北师版八年级上册数学-第四章单元测试题

合集下载

第四章一次函数 单元测试2024-2025学年北师大版数学八年级上册

第四章一次函数 单元测试2024-2025学年北师大版数学八年级上册

O yx O y x x y O O y x 第四章 一次函数单元测试(共120分,100分钟)一、选择题:(每小题3分,共30分)1.一次函数83y x =-+的图象经过的象限是( )A.一、二、三B.二、三、四C.一、二、四D.一、三、四2.若y=(m -2)x+m 2-4是正比例函数,则m 的取值是( )A .2B .-2C .±2D .任意实数3.已知点()14,y -,()22,y 都在直线122y x =-+上,则1y ,2y 大小关系是( ) A.12y y > B.12y y = C.12y y < D.不能比较4.如图,函数y=kx+k 的图象可能是下列图象中( )A B C D5.下列函数中,是正比例函数,且y 随x 增大而减小的是( )A.14+-=x yB. 6)3(2+-=x yC. 6)2(3+-=x yD. 2x y -= 6.已知3-y 与x 成正比例,且x =2时,y =7,则y 与x 的函数关系式为( )A .32+=x yB .32-=x yC .323+=-x yD .33-=x y7.下列各点,在直线y =x +5上的是( )A . (0,4)B .(-1,2)C .(2,6)D . (-5, 0)8.若将直线23y x =-向下平移3个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+说法正确的是( )A.经过第一、二、四象限B.与x 轴交于()2,0-C.与y 轴交于(0,6)D.y 随x 的增大而增大 9.关于x 的函数()3y k x k =-+,给出下列结论:①当3k ≠时,此函数是一次函数;②无论k 取什么值,函数图象必经过点()1,3-;③若图象经过二、三、四象限,则k 的取值范围是0k <;④若函数图象与x 轴的交点始终在正半轴,则k 的取值范围是03k <<.其中正确结论的序号是( )A.①②④B.①③④C.①②③④D.②③④10.如图,点B 在直线2y x =上,过点B 作BA x ⊥轴于点A ,作//BC x 轴与直线()0y kx k =≠交于点C ,若:1:2AB BC =,则k 的值是( )A.27B.23C.13D.25二、填空题:(每小题4分,共28分)11.一次函数图象过(1,2)且y 随x 的增大则减小,请写出一个符合条件的函数解析式 .12.直线y = -3x +6与x 轴交点坐标是 .13.一次函数y=kx+b 的图像位于第一、三、四,则y 随x 的增大而_________.14.直线63+=x y 与两坐标轴围成的三角形的面积是15.若函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,则b =__________.16.若k x k y )1(-=-7是一次函数,则k = .17.若点A (x ,4),B (0,8)和C (-4,0)在同一直线上,则x = .三、解答下列各题:(共62分)18.(9分)已知一次函数2(2)312y k x k =--+.(1)k 为何值时,图象经过原点;(2)k 为何值时,图象与直线y = -2x +9的交点在y 轴上;(3)k 为何值时,图象平行于2y x =-的图象;19.(9分)如图是某汽车行驶的路程S (km )与时间t (min)的函数关系图.回答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车在中途停了多长时间?(3)当16≤t ≤30时,求S 与t 的函数关系式.20.(10分)直线122y x =-+分别交x 轴,y 轴于A,B 两点,O 是原点,直线y=kx+b 经过AOB △的顶点A 或B,且把AOB △分成面积相等的两部分,求该直线所对应的函数表达式.9 16 30 t /minS /km40 1221.(10分)如图,直线132y x =-+与x,y 轴分别交于A,B 两点.(1)分别求点A 、点B 的坐标.(2)在x 轴上有一点M,线段AB 上有一点N,当OMN △是以ON 为斜边的等腰直角三角形时,求点M 的坐标。

北师大版八年级上册数学第四单元周测试题

北师大版八年级上册数学第四单元周测试题

北师大版八年级上册数学第四单元周测试题一.选择题(共10小题)1.函数y=中,自变量x的取值范围是()A.x>4 B.x≥2 C.x≥2且x≠﹣4 D.x≠﹣42.下列函数关系式:(1)y=﹣x;(2)y=2x+11;(3)y=x2;(4),其中一次函数的个数是()A.1 B.2 C.3 D.43.已知函数y=(m+1)x是正比例函数,且图象在第二、四象限内,则m的值是()A.2 B.﹣2 C.±2 D.﹣4.已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m的取值范围是()A.m>B.m<C.m>1 D.m<15.正比例函数y=﹣2x的大致图象是()A.B.C.D.6.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A.B.C.D.7.如图:三个正比例函数的图象分别对应的解析式是①y=ax,②y=bx,③y=cx,则a、b、c 的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a8.长方形的周长为24cm,其中一边长为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2 B.y=(12﹣x)2C.y=2(12﹣x)D.y=(12﹣x)x9.小明带50元去买单价为3元的笔记本,则他所花的钱y(元)与他买这种笔记本的本数x之间的关系式是()A.y=3x B.y=3x﹣50 C.y=50﹣3x D.y=50+3x10.根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.﹣ B.C.1 D.二.填空题(共10小题)11.函数y=中,自变量x的取值范围是.12.汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为.13.如图,是小明从学校到家里行进的路程s(米)与时间t(分)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有(填序号).14.已知方程x﹣3y=12,用含x的代数式表示y是.15.下列函数中:①y=﹣x;②y=;③y=﹣x2;④y=﹣x+3;⑤2x﹣3y=1.其中y是x的一次函数的是(填所有正确菩案的序号).16.已知+|m﹣5|是一次函数,则m=.17.已知函数y=(n﹣2)x+n2﹣4是正比例函数,则n为.18.正比例函数的图象是,当k>0时,直线y=kx过第象限,y随x的增大而.19.已知函数y=(3k﹣1)x,若y随x的增大而增大,则k的取值范围为.20.已知正比例函数y=kx(k≠0)的图象经过点(﹣6,2),那么函数值y随自变量x的值的增大而.(填“增大”或“减小”)三.解答题(共10小题)21.