孔口淹没出流--《水力学》第五章
水力学课件——第五章:孔口、管嘴出流

10 ×10−3 Q= = 3.049m3 /s 32.8
A dC 8 ε = C = = = 0.64 A d 10
2
2
由薄壁孔口出流的计算公式,可得流量系数
Q 3.049 ×10−5 µ= = =0.62 2 A 2 gH 0.25 × 3.14 × 0.01 × 2 × 9.8 × 2
(3)保证管嘴正常工作的条件 ) 从前面的分析可知,收缩断面的真空度和作用水头成正比。作用水头越大, 真空度越大,流量越大。 但是,流量并不能无限制地增大。当真空度大于7m水柱时,由于收缩断面 处真空度过大,气体会从出口处吸入管嘴,真空环境被破坏,出口流动不 再为满管流动,此时管嘴出流近似为孔口出流,流量反而减小。 因此,要保证管嘴正常工作,要求收缩断面真空度小于7m,则
流速系数 又因为
0.62 ϕ = µ /ε = = 0.97 0.64 1 1 1 可得 ζ = ϕ= −1 = − 1 = 0.063 2 2 1+ ζ 0.97 ϕ
5.2 液体经管嘴的恒定出流
(1)定义、分类及流动特点: )定义、分类及流动特点:
管嘴实际上是以某种方式连接于孔口上的具有一定长度的短管 实际上是以某种方式连接于孔口上的具有一定长度的短管。 管嘴实际上是以某种方式连接于孔口上的具有一定长度的短管。 液体经由容器外壁上安装的长度约( 液体经由容器外壁上安装的长度约(3~4)倍管径的短管出流,或容器壁 )倍管径的短管出流, 的厚度为( 管嘴出流。 的厚度为(3~4)孔径的孔口出流,称为管嘴出流。 )孔径的孔口出流,称为管嘴出流 管嘴出流也可以分为恒定和非恒定出流,自由和淹没出流。 管嘴出流也可以分为恒定和非恒定出流,自由和淹没出流。 管嘴出流的流动特点是:水流进入管嘴之前的流动情况和孔口出流相同, 管嘴出流的流动特点是:水流进入管嘴之前的流动情况和孔口出流相同, 进入管嘴后, 先形成收缩断面,在收缩断面附近水流与管壁分离, 进入管嘴后, 先形成收缩断面,在收缩断面附近水流与管壁分离,形成 漩涡区,之后水流逐渐扩大,直至完全充满整个管面。 漩涡区,之后水流逐渐扩大,直至完全充满整个管面。管嘴出口断面上为 满管流。 满管流。 因为管长很小,沿程损失可以忽略,因此管嘴出流的水头损失主要来源于 因为管长很小,沿程损失可以忽略,因此管嘴出流的水头损失主要来源于 孔口的局部水头损失和水流断面扩大所引起的局部水头损失, 孔口的局部水头损失和水流断面扩大所引起的局部水头损失,即
第五章孔口、管嘴及有压管路

c 1
2
v
1
2 gH 0 n 2 gH 0
Q vA n A 2 gH 0 n A 2 gH 0
其中ζ 为管嘴的局部阻力系数,取0.5;则
流速系数 流量系数
n
1 1 0.82<孔口 0.97 ~ 0.98 1 0.5
n n 0.82 >孔口 0.60 ~ 0.62
图1:Q1
Q2;图2:Q1
Q2。(填>、< 或=)
第五章 有压管流
问题:水位恒定的上、下游水箱,如图,箱内水深为
H 和h。三个直径相等的薄壁孔口1,2,3位于隔板上的
不同位置,均为完全收缩。 问:三孔口的流量是否相等?为什么? 若下游水箱无水,情况又如何?
答案
1=2,3不等;三孔不等
第五章 有压管流
v孔口 孔口 2 gH孔口 孔口 0.97 1 vn n 0.82 n 2 gHn
2.流量比较
Q孔口 孔口 A孔口 2 gH孔口 孔口 0.62 1 Qn n 0.82 n An 2 gHn
第五章 有压管流
【例】为使水流均匀地进入混凝沉淀池,通常在进口处 建一道穿孔墙如图,通过穿孔墙流量为125L/s,设若干 个15cmⅹ15cm的孔口,按规范要求通过孔口断面平均流速 在0.08~1.0m/s,试计算需若干孔口?
容器放空(即H2=0)时间 t0
2 A0 H1
2 A0 H1 2V A g A 2 gH1 Qmax
结论:在变水头情况下,等横截面的柱形容器放空(或充满)所需的时间
等于在起始水头H1下按恒定情况流出液体所需时间的两倍。
第五章 有压管流
第二节、管嘴岀流
流体力学 水力学 第五章

