时,AB板及墙对球压力如何变化?例2:如右图所示,电灯悬挂于两墙壁之间,更换水平绳OA使连接点A向上移动而保持O点的位置和OB绳的位置不变,则在A点向上移动的过程中( )A.绳OB的拉力逐渐增大B.绳OB的拉力逐渐减小C.绳OA的拉力先增大后减小D.绳OA的拉力先减小后增大例3:如图:固定在水平面上的光滑半球,球心正上方固定一小定滑轮,细线一端拴一小球A,另一端过定滑轮,今将小球将图球位置缓慢拉至竖直方向,在到达竖直方向之前的过程中,小球对半球的压力及细线的拉力的变化情况()A.变大,变小B.变小,变大C.不变,变小D.变大,变大传送带专题:例1:如图所示为水平传送带装置,绷紧的皮带始终保持以υ=3m/s的速度移动,一质量m=0.5kg的物体(视为质点)。
牛顿第二定律典型题型

牛顿第二定律典型题型题型1:矢量性:加速度的方向总是与合外力的方向相同。
在解题时,可以利用正交分解法进行求解。
1、如图所示,物体A放在斜面上,与斜面一起向右做匀加速运动,物体A受到斜面对它的支持力和摩擦力的合力方向可能是 ( )A.斜向右上方 B.竖直向上C.斜向右下方 D.上述三种方向均不可能1、A 解析:物体A受到竖直向下的重力G、支持力F N和摩擦力三个力的作用,它与斜面一起向右做匀加速运动,合力水平向右,由于重力没有水平方向的分力,支持力F N和摩擦力F f的合力F一定有水平方向的分力,F在竖直方向的分力与重力平衡,F向右斜上方,A正确。
2、如图所示,有一箱装得很满的土豆,以一定的初速度在摩擦因数为的水平地面上做匀减速运动,(不计其它外力及空气阻力),则其中一个质量为m的土豆A受其它土豆对它的总作用力大小应是 ( )A.mg B.mgC.mg D.mg2、C 解析:像本例这种物体系的各部分具有相同加速度的问题,我们可以视其为整体,求关键信息,如加速度,再根据题设要求,求物体系内部的各部分相互作用力。
选所有土豆和箱子构成的整体为研究对象,其受重力、地面支持力和摩擦力而作减速运动,且由摩擦力提供加速度,则有mg=ma,a=g。
而单一土豆A的受其它土豆的作用力无法一一明示,但题目只要求解其总作用力,因此可以用等效合力替代。
由矢量合成法则,得F总=,因此答案C正确。
例3、如图所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?拓展:如图,动力小车上有一竖杆,杆端用细绳拴一质量为m的小球.当小车沿倾角为30°的斜面匀加速向上运动时,绳与杆的夹角为60°,求小车的加速度和绳中拉力大小.题型2:必须弄清牛顿第二定律的瞬时性牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。
物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。
牛顿第二定律的两类基本问题已知受力情况求运动情况

G
由运动学公式vt2-v02=2as2,得:
物体的滑行距离 s2
0
v
2 2
2a2
0 1.22 m
2 (2)
0.36m
※应用牛顿运动定律解题的一般步骤:
1、明确研究对象和研究过程 2、画图分析研究对象的受力和运动情况;(画图 很重要,要养成习惯) 3、进行必要的力的合成和分解,并注意选定正方向 4、根据牛顿运动定律和运动学公式列方程求解; 5、对解的合理性进行讨论
由运动学公式:
4s末的速度 vt v0 at 0 1.1 4 4.4m / s
4s内的位移
s
v0t
1 2
at 2
1 2
1.1 42
8.8m
例2:如图,质量为2kg的物体静止在水平地面上, 物体与水平面间的动摩擦因数为0.2,现对物体施 加一个大小F=5N、与水平方向成θ=370角的斜向 上的拉力(如图),已知:g=10m/s2,求: (1)物体在拉力的作用下4s内通过的位移大小 (2)若4s后撤去拉力F,则物体还能滑行多远?