元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量了部分彩纸链的长度,她得到的数据如下表:纸环数x(个)1234…彩纸链长度y(cm)19365370…(1)猜想x、y之间的函数关系,并求出函数关系式.(2)教室天花板对角线长10m,现需沿天花板对角线各拉一根彩纸链,则至少需要用多少个纸环?22.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?(3)小明在书店停留了多少分钟?(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?23.已知y=(k ﹣1)x |k |﹣k 是一次函数.(1)求k 的值;(2)若点(2,a )在这个一次函数的图象上,求a 的值.24.已知函数y=(m ﹣2)x 3﹣|m |+m +7.(1)当m 为何值时,y 是x 的一次函数?(2)若函数是一次函数,则x 为何值时,y 的值为3?25.已知函数y=(k ﹣)x k2.①k 为何值时,函数是正比例函数;②k 为何值时,正比例函数的图象在二,四象限;③k 为何值时,正比例函数y 随x 的减小而减小.26.作出y=x 的图象,并判断点P (﹣2,3)、Q (4,2)是否为图象上的点.27.已知正比例函数图象上一个点A 到x 轴的距离为4,这个点A 的横坐标为﹣2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数经过哪几个象限?(3)这个正比例函数的函数值y 是随着x 增大而增大?还是随着x 增大而减小?28.已知正比例函数y=kx 经过点A ,点A 在第四象限,过点A 作AH ⊥x 轴,垂足为点H ,点A 的横坐标为3,且△AOH 的面积为3.(1)求正比例函数的解析式;(2)在x 轴上能否找到一点P ,使△AOP 的面积为5?若存在,求点P 的坐标;若不存在,请说明理由.29.如图,在平面直角坐标系中,点A ,B 的坐标分别为(﹣1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A 、B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;(2)在y 轴上是否存在一点P ,连接PA ,PB ,使S △PAB =S四边形ABDC ?若存在这样一点,求出点P 的坐标;若不存在,试说明理由.30.在平面直角坐标系中,有点A(1,2a+1),B(﹣a,a﹣3).(1)当点A在第一象限的角平分线上时,求a的值;(2)当点B在x轴的距离是到y轴的距离2倍时,求点B所在的象限位置;(3)若线段AB∥x轴,求三角形AOB的面积.北师大版八年级上册数学第四单元周测试题参考答案与试题解析一.选择题(共10小题)1.(2017春•沙坪坝区校级月考)函数y=中,自变量x的取值范围是()A.x>4 B.x≥2 C.x≥2且x≠﹣4 D.x≠﹣4【分析】根据分式和二次根式有意义的条件进行选择即可.【解答】解:由题意得,解得x≥2,x≠﹣4,∴自变量x的取值范围是x≥2,故选B.【点评】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.2.(2016•海淀区校级模拟)下列函数关系式:(1)y=﹣x;(2)y=2x+11;(3)y=x2;(4),其中一次函数的个数是()A.1 B.2 C.3 D.4【分析】根据一次函数的定义条件进行逐一分析即可.【解答】解:(1)y=﹣x是正比例函数,是特殊的一次函数,故正确;(2)y=2x+11符合一次函数的定义,故正确;(3)y=x2属于二次函数,故错误;(4)属于反比例函数,故错误.综上所述,一次函数的个数是2个.故选:B.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.3.(2016秋•林甸县期末)已知函数y=(m+1)x是正比例函数,且图象在第二、四象限内,则m的值是()A.2 B.﹣2 C.±2 D.﹣【分析】根据正比例函数的定义,正比例函数的性质,可得答案.【解答】解:由题意,得m2﹣3=1,且m+1<0,解得m=﹣2,故选:B.【点评】本题考查了正比例函数,利用正比例函数的定义得出方程是解题关键,注意比例系数是负数.4.(2016春•乐亭县期末)已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m的取值范围是()A.m>B.m<C.m>1 D.m<1【分析】先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵正比例函数y=(1﹣3m)x中,y随x的增大而增大,∴1﹣3m>0,解得m<.故选:B.【点评】本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k>0时,y 随x的增大而增大.5.(2016春•曹县期末)正比例函数y=﹣2x的大致图象是()A.B.C.D.【分析】根据k=﹣2<0和正比例函数的性质即可得到答案.【解答】解:∵k=﹣2<0,∴正比例函数y=﹣2x的图象经过二、四象限.故选C【点评】本题主要考查对正比例函数的性质的理解和掌握,能熟练地运用正比例函数的性质进行说理是解此题的关键.6.(2007秋•海陵区期末)在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A.B.C.D.【分析】根据正比例函数图象的性质进行解答.【解答】解:A、D、根据正比例函数的图象必过原点,排除A,D;B、也不对;C、又要y随x的增大而减小,则k<0,从左向右看,图象是下降的趋势.故选C.【点评】本题考查了正比例函数图象,了解正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.7.(2005•湖州)如图:三个正比例函数的图象分别对应的解析式是①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【分析】根据正比例函数图象的性质分析.【解答】解:首先根据图象经过的象限,得a>0,b>0,c<0,再根据直线越陡,|k|越大,则b>a>c.故选:C.【点评】了解正比例函数图象的性质:当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.同时注意直线越陡,则|k|越大.8.(2016春•东平县期末)长方形的周长为24cm,其中一边长为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2 B.y=(12﹣x)2C.y=2(12﹣x)D.y=(12﹣x)x【分析】首先利用x表示出长方形的另一边长,然后利用长方形的面积公式求解.【解答】解:长方形的一边是xcm,则另一边长是(12﹣x)cm.则y=(12﹣x)x.故选:D.【点评】本题考查了列函数关系式,理解长方形的边长、周长以及面积之间的关系是关键.9.(2016春•秦都区校级期中)小明带50元去买单价为3元的笔记本,则他所花的钱y(元)与他买这种笔记本的本数x之间的关系式是()A.y=3x B.y=3x﹣50 C.y=50﹣3x D.y=50+3x【分析】根据总价=单价×数量列出关系式即可.