7 H [H0 ] 9m 0.75
§5.3 有压管道恒定流 5.3.1 短管水力计算(Q、d、H) 有压流:水沿管道满管流动的水力现象。 特点:水流充满管道过水断面,管道内不存在自 由水面,管壁上各点承受的压强一般不等于大 气压强。
短管:局部水头损失和 速度水头在总水头损失 中占有相当的比重,计 算时不能忽略的管道. (一般局部损失和速度 水头大于沿程损失 的5% ~ 10%)。一般L/d 1000
1 vc c 0
v
2 0 0
2 gH 0 2 gH 0
v hw h j 2g p c pa
2 c
1 1 流速系数: c 0 1 0
1 1 流速系数: c 0 1 0
实验得: 0.97 ~ 0.98 1 推求: 0 2 1 1 0.06 2 0.97 1
2
d2
5.126m 2g
例5 3:如图所示圆形有压涵管,管长50m, 上下游水位差3m 沿程阻力系数为0.03,局部阻力系数:进口 1=0.5。 第一个转弯 2=0.71,第二个转弯 3=0.65,出口
4=1.0,要求涵管通过流量大约3m 3 / s, 试设计管径d。
2 1 1
2g
v
v
2 2 2
2 2 2
2g
hw
2g
hw
H0 H
v
2 1 1
2g
v
2 2 2
2g
hw
hw h f h j (
l v
v d 2g 2g
2
2
l
v ) d 2g
第五章水力学详解

μc =
1
α
+
∑
λ
l d
+
∑
ζ
两公式的比较。
μc =
1
∑
λ
l d
+
∑ζ
§5-4 短管出流的水力计算
1
1
自由出流
O 1
2 H 淹没出流
O 2
1
Z
O
2 O
2
μc =
1
α
+
∑
λ
l d
+
∑ζ
两公式的比较。
μc =
1
∑
λ
l d
+
∑ζ
自由出流的作用水头一部分消耗于水流的沿程水头损失和 局部损失,另一部分转化为管道出口的流速水头。
+ hw
得
H0
=
H1
−
H2
=
H
=
hw
=ξ′
vc2 2g
因为 ζ ′ = ζ 0 + ζ se = ζ 0 +1
vc =
1
1+ζc
2gH = ϕ 2gH
Q = ϕε A 2gH = μ A 2gH
与自由出流的公式进行比较:
流量公式虽然与薄壁孔口出流相同, 但意义不一样。 孔口淹没出流的流量和流速与孔口 离液面的距离无关。
管嘴出流的局部损失由两部分组成,即孔口的局部水头损失 及收缩断面后扩展产生的局部损失,水头损失大于孔口出流。但 是管嘴出流为满流,收缩系数为1,因此流量系数仍比孔口大。
§5-2 液体经管嘴的恒定出流
v=
1
α +ζc
2gH0 = ϕn A 2gH
水力学 第五章课后题答案

5.3水泵自吸水井抽水,吸水井与蓄水池用自流管相接,其水位均不变,如图所示,水泵安装高度 = 4.5,
自流管长l=20m,直径d=150mm,水泵吸水管长1 = 12,=0.025,管滤网的局部水头损失系数 = 2.0,水泵
底阀局部水头损失系数 = 9.0.90°弯角局部水头损失系数 = 0.3,真空高度6m时,求最大流量,在这种流量
1
+ 4 + 3 4
H= + ℎ1 + ℎ2 + ℎ4 = 45.43
= + 100 = 145.43
2
=3.357m
5.9图示为一串联管道自水池引水到大气中。第一段管道d1=100mm,l1=25m,第二段d2=50mm,l2=20m,通过流
量 = 5.0 ×
和0.2344,对两渠水面应用伯努利方程可得,
2
2
∆ = + 1 + 2 + 3 + 4
= 8.224
2
2
解得 v=3.452m/s
3
2
解得Q =
v = 0.678 Τ
4
水头线绘制方法:
1.找出骤变截面,用虚线表示
2.根据管道大小判断在不同管道处的流速
3.总水头线在上,测压管水头线在下,进行绘制
设有带底阀莲蓬头及45°弯头一个,压力水管为长50m,直径0.15m的钢管,逆止阀,闸阀各一个,
局部损失系数分别为2,0.2以及45°弯头一个,机组效率为80%,求0.05m3/s流量时的水泵扬程
钢管的粗糙系数取0.012利用公式 =
82
1
3
水力学第五章 有压管流与孔口、管嘴出流