例3:一个滑雪的人,质量m=75kg,以 V0=2m/s的初速度沿山坡匀加速地滑下, 山坡的倾角θ=300,在t=5s的时间内滑下 的路程s=60m,求滑雪人受到的阻力(包 括滑动摩擦力和空气阻力)。
解:对人进行受力分析画受力图,如下 因为:V0=2m/s,x=60m,t=5s
N f
取沿钭面向下方向为正
G2
则:根据运动学公式:
x
V0t
1 2
at
2
60
2
5
1 2
a
52
求得a = 4m/s2
G1 mg
再由牛顿第二定律可得:
G2 f m gsin f m a f m( g sin a)
牛顿第二定律 练习与解析

牛顿第二定律 练习与解析1.一辆质量为10kg 的小车,受到20N 的拉力作用,求这辆小车在拉力作用下的加速度是多大?答案:2m/s 2解:由牛顿第二定律,F =maa =F /m =20/10m/s 2=2m/s 2.2.一个物体的质量为50kg ,在100N 的水平拉力的作用下,以1.5m/s 2的加速度加速运动,求物体受到的摩擦力的大小.答案:25N解:由牛顿第二定律可知物体受到的合外力的大小:F =ma =50×1.5N =75N物体受力如图所示:F =F 1-ff =f 1-F =(100-75)N =25N .3.要使重5N 的物体在竖直方向上做匀速直线运动,应对物体施加的拉力是_____N ,此力的方向为_____.答案:5 竖直向上解:物体做匀速直线运动,加速度a =0,由牛顿第二定律:F =ma =0;即物体受到的合外力为零.所以,物体受到的力和物体的重力大小相等,方向相反,所以应对物体施加5N 的力,方向竖直向上.4.一个5N 的力作用在一个物体上,使物体得到的加速度是8m/s 2,作用在另一个物体上所得到的加速度为24m/s 2.如果将两个物体拴在一起,仍用5N 的力作用,求物体得到的加速度是多大?答案:6m/s 2解:设第一个物体的质量为m 1,第二个物体的质量为m 2,第一个物体的加速度为a 1,第二个物体的加速度为a 2,它们共同的加速度为a .由牛顿第二定律得:F =m 1a 1F =m 2a 2 F =(m 1+m 2)a解得a =6m/s 2.5.地面上放一木箱,质量为40kg ,用100N 的力与水平成 37角推木箱,如图4-5所示,恰好使木箱匀速前进.若用此力与水平成 37角向斜上方拉木箱,木箱的加速度多大?(取g =10m/s 2,sin 37=0.6,cos37=0.8) 答案:0.56m/s 2解:当用力推木箱时,物体的受力如图(1)F cos 37-f =0f =μN =μ(mg +F sin 37)得μ=0.17当用力拉木箱时,物体的受力如图(2)合F =F cos 37-f 1=ma f 1=μN 1=μ(mg -F sin37)解得a=0.56m/s2.。
牛顿第二定律举例子

牛顿第二定律举例子
牛顿第二定律在生活中有很多实例,比如:
当人踢球时,球会获得较大的加速度,并且运动状态有了变化。
在足球比赛或训练中,球员之间连续传球时,足球本身受到不同方向的力,这时足球的运动方向以及速度都会发生改变,并且也会出现朝着相反的方向运动。
在罚角球时,罚球队员罚出的球速度飞快,加速度也很大,这时接应队员并不需要用力改变球的路线,只需要轻轻一碰,就可以凭借之前的加速度射向球门。
牛顿第二定律在物理学上的作用和影响力非常突出,并且在日常生活中也有很多实际案例。
比如物理课本中自由落体运动、竖直上抛运动、平抛运动等都运用到了牛顿第二定律。
牛顿第二定律是动力学基础,从新课程中课本内容的安排上是对前面三章所学内容的综合运用。
它是学生在高中物理学习过程中必须掌握的处理物理问题的第一种方法,也是解决高中物理问题最基本的方法之一。
牛顿第二定律具有瞬时性,即物体在某一时刻或某一位置可以用牛顿第二定律列式,而要对全过程用牛顿第二定律列式求解时物体必须是做匀变速直线运动。
总之,牛顿第二定律是物理学中的重要定律之一,它在解释和预测物体的运动状态方面发挥着至关重要的作用。
无论是在日常生活还是在学习中,我们都可以通过观察和分析物体的运动状态来验证和应用牛顿第二定律。