【解答】解:∵笔记本单价为3元,∴买x本笔记本共需要3x元,∴y=3x,故选A.【点评】此题主要考查了由实际问题列函数关系式,关键是正确理解题意,找出题目中的等量关系.10.(2016春•莒县期末)根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.﹣ B.C.1 D.【分析】先根据输入的数值,选择关系式,然后将x的值代入相应的关系式进行计算即可.【解答】解:∵0<<2,∴y=x2.当x=时,y=()2=.故选:B.【点评】本题主要考查的是函数值问题,依据自编量的取值范围选择适合的函数关系是解题的关键.二.填空题(共10小题)11.(2017•平南县一模)函数y=中,自变量x的取值范围是x>1.【分析】从两个角度考虑:分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:根据题意得到:x﹣1>0,解得x>1.故答案为:x>1.【点评】本题考查了函数式有意义的x的取值范围.判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.12.(2016春•石城县期末)汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为y=﹣7t+55.【分析】剩油量=原有油量﹣工作时间内耗油量,把相关数值代入即可.【解答】解:∵每小时耗油7升,∵工作t小时内耗油量为7t,∵油箱中有油55升,∴剩余油量y=﹣7t+55,故答案为:y=﹣7t+55【点评】考查列一次函数关系式;得到剩油量的关系式是解决本题的关键.13.(2016•黄冈模拟)如图,是小明从学校到家里行进的路程s(米)与时间t(分)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有①,②,④(填序号).【分析】根据图象的纵坐标,可判断①,根据图象的横坐标,可判断②,根据图象的横坐标、纵坐标,可判断②③.【解答】解:①由图象的纵坐标可以看出学校离小明家1000米,故①正确;②由图象的横坐标可以看出小明用了20到家,故②正确;③由图象的纵横坐标可以看出,小明前10分钟走的路程较少,故③错误;④由图象的纵横坐标可以看出,小明后10分钟比前10分钟走得快,故④正确;故答案为:①,②,④.【点评】本题考查了函数图象,观察函数图象的纵坐标得是解题关键.14.(2011春•攀枝花期末)已知方程x﹣3y=12,用含x的代数式表示y是y=x﹣4.【分析】要用含x的代数式表示y,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.【解答】解:移项得:﹣3y=12﹣x,系数化为1得:y=x﹣4.故答案为:y=x﹣4.【点评】考查了函数的表示方法,解题时可以参照一元一次方程的解法,利用等式的性质解题,可以把一个未知数当做已知数来处理.15.(2016春•澧县期末)下列函数中:①y=﹣x;②y=;③y=﹣x2;④y=﹣x+3;⑤2x ﹣3y=1.其中y是x的一次函数的是①④⑤(填所有正确菩案的序号).【分析】依据一次函数、反比例函数、二次函数的定义求解即可.【解答】解:①y=﹣x是正比例函数也是一次函数,故①正确;②y=是反比例函数,故②错误;③y=﹣x2是二次函数,故③错误;④y=﹣x+3是一次函数,故④正确;⑤2x﹣3y=1可变形为y=x﹣,是一次函数.故答案为:①④⑤.【点评】本题主要考查的是一次函数的定义,掌握一次函数的一般形式是解题的关键.16.(2016春•宁城县期末)已知+|m﹣5|是一次函数,则m=3.【分析】根据一次函数的定义得到m2=9,m+3≠0由此求得m的值.【解答】解:∵+|m﹣5|是一次函数,∴m2=9,m+3≠0,解得m=3.故答案是:3【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.17.(2016秋•淮安期末)已知函数y=(n﹣2)x+n2﹣4是正比例函数,则n为﹣2.【分析】根据正比例函数:正比例函数y=kx的定义条件是:k为常数且k≠0,可得答案.【解答】解:y=(n﹣2)x+n2﹣4是正比例函数,得,解得n=﹣2,n=2(不符合题意要舍去).故答案为:﹣2.【点评】解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.18.(2009秋•湛江校级期中)正比例函数的图象是一条直线,当k>0时,直线y=kx 过第一、三象限,y随x的增大而增大.【分析】正比例函数的图象是一条过原点的直线,当k>0时,过一、三象限,y随x的增大而增大;当k<0时,过二、四象限,y随x的增大而减小.【解答】解:正比例函数的图象是一条直线,当k>0时,直线y=kx过第一、三象限,y 随x的增大而增大.故答案为:一条直线;一、三;增大.【点评】此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.19.(2016春•博乐市期末)已知函数y=(3k﹣1)x,若y随x的增大而增大,则k的取值范围为k>.【分析】由函数的增减性可得到关于k的不等式,可求得k的取值范围.【解答】解:∵y=(3k﹣1)x,若y随x的增大而增大,∴3k﹣1>0,解得k>,故答案为:k>.【点评】本题主要考查正比例函数的性质,掌握正比例函数的增减性是解题的关键,即在y=kx(k≠0)中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.20.(2016春•马山县期末)已知正比例函数y=kx(k≠0)的图象经过点(﹣6,2),那么函数值y随自变量x的值的增大而减小.(填“增大”或“减小”)【分析】把点(﹣6,2)代入函数解析式求得k的值,结合k的符号判定该函数图象的增减性.【解答】解:把点(﹣6,2)代入y=kx,得到:2=﹣6k,解得k=﹣<0,则函数值y随自变量x的值的增大而减小,故答案是:减小.【点评】此题主要考查了正比例函数的性质,关键是掌握凡是函数经过的点,必能使函数解析式左右相等.三.解答题(共10小题)21.(2016•高新区校级模拟)元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量了部分彩纸链的长度,她得到的数据如下表:纸环数x(个)1234…彩纸链长度y(cm)19365370…(1)猜想x、y之间的函数关系,并求出函数关系式.(2)教室天花板对角线长10m,现需沿天花板对角线各拉一根彩纸链,则至少需要用多少个纸环?【分析】(1)利用待定系数法即可求得函数解析式.(2)彩纸链的长度应该大于或等于教室天花板对角线长,根据条件就可以得到不等式,从而求得.【解答】解:(1)由图象猜想到y与x之间满足一次函数关系.设经过(1,19),(2,36)两点的直线为y=kx+b.则,解得,∴y=17x+2当x=3时,y=17×3+2=53当x=4时,y=17×4+2=70∴点(3,53)(4,70)都在一次函数y=17x+2的图象上∴彩纸链的长度y(cm)与纸环数x(个)之间满足一次函数关系y=17x+2.(2)10m=1000cm,根据题意,得17x+2≥1000.解得,答:每根彩纸链至少要用59个纸环.【点评】本题考查函数与不等式的综合应用,解第(1)小题时要注意先根据函数图象合理猜想函数的类型,一定注意要验证另外两点也在所求的函数图象上.