5
5-1 有压管路水力计算
– 自由出流计算公式 • 计算图式——图5-1a • 公式推导方法——列1-1、2-2断面能量方程
H
0 0v2
2g
0 0 v2
2g
hw
H0
H
0v02
2g
v2
2g
hw
(5-1)
hw
hfi
hji
i
l1 d
v2 2g
i
v2 2g
c
v2 2g
c
1 c
1
l d
i
(5-4c)
μc—自由出流流量系数
7
5-1 有压管路水力计算
– 淹没出流计算公式 • 计算图式——图5-1b • 公式推导方法——列1-1和2-2断面能量方程
H 0 0 0 0 0 hw
H0 H hw hf hj
H0
l d
i
v2 2g
c
v2 2g
水可头有线恒呈定阶流A梯与状非沿恒14程定下流d降,2,的均折匀线流。与非d均,流p之分 。pa
2
5-1 有压管路水力计算
• 类型 – 按管路组成分类 • 简单管路——管径沿程不变的管路 • 复杂管路——两根以上管道 组成的管路 – 串联管路——管段首尾串接的管路 – 并联管路——多根管段首尾并接的管路 – 管网——多种管路组合而成的管系(其组成又可有技状或环状两 类)
3
4
• 4 1 c s
9
5-1 有压管路水力计算
• 短管水力计算(简单管路) – 作用水头 H0 计算比较 • 自由出流 – H0 起算零点——水管出口中心 • 淹没出流 – H0 起算零点——下游水面
10
第5章 孔口、管嘴出流和有压管路 121页PPT文档

虹吸管是一种压力输水管道,顶部弯曲且其高程高 于上游供水水面。在虹吸管内造成真空,使水流则能通 过虹吸管最高处引向其他处。
虹吸管的优点在于能跨越高地,减少挖方。 虹吸管 长度一般不长,故按照短管计算。
1 pa
1
虹吸管顶部 zs
2z
2
虹吸管顶部的真空的理论值不能大于最大真空值 (10mH2O)。
孔口、管嘴的水力特性
§5.3 简单短管中的恒定有压流
简单管道的水力计算可分为自由出流 和淹没出流两种情况。
1.自由出流
管道出口水流流入大气,水股四周都受 大气压强的作用,称为自由出流管道。
图5-1中,列断 面1-1、2-2的能量方
程z1p 12 1 g1 2z2p 22 2 g2 2hw 12
小孔口:H/d>10
1)小孔口的自由出流
pc=pa=0
hw
hj
0
v22 2g
H
0v02
2g
( c
0
)
vc2 2g
vc
1 c 0
2gH0 2gH0
Q vc Ac A 2gH0 A 2gH0
薄壁小孔口自由出流的基本公式
薄壁小孔口出流的各项系数
当虹吸管内压强接近该温度下的汽化压强时,液体 将产生汽化,破坏水流连续性,可能产生空蚀破坏, 故一般虹吸管中的真空值7~8mH2O。
例 有一渠道用两根直径为1.0m的混凝土虹吸管来跨 越山丘, 渠道上游水位为▽1=100.0m,下游水位为▽2 =99.0m,虹吸管长度l1 = 8m l2= 15m;l3 = 15m,中间 有60°的折弯两个,每个弯头的局部水头损失系数为 0.365,若进口局部水头损失系数为0.5;出口局部水头 损失系数为1.0。试确定:
水力学第五章答案(吕宏兴 裴国霞等).doc