同时,通过学习和掌握牛顿第二定律,我们可以更好地理解其他物理学定律,提高自己的科学素养和思维能力。
牛顿第二定律的应用

牛顿第二定律的应用在物理学中,牛顿第二定律是描述力、质量和加速度之间关系的基本定律。
具体而言,它表明力是物体质量乘以加速度的乘积。
牛顿第二定律在力学问题的解决中扮演着重要的角色,并且在各种实际应用中经常被使用。
本文将讨论牛顿第二定律在不同领域中的应用。
1. 机械运动牛顿第二定律在机械运动中有着广泛的应用。
例如,我们可以利用牛顿第二定律来计算物体的加速度,从而确定物体的运动状态。
在简单的情况下,我们可以使用公式F=ma,其中F表示作用在物体上的力,m表示物体的质量,a表示物体的加速度。
根据这个公式,我们可以计算物体所受的合力,进而预测物体的运动轨迹。
2. 交通工程牛顿第二定律在交通工程中也有重要的应用。
例如,我们常常需要研究车辆在不同道路状况下的行驶情况。
通过使用牛顿第二定律,我们可以计算出车辆所受的合力,并进一步预测车辆的加速度和速度。
这样的信息可以用于改善道路设计,提高交通效率,确保交通安全。
3. 弹道学牛顿第二定律在弹道学中也被广泛应用。
弹道学研究的是物体在空中飞行的轨迹和性质。
利用牛顿第二定律,我们可以计算出物体在受到力的作用下的加速度和速度变化情况。
这些信息对于炮弹、导弹和火箭的轨迹计算和控制非常重要。
4. 工程设计牛顿第二定律对于工程设计中的力学分析也是至关重要的。
在建筑和结构设计中,我们需要确保建筑物的稳定性和安全性。
通过应用牛顿第二定律,我们可以计算出分布在结构上的力,并评估结构的强度和稳定性。
这可以帮助工程师确定所需的材料和构建方法,从而确保设计的可行性和长期的稳定性。
5. 运动控制牛顿第二定律在运动控制领域也发挥着重要的作用。
例如,在机器人技术中,我们需要精确控制机器人的运动和位置。
通过应用牛顿第二定律,我们可以计算出所需施加在机器人身上的力,从而控制机器人的加速度和速度。
这使得机器人能够准确地执行特定的任务,如自主导航、工业生产等。
总结:牛顿第二定律在各个领域中都有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用牛顿定律解决问题二 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】
第七节用牛顿定律解决问题(二)
教材要求:
1、理解共点力作用下物体平衡状态的概念,能推导出共点力作用下物体的平衡条件。
2、会用共点力平衡条件解决有关力的平衡问题。
3、通过实验认识超重和失重现象,理解产生超重、失重现象的条件和实质。
4、进一步熟练掌握应用牛顿运动定律解决问题的方法和步骤。
主要内容:
一、共点力的平衡条件
1、平衡状态:物体处于和,我们说物体处于平衡状态。
2、在共点力作用下处于平衡状态的物体所受的合外力,
即:。
二、超重
1.超重现象是指:___________________________
________________________________________。
2.超重的动力学特征:支持面(或悬线)对物体的(向上)作用力_____物体所受的重力.(填“大于”、“小于”、“等于”)
3.超重的运动学特征:物体的加速度向上,它包括两种可能的运动情况:_______________________________________________________。
三、失重
1.失重现象是指:__________________________ 。
2.失重的动力学特征:
_______________________ 。
3.失重的运动学特征:物体的加速度向,它包括两种可能的运动情况:___________________ 。
四、对超重和失重的进一步理解
1.当物体处于“超重”状态时,物体的重力_______.当物体处于“失重”状态时,物体的重力_________,当物体处于“完全失重”状态时,物体的重力________.(填“增大”、“减小”、“不变”)
2.超(失)重现象是指物体对悬挂物的拉力(或对支持物的压力)大于(小于)重力的现象.