第(2)小题需学生根据题意正确列出不等式再进行求解.22.(2016春•高州市期末)小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?(3)小明在书店停留了多少分钟?(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?【分析】(1)根据图象,观察学校与小明家的纵坐标,可得答案;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)读图,对应题意找到其在书店停留的时间段,进而可得其在书店停留的时间;(4)读图,计算可得答案,注意要计算路程.【解答】解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;(2)根据图象,12≤x≤14时,直线最陡,故小明在12﹣14分钟最快,速度为=450米/分.(3)根据题意,小明在书店停留的时间为从8分到12分,故小明在书店停留了4分钟.(4)读图可得:小明共行驶了1200+600+900=2700米,共用了14分钟.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.23.(2016春•南昌期末)已知y=(k﹣1)x|k|﹣k是一次函数.(1)求k的值;(2)若点(2,a)在这个一次函数的图象上,求a的值.【分析】(1)由一次函数的定义可知:k﹣1≠0且|k|=1,从而可求得k的值;(2)将点的坐标代入函数的解析式,从而可求得a的值.【解答】解:(1)∵y是一次函数,∴|k|=1,解得k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.(2)将k=﹣1代入得一次函数的解析式为y=﹣2x+1.∵(2,a)在y=﹣2x+1图象上,∴a=﹣4+1=﹣3.【点评】本题主要考查的是一次函数的定义,依据一次函数的定义求得k的值是解题的关键.24.已知函数y=(m﹣2)x3﹣|m|+m+7.(1)当m为何值时,y是x的一次函数?(2)若函数是一次函数,则x为何值时,y的值为3?【分析】(1)根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案;(2)根据自变量与函数值的对应关系,可得答案.【解答】解:(1)由y=(m﹣2)x3﹣|m|+m+7是一次函数,得,解得m=﹣2.故当m=﹣2时,y=(m﹣2)x3﹣|m|+m+7是一次函数;(2)当y=3时,3=﹣4x+5,解得x=,故当x=时,y的值为3.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.25.已知函数y=(k﹣)x k2.①k为何值时,函数是正比例函数;②k为何值时,正比例函数的图象在二,四象限;③k为何值时,正比例函数y随x的减小而减小.【分析】①根据正比例函数的定义列出关于k的不等式,求出k的值即可;②根据正比例函数的图象在二,四象限列出关于k的不等式,求出k的值即可;③根据正比例函数y随x的减小而减小列出关于k的不等式,求出k的值即可.【解答】解:①∵该函数是正比例函数,∴,解得k=±1;②∵正比例函数的图象在二,四象限,∴,解得k=﹣1;③∵正比例函数y随x的减小而减小,∴,解得k=1.【点评】本题考查的是正比例函数的定义,熟知正比例函数的定义及性质是解答此题的关键.26.作出y=x的图象,并判断点P(﹣2,3)、Q(4,2)是否为图象上的点.【分析】根据函数图象直接作出判断即可.【解答】解:如图:把x=﹣2代入y=x=﹣1,所以(﹣2,3)不在图象上,把x=4代入y=x=2,所以(4,2)在图象上.【点评】本题考查的是正比例函数的图象,熟知正比例函数图象的画法是解答此题的关键.27.已知正比例函数图象上一个点A到x轴的距离为4,这个点A的横坐标为﹣2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数经过哪几个象限?(3)这个正比例函数的函数值y是随着x增大而增大?还是随着x增大而减小?【分析】(1)根据题意得出A点坐标,进而求出函数解析式;(2)利用(1)中所求得出经过的象限;(3)利用(1)中所求得出增减性.【解答】解:(1)∵正比例函数图象上一个点A到x轴的距离为4,这个点A的横坐标为﹣2,∴A(﹣2,4),(﹣2,﹣4),设解析式为:y=kx,则4=﹣2k,﹣4=﹣2k,解得k=﹣2,k=2,故正比例函数解析式为;y=±2x;(2)当y=2x时,图象经过第一、三象限;当y=﹣2x时,图象经过第二、四象限;(3)当y=2x时,函数值y是随着x增大而增大;当y=﹣2x时,函数值y是随着x增大而减小.【点评】此题主要考查了待定系数法求正比例函数解析式以及正比例函数的性质,得出A 点坐标有两个是解题关键.28.(2010秋•浦东新区期中)已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x 轴上能否找到一点P ,使△AOP 的面积为5?若存在,求点P 的坐标;若不存在,请说明理由.【分析】(1)根据题意求得点A 的坐标,然后利用待定系数法求得正比例函数的解析式;(2)利用三角形的面积公式求得OP=5,然后根据坐标与图形的性质求得点P 的坐标.【解答】解:(1)∵点A 的横坐标为3,且△AOH 的面积为3∴点A 的纵坐标为﹣2,点A 的坐标为(3,﹣2),∵正比例函数y=kx 经过点A ,∴3k=﹣2解得, ∴正比例函数的解析式是;(2)∵△AOP 的面积为5,点A 的坐标为(3,﹣2),∴OP=5,∴点P 的坐标为(5,0)或(﹣5,0).【点评】本题考查了正比例函数图象的性质、待定系数法求正比例函数的解析式.注意点P 的坐标有两个.29.(2016春•广饶县校级期末)如图,在平面直角坐标系中,点A ,B 的坐标分别为(﹣1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A 、B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;(2)在y 轴上是否存在一点P ,连接PA ,PB ,使S △PAB =S四边形ABDC ?若存在这样一点,求出点P 的坐标;若不存在,试说明理由.【分析】(1)根据向右平移横坐标加,向上平移纵坐标加写出点C 、D 的坐标即可,再根据平行四边形的面积公式列式计算即可得解;(2)假设y 轴上存在P (0,b )点,使S △PAB =S 四边形ABDC ,列方程,解得b .【解答】解:(1)C (0,2),D (4,2),四边形ABCD 的面积=(3+1)×2=8;(2)假设y 轴上存在P (0,b )点,则S △PAB =S 四边形ABDC ∴|AB |•|b |=8,∴b=±4,∴P (0,4)或P (0,﹣4).【点评】本题考查平移有关知识.平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.30.(2016春•南昌期末)在平面直角坐标系中,有点A (1,2a +1),B (﹣a ,a ﹣3).