第五章 有压管道中的恒定流5.2已知:预制混凝土引水管 查表(P118)n=0.01~0.013 D=1m,l=40m, ξ =0.4 D 上 =70m,D 下 =60.5m ,D 管底=62.0m 求Q 解:自由出流流量公式Q=μc A Hog2 n 取0.013作用水头H o =70-62.5=7.5m (管道形心点与上有水面的距离) A=π4D 2= π4㎡ μc =ξλ∑++dl 11 假设在阻力平方区 λ=cg28C=n R61=013.01×)41(61=61.05(m 21/s) 故 λ=cg28=0.021 μc = ξλ∑++dl 11=0.668Q=0.668× π4×5.7.2g =6.36(m 3/s) V=AQ =436.6π=8.10m/s>1.2m/s 原假设成立 5.4已知Z s =4.5m,l=20m,d=150mm,l 1=12m,d 1=150mm,λ=0.03 ξ自网=2.0,ξ水泵阀=9.0 ,ξ90=0.3,若h v ≤6m,求:(1)Q 泵(2)Z(1)解:水泵安装高度为: Z s ≤h v -(α+γdl 11+ξ∑)gv 22故v 2max=(h v -Z s )2g/(α+dl11 +ξ∑)=(6-4.5)×19.6/(1+0.03×15.012+9.0+0.3) =2.15 故v max =1.52(m/s) Q max =v max .A=1.52×421d π=0.0269(m 3/s)(2)对于自流管:Q=μc A gz 2 作用水头Z=Q 2/μ2c A 22g其中A=42d π=0.018μc =ξλ∑+dl1=1215.02003.01+++=0.378故Z=6.19018.0378.00269.0222⨯⨯=0.83(m)5.6已知:d=0.4m,H=4m,Z=1.8m,l 1=8m,l 2=4m,l 3=12m 求(1)Q (2)p min 的断面位置及hvmax解:(1)淹没出流:Q=μc A gz 2 μc =ξλ∑+dl1(n 的取值及ξ的取值都要明确)取n 为0.013,c=n1R61=013.01×)44.0(61=52.41(m 21/s)λ=cg28=0.029故μc =.13.025.24.01248029.01+⨯++++⨯=0.414A=42d π=4π×4.02=0.1256(㎡)故Q=0.414×0.1256×42⨯g =0.460(m 3/s)(2)最小压强发生在第二转折处(距出口最远且管道最高) n=0.012 对上游1-1,2-2,列能量方程,0-0为上游水面0+γp a+0=(Z -2d )+γP 2+g v 222∂+(λd l +ζ∑)g v 222V 2=AQ=1256.0473.0=3.766(m/s) h v =γP Pa2-=Z -2d +(ζλ∑++dl1)+gv 222=(1.8-0.2)+(1+0.024×dl l 21++ζ网+ζ弯)×6.19766.32=4.871(m) 5.9解:如P145例5 法1:取C h =130 采用哈森-威廉森S=d871.491013.1⨯×Ch852.11=d871.472.137421S 1=1.38×1010-(d 1=1200mm) S 2=3.35×1010-(d 2=1000mm) S 3=9.93×1010-(d 3=800mm)假设J 节点压力水头为h=25(m)(5m<h<30m) 设A,B,C 的水位分别为D A =30m,D B =15m,D C =0 利用h f =QSl 852.1 h f1=30-25=5m=S 1Q 852.11l 1=1.38×1010-×750Q 852.11Q1=3.92(m 3/s)5.12并联:f 1=h f 2=h f 3即k l Q 21121=k l Q 22222=k l Q 23323l 1=l 2=l3所以Q 2=Q k 12/k 1Q3=Q k 13/k 1k=R AC 故k 1=421d π×λg8×)4(121dk 2=422d π×λg8×)4(221dk 3=423d π×λg8×)4(321dλ相同故kk 12=)(1225d d =32k k 13=)(1325d d =243所以Q 2=32Q 1=0.17(m 3/s)Q3=243Q 1=0.47(m 3/s) 另法:利用达西公式h f =gd lv 22λV=42d π且h f1=h f2=h f3 得到d Q 5121=d Q 5222=dQ 5323 即1521Q =2522Q =3523Q 所以Q 2=32Q 1=0.17(m 3/s)Q3=243Q 1=0.47(m 3/s)。