3.“超重”“失重”现象与物体运动的速度方向和大小均无关,只决定于物体的_______的方向.
4.日常所说的“视重”与“重力”有区别.视重大小是指物体对支持物或悬挂物的作用力大小,只有当物体的加速度为零时,视重大小等于重力的大小.
课本例题讲解:
随堂练习:
1.在升降机中用弹簧秤称一物体的重力,由弹簧秤示数的变化可以判定系统的运动状态,下面说法正确的是( )
A.示数大于物重,则升降机可能是向上作加速运动.
B.示数小于物重,则升降机一定是向下作加速运动.
C.示数等于物重,则升降机一定是作匀速直线运动.
D .示数时大时小,则升降机一定是作上下往复运
动. 2.三个共点力F 1、F 2、F 3的合力为0,其中两个共点力
的大小分别是F 1=8 N ,F 2=4 N ,则F 3的大小不可能是
( ) A .8 N B .6 N C .4 N
D .2 N
3.如图所示,物体以与水平方向成30°角的拉力F 作用向左做匀速直线运动,则物体受到的拉力F 与地面对物体的摩擦力的合力的方向是( )
A .向上偏左
B .向上偏右
C .竖直向上
D .竖直向下
4.如图所示,在一根水平直杆上套着a 、b 两个轻环,在环
下用两根等长的轻绳拴着一个重物.把两环分开放置,静止
时,杆对a 环的摩擦力大小为F f ,支持力大小为F N .若把两环距离稍微缩短些放置,仍处于静止,则( )
A .F N 变小
B .F N 不变
C .F f 变小
D .F f 不变
5.质量为m 的小球系在轻绳的下端,现在对小球施加一个F =2
1mg 的拉力,使
小球偏离原位置并保持静止,则悬线偏离竖直方向的最大偏角θ是( )
A .30°
B .37°
C .45°
D .60°
6.质量为50 kg 的人静止站立在升降机地板上,当他见到挂在升降机里的弹簧秤下5 kg 的物体的读数是 N 时,则此时他对升降机地板的压力是( )
A .大于490 N
B .小于490 N
C .等于490 N
D .0N
7.质量为m 的人站在升降机中,如果升降机作加速度大小为a 的匀变速直线运动,升降机地板对人的支持力N =m (g +a ),则升降机的运动情况可能是( )
A .以加速度a 向下加速运动
B .以加速度a 向上加速运动
C .以加速度a 在上升过程中制动
D .以加速度a 在下降过程中制动
8.一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M =15kg 的重物,重物静止于地面上,有一质量m =10kg 的猴子,从绳子的另一端沿绳向上爬,如图所示,不计滑轮摩擦,在重物不离开地面条件下,猴子向上爬的最大加速度为(g=10m/s 2)( )
A .25 m/s 2
B .5 m/s 2
C .10 m/s 2
D .15 m/s 2
9.如图所示,弹簧下端悬一滑轮,跨过滑轮的细线两端系有A 、B 两重物, m B =2kg ,不计线、滑轮质量及摩擦,则A 、B 两重物在运动过程中,弹簧的示数
可能为:(g=10m/s 2) ( )
(A )40N (B )60N (C )80N (D )100N
10.如图所示,两根轻弹簧下面均连接一个质量为m 的小球,上面一根弹簧的上端固定在天花板上,两小球之间通过一不可伸长的细线相连接,细线受到的拉力大小等于4mg .当剪断两球之间的细线瞬间,以下关于球A 的加速度大小A a ;球B 的加速度大小B a ;以及弹簧对天花板的拉力大小正确的是:( ) 题图
第3题图第4题图第5
(A)0;2g;2mg (B)4g;4g;2mg (C)4g;2g;4mg (D)0;4g;4mg
题图第8
题图
第
9
题图
第10。