(1)当点A 在第一象限的角平分线上时,求a 的值;(2)当点B 在x 轴的距离是到y 轴的距离2倍时,求点B 所在的象限位置;(3)若线段AB ∥x 轴,求三角形AOB 的面积.【分析】(1)根据在第一象限的角平分线上时横纵坐标相等求得a 值即可;(2)根据题意得到|a ﹣3|=2|﹣a |,求得a 值后即可确定点B 的坐标;(3)根据线段AB ∥x 轴求得a 的值后即可确定点A 和点B 的坐标,从而求得线段AB 的长,利用三角形的面积公式求得三角形的面积即可.【解答】解:(1)由题意,得2a +1=1,解得a=0.(2)由题意,得|a ﹣3|=2|﹣a |,解得a=﹣3或a=1.当a=﹣3时,点B (3,﹣6)在第四象限.当a=1时,点B (﹣1,﹣2)在第三象限.(3)∵AB ∥x 轴,∴2a +1=a ﹣3.解得a=﹣4.∴A (1,﹣7),B (4,﹣7).∴AB=3.word格式-可编辑-感谢下载支持过点O作OC⊥AB交BA的延长线于点C,则OC=7.∴△ABC的面积为:AB•OC=×3×7=10.5.【点评】本题目考查了点与坐标的对应关系,坐标轴上的点的特征,各个象限的点的特征,第一、三象限的角平分线上的点的特征.。

八年级上册数学单元测试题及答案

八年级上册数学单元测试题及答案

北师大版八年级上册数学检测试卷第一章勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是()(a)4cm,8cm,7cm (b) 2cm,2cm,2cm(c) 2cm,2cm,4cm (d)13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm,20cm,25cm,则这个三角形最长边上的高为()(a)12cm(b)10cm(c)12.5cm(d)10.5cm3.rt abc的两边长分别为3和4,若一个正方形的边长是 abc的第三边,则这个正方形的面积是()(a)25(b)7(c)12(d)25或74.有长度为9cm,12cm,15cm,36cm,39cm的五根木棒,可搭成(首尾连接)直角三角形的个数为()(a)1个(b)2个(c)3个(d)4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是()(a)直角三角形(b)锐角三角形(c)钝角三角形(d)以上结论都不对6.在△abc中,ab=12cm, ac=9cm,bc=15cm,下列关系成立的是()(a)(b)(c)(d)以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为()(a)2m (b)2.5cm (c)2.25m (d)3m8.若一个三角形三边满足,则这个三角形是()(a)直角三角形(b)等腰直角三角形(c)等腰三角形(d)以上结论都不对9.一架250cm的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm,如果梯子顶端沿墙下滑40cm,那么梯足将向外滑动()(a)150cm (b)90cm (c)80cm (d)40cm10.三角形三边长分别为、、(为自然数),则此三角形是()(a)直角三角形(b)等腰直角三角形(c)等腰三角形(d)以上结论都不对二、填空题11.写四组勾股数组______ ,______ ,______ ,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________.13.如图1,某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯,已知这种地毯每平方米售价20元,主楼梯宽2米.则购地毯至少需要______ 元.14.有一个长为l2cm,宽为4cm,高为3cm的长方形铁盒,在其内部要放一根笔直的铅笔,则铅笔最长是______cm.15.直角三角形有一条直角边为11,另外两条边长是自然数,则周长为________.三、解答题16.如图2,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断裂,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前有多高?(旗杆粗细、断裂磨损忽略不计)17.一个零件的形状如图3所示,工人师傅按规定做得ab=3,bc=4,ac=5,cd=12,ad=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?18.如图4是一块地,已知ad=8m,cd=6m,∠d= ,ab=26m,bc=24m,求这块地的面积.19.“中华人民共和国道路交通管理条例”规定:小汽车在城市街路上的行驶速度不得超过70千米/时,如图5,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪问的距离变为50米.这辆小汽车超速了吗?20.学校校内有一块如图6所示的三角形空地abc,计划将这块空地建成一个花园,以美化校园环境,预计花园每平方米造价为30元,学校修建这个花园需要投资多少元?北师大版八年级上册数学检测试卷第二章实数一、选择题1.在下列实数中,是无理数的为()(a) 0(b)-3.5(c)(d)2.a为数轴上表示-1的点,将点a沿数轴移动3个单位到点b,则点b所表示的实数为().(a)3(b)2(c)-4(d)2或-43.一个数的平方是4,这个数的立方是()(a)8(b)-8(c)8或-8(d)4或-44.实数m、n在数轴上的位置如图1所示,则下列不等关系正确的是()(a)n<m (b) n2<m2(c)n0<m0 (d)| n |<| m |5.下列各数中没有平方根的数是()(a)-(-2)(b)3 (c)(d)-( 2+1)6.下列语句错误的是()(a)的平方根是±(b)-的平方根是-(c)的算术平方根是(d)有两个平方根,它们互为相反数7.下列计算正确的是().(a)(b)(c)(d)—18.估计56 的大小应在().(a)5~6之间(b)6~7之间(c)8~9之间(d)7~8之间9.已知,那么()(a) 0 (b) 0或1 (c)0或-1 (d) 0,-1或110.已知为实数,且 ,则的值为()(a) 3 (b)(c) 1 (d)二、填空题11.的平方根是____________,()2的算术平方根是____________.12.下列实数:,,,︱-1︱,,,0.1010010001……中无理数的个数有______个.13.写出一个3到4之间的无理数______.14.计算:15.的相反数是_____,绝对值是____.三、解答题16.计算:17.某位同学的卧室有25 平方米,共用了64块正方形的地板砖,问每块砖的边长是多少?18.如图2,一只蚂蚁沿棱长为的正方体表面从顶点a爬到顶点b,则它走过的最短路程为多少?19.如图3,一架长2.5米的梯子,斜靠在一竖直的墙上,这时,梯底距离墙底端0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯子的底端将滑出多少米?20.学校要在一块长方形的土地上进行绿化,已知这块长方形土地的长 =5 , 宽 =4(1)求该长方形土地的面积.(精确到0.01)(2)若绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金为多少元?北师大版八年级上册数学检测试卷第三章位置与坐标一、选择题1.如图1,小手盖住的点的坐标可能是()(a)(5,2)(b)(-6,3)(c)(―4,―6)(d)(3,-4)2.在平面直角坐标系中,下列各点在第二象限的是()(a)(2,1)(b)(2,-1)(c)(-2,1)(d)(-2,-1)3.点p (—2 ,3) 关于 y 轴对称的点的坐标是()(a)(—2 ,—3) (b)(3 ,—2) (c)(2 ,3) (d)(2 ,—3)4.平面直角坐标系内,点a(,)一定不在()(a)第一象限(b)第二象限(c)第三象限(d)第四象限5.如果点p在轴上,则点p的坐标为()(a) (0,2) (b) (2,0) (c) (4,0) (d)6.已知点p的坐标为( ,且点p到两坐标轴的距离相等,则点p的坐标为()(a) (3,3) (b) (3, (c) (6, (d) (3,3)7.已知点a(2,0)、点b(-,0)、点c(0,1),以a、b、c三点为顶点画平行四边形,则第四个顶点不可能在()(a)第一象限(b)第二象限(c)第三象限(d)第四象限8.若p()在第二象限,则q( )在()(a)第一象限(b)第二象限(c)第三象限(d)第四象限9.如图2是某战役中缴获敌人防御工程的坐标地图碎片,依稀可见:一号暗堡的坐标为(1,2),四号暗堡的坐标为(-3,2).另有情报得知:指挥部坐标为(0,0),你认为敌军指挥部的位置大约是()(a)a处(b)b处(c)c处(d)d处10.以边长为4的正方形的对角线建立平面直角坐标系,其中一个顶点位于轴的负半轴上,则该点坐标为()(a)(2,0)(b)(0,-2)(c)(0,)(d)(0,)二、填空题11.点a在轴上,且与原点的距离为5,则点a的坐标是________.12.如图3,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示a点的位置,用(3,4)表示b点的位置,那么用______表示c点的位置.13.已知点m ,将点m向右平移个单位长度得到n点,则n点的坐标为________.14.第三象限内的点,满足,,则点的坐标是.15.如图4,将 aob绕点o逆时针旋转900,得到.若点a的坐标为(),则点的坐标为________.三、解答题16.△abc在直角坐标系内的位置如图5所示.(1)分别写出a、b、c的坐标(2)请在这个坐标系内画出△a1b1c1,使△a1b1c1与△abc关于轴对称,并写出b1的坐标;(3)请在这个坐标系内画出△a2b2c2,使△a2b2c2与△abc关于原点对称,并写出a2的坐标;17.小亮要从a地赶往c地去参加科技夏令营,他拿出一张地图如图6所示,图上有a、b、c三地,但地图被墨迹污染,c地具体位置看不清楚了,只知道c地在a地的南偏西55°,在b的北偏西70°.(1)请帮助小亮确定c地的位置;(2)若地图的比例尺是l:10000000,从a地到c地的实际距离约是多少千米?18.在平面直角坐标系中,将坐标为(0,0),(2,1),(2,4),(0,3)的点依次连结起来形成一个图案.(1) 这四个点的横坐标保持不变,纵坐标变成原来的,将所有的四个点用线段依次连结起来,所得的图案与原图案相比有什么变化?(2) 纵、横坐标分别变成原来的2倍呢?19.小明的生日快要到了,小军决定送给他一件小礼物,他告诉小明,他已将礼物藏在学校体育场内.具体地点忘了,只知道坐标是(6,6),还知道体育场内的两个标志点的坐标分别是a(一2,一3)和b(2,一3),小明怎样才能找到小军送他的礼物?20.如图7,某公路(可视为轴)的同一侧有a、b、c三个村庄,要在公路边建一货栈d,向a、b、c 三个村庄送农用物资,路线是d→a→b→c→d或d→c→b→a→d.试问在公路边是否存在一点d,使送货路线之和最短?若存在,请在图中画出点d所在的位置,简要说明作法;若不存在,请说明你的理由.北师大版八年级上册数学检测试卷第四章一次函数一、选择题1.父亲节,某学校“文苑”专栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,那么下面的图象与上述诗意大致相吻合的是()2.已知一次函数 ,若随着的增大而减小,则该函数图象经过()(a)第一、二、三象限(b)第一、二、四象限(c)第二、三、四象限(d)第一、三、四象限3.若函数y= 是正比例函数,则常数m的值是()(a)-7 (b)±7 (c)士3 (d)-34.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如图1所示,由图中给出的信息可知,营销人员没有销售时的收入是()(a)310元(b)300元(c)290元(d)280元5.直线与两坐标轴围成的三角形面积是()(a) 3 (b) 4 (c) 12 (d) 66.下列图形中,表示一次函数 = + 与正比例函数y = 、为常数,且≠0的图象的是()7.如图2所示:边长分别为和的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为,大正方形内除去小正方形部分的面积为(阴影部分),那么与的大致图象应为()x -2 -1 0 1 2 3y 3 2 1 0 -1 -28.已知一次函数(、是常数,且≠0),与的部分对应值如下表所示,那么、的值分别是()(a)1,1 (b)1,-1(c)-1,1 (d)-1,-19.点p1( 1, 1),点p2( 2, 2)是一次函数=-4 + 3 图象上的两个点,且 1< 2,则 1与2的大小关系是().(a) 1> 2 (b) 1> 2 >0 (c) 1< 2 (d) 1= 210.在一定范围内,某种产品的购买量吨与单价元之间满足一次函数关系,若购买1000吨,每吨为800元;购买2000吨,每吨为700元,一客户购买400吨单价应该是()(a)820元(b)840元(c)860元(d)880元二、填空题11.函数 = 的图象经过点p(3,-1),则的值为______.12.写出一个图象不经过第一象限的一次函数:________________.13.如果直线不经过第二象限,那么实数的取值范围是_________.14.已知点p( ,一3)在一次函数 =2 +9的图象上,则 =______.15.饮料每箱24瓶,售价48元,买饮料的总价 (元)与所买瓶数之间的函数关系是______.三、解答题16.如图3,oa、ba分别表示甲乙两名学生运动的一次函数的图象,图中和分别表示运动的路程和时间,根据图象请你判断:(1)甲乙谁的速度比较快?为什么?答:___________________________________________.(2)快者的速度比慢者的速度每秒快多少米?答:____________________________________________.17.汽车油箱中的余油量q(升)是它行驶的时间 (小时)的一次函数.某天该汽车外出时,油箱中余油量与行驶时间的变化关系如图4:(1) 根据图象,求油箱中的余油q与行驶时间的函数关系.(2) 从开始算起,如果汽车每小时行驶40千米,当油箱中余油 20升时,该汽车行驶了多少千米?18.已知等腰三角形的周长是20 ,设底边长为,腰长为,求与的函数关系式,并求出自变量的取值范围.19.如图5,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度(cm)与饭碗数(个)之间的一次函数关系式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?20.我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水吨,应交水费元.(1)若0<≤6,请写出与的函数关系式.(2)若>6,请写出与的函数关系式.(3)在同一坐标系下,画出以上两个函数的图象.(4)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?北师大版八年级上册数学检测试卷第五章二元一次方程组一、选择题1.在下列方程中,不是二元一次方程的是()(a)x+y=3 (b)x=3 (c)x-y=3 (d)x=3-y2.已知二元一次方程组,则()(a)2 (b)3 (c)-1 (d)53.下列各组数,既是方程的解,又是方程的解是()(a)(b)(c)(d)4.如果单项式与是同类项,那么的值是()(a)- 3 (b)-1 (c)(d)35.方程组的解为,则被遮盖的两个数分别为()(a)1,2 (b)1,3 (c)1,4 (d)1,56.小刘同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元.设1元的贺卡为张,2元的贺卡为张,那么所适合的一个方程组是()(a)(b)(c)(d)7.如图1,直线 1、 2的交点坐标可以看作方程组()的解(a)(b)(c)(d)8.古代有这样一个寓言故事: 驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多.那么驴子原来所驮货物的袋数是()(a) 5 (b)6 (c)7 (d)89.如图2,射线oc的端点o在直线ab上,∠aoc的度数比∠boc的2倍多10°.设∠aoc和∠boc的度数分别为、,则下列方程组正确的为()(a)(b)(c)(d)10.一批房间,若每间住1人,有10人无处住;若每间住3人,则有10间无人住,则这批房间数为()(a)20 (b)12 (c)15 (d)10二、填空题11.解方程组时,比较适宜的消元法是______,解方程组时,比较适宜的消元法是________. 12.写出一个含的二元一次方程,使它有一个解是,这个方程是______.13.野鸡、兔子共36只,共有100只脚,设野鸡只,兔子只,则可列方程组______.14.写出满足方程 +2 =9的一组整数解是____.15.母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图3中信息可知一束鲜花的价格是____元.三、解答题16.解下列方程组17.用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图4所示,求每块地砖的长与宽.18.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?19.某水果商店从某地购进一种水果,根据市场调查这种水果在市场上的销售量(吨)与每吨的销售价(万元)之间的函数关系如图5所示,求出销售量与每吨销售价之间的函数关系式.20.一个由父亲、母亲、叔叔和个孩子组成的家庭去某地旅游.甲旅行社的收费标准是:如果买4张全票,则其余人按半价优惠;乙旅行社的收费标准是:家庭旅游算团体票,按原价的优惠.这两家旅行社的原价均为100元.试比较随着孩子人数的变化,哪家旅行社的收费额更优惠?北师大版八年级上册数学检测试卷第六章数据的分析一、选择题1.如果3,2,x,5的平均数是4,那么x等于()(a)2 (b)4 (c)6 (d)82.已知一组数据10,20,80,40,30,90,50,40,50,40,它的众数和中位数分别是()(a) 40,40 (b) 40,60 (c)50,45 (d)45,403.一个样本数据按从小到大的顺序的排顺列为13、14、19、、23、27、28、31,其中位数为22,则等于()(a)21 (b)22 (c)20 (d)234.某公司销售部有营销人员25人,销售部为了制定某种商品的销售定额,统计了25人某月的销售如下表:每人销售量(单位:件) 600 500 400 350 300 200人数(单位:人) 1 4 4 6 7 3公司营销人员该月销售的中位数是()(a)400件(b)350件(c)300件(d)360件5.某服装销售在进行市场占有率的调查时,他最应该关注的是()(a)服装型号的平均数(b)服装型号的众数(c)服装型号的在中位数(d)最小的服装型号6.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次,射击成绩统计如下:命中环数(单位:环) 7 8 9 10甲命中相应环数的次数 2 2 0 1乙命中相应环数的次数 1 3 1 0从射击成绩的平均数评价甲、乙两人的射击水平,则()(a)甲比乙高(b)甲、乙一样(c)乙比甲高(d)不能确定7.5个整数从小到的排列,其中位数是4,如果这组数据的众数是6,则这5个整数的和可能是()(a)21 (b)22 (c)23 (d)248.为了让人们感受丢弃塑料袋对环境造成的影响程度,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31,如果该班有45名学生,那么根据上面提供的数据估计本周全班同学家中总共丢弃塑料袋的数量约为()(a)900个(b)1080个(c)1260个(d)1800个9.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为()(a)4 (b)8 (c)12 (d)2010.部队准备从新兵中组建一个升旗部队,抽查了一批新兵的身高,在这次实验中,部队最关心的是新兵身高数据的( )(a)平均数 (b)加权平均数 (c)中位数 (d)众数二、填空题11.一个小组共有6名学生,在一次“引体向上”的测试中,他们分别做了8,10,8,7,6,9个,这6个学生平均每人做了___个.12.一射击运动员在一次射击练习中打出的成绩是(单位:环):7,8,9,8,6,8,10,7,这组数据的众数是_________.13.在一节综合实践课上,六名同学做手工的数量(单位:件)分别为5,7,3,6,6,4,则这组数据的中位数为___件.14.下表是食品营养成分表的一部分(每100克食品可食部分营养成分的含量).蔬菜种类绿豆芽白菜油菜卷菜菠菜韭菜胡萝卜(红)碳水化合物(克)4344247在表中提供的碳水化合物的克数所组成的数据中,中位数是___,平均数是___.15.如图1描述了一家鞋店在一段时间里销售女鞋的情况:则这组数据的众数为___,中位数为___ .三、解答题16.已知四个数的和为33,其中一个数为12,那么其余三个数的平均数是多少?17.利用计算器计算下列数据的平均数:(1)9. 48,9. 46,9. 43,9. 49,9. 47,9. 45,9. 44,9. 42,9. 47,9. 46(2)某工人在30天中加工一种零件的日产量为2天51件,3天52件,6天53件,8天54件,7天55件,3天56件,1天59件,求这个工人平均每天加工零件多少件?18.某校八年级(1)班50名学生参加2018年贵阳市数学质量监控考试,全班学生的成绩统计如下表:成绩(分) 71 74 78 80 82 83 85 86 88 90 91 92 93人数 1 2 3 5 4 5 3 7 8 4 3 3 2请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是.(2)该班学生考试成绩的中位数是.(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.19.某班组织一次数学测试,全班学生成绩的分布情况如图2:(1)全班学生数学成绩的众数是______分,全班学生数学成绩为众数的有______人.(2)全班学生数学成绩的中位数是______分.(3)分别计算两个小组超过全班数学成绩中位数的人数占全班人数的百分比.20.甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下(单位:年):甲厂:4,5,5,5,5,7,9,12,13,15;乙厂:6,6,8,8,8,9,10,12,14,15;丙厂:4,4,4,6,7,9,13,15,16,16.请回答下列问题:(1)分别写出以上三组数据的平均数、众数、中位数;(2)这三个厂家的推销广告分别用了哪一种表示集中趋势的特征数?(3)如果你是顾客,宜选购哪家工厂的产品?为什么?参考答案第一章勾股定理一、选择题:1.d 2.a 3.d 4.b 5.a 6.b 7.a 8.a 9.c 10.a二、填空题:11.略 12.24 13.280 14.13 15.132三、16.12.8 17.42 18.连接ac,9619.汽车的速度为72 ,超速了. 20.2520(元)第二章实数一、选择题:1.c 2.d 3.c 4.a 5.d 6.b 7.d 8.d 9.b 10.d二、填空题:11., 12.3 13.略 14. 15.,三、16.(1)(2)(3)(4)17.每块砖的边长是 18.19. 20.(1)约244.95()(2)44091(元)第三章位置与坐标一、选择题:1.d 2.c 3.c 4.c 5.b 6.a 7.c 8.d 9.b 10.d二、填空题:11.(0,5)或(0,-5) 12.(6,1) 13.(,)14.(―5,―3) 15.(,)三、16.(1)a(0,3),b(-4,4),c(-2,1)(2)画图略,b (4,4)(3)画图略,a (0,-3) 17.(1)延长两线相交处就是c地的位置,略18.(1)变矮了(2)面积变成原来的4倍,变高了,变胖了 19.略20.存在,作a点关于轴的对称点a′,再连结a′c,则a′c与轴的交点即为点d. 第四章一次函数一、选择题:1.c 2.b 3.d 4.b 5.b 6.a 7.c 8.c 9.a 10.c二、填空题:11. 12.略 13.≤0 14. 15.三、16.(1)甲的速度比较快,略(2)每秒快1.5米17.(1)(2)320(千米)18.(5<<10) 19.(1)(2)2120.(1)(2)(3)略(4)11吨第五章二元一次方程组一、选择题:1.b 2.d 3.b 4.c 5.d 6.d 7.a 8.a 9.b 10.a二、填空题:11.代入,加减 12.略 13. 14.略 15.15三、16.(1)(2)(3)17.设地砖的长为,宽为,解得18.设钢笔每支为元,笔记本每本元,,解得19.20.甲旅行社的收费总额为:y1= 50x+350,乙旅行社的收费总额为:y2=75x+225.画出函数y1 、y2的图象,如图所示.由图象可以知道两直线的交点为(5,600),所以:(1) 当孩子数x<5时,乙旅行社的收费优惠;(2)当孩子数x=5时,两旅行社的收费相同;(3)当孩子数x>5时,甲旅行社的收费优惠.第六章数据的分析一、选择题:1.c 2.a 3.a 4.b 5.b 6.b 7.a 8.c 9.b 10.d二、填空题:11.8 12.8 13.5.5 4.4,4 15.21和30,24三、16.7 17.(1)9.457 (2)54 18.(1)88 (2)86 (3)不能19.(1)95,20 (2)92.5 (3)第一组:24%,第二组:26%20.(1)甲:平均数为7.9,众数为5,中位数为6.乙:平均数为9.6,众数为8,中位数为8.5.丙:平均数为9.4,众数为4,中位数为8.(2)甲厂用平均数、乙厂用众数、丙厂用中位数.(3)选购乙厂的,平均水平高.。

北师大版八年级数学上册《第4章一次函数》单元测试含答案

北师大版八年级数学上册《第4章一次函数》单元测试含答案

第4章一次函数一、选择题(共26小题)1.2021年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A. B.C.D.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B. C. D.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t (小时)之间的函数图象是()A. B. C.D.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B. C. D.11.函数y=的图象为()A.B.C.D.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤314.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A.B.C.D.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B. C.D.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟20.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米21.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时22.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B.C.D.23.若函数,则当函数值y=8时,自变量x的值是()A.± B.4 C.±或4 D.4或﹣24.已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.825.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B.1 C.2 D.326.如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降二、填空题(共4小题)27.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是℉.28.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.29.已知函数,那么=.30.如图,根据所示程序计算,若输入x=,则输出结果为.第4章一次函数参考答案与试题解析一、选择题(共26小题)1.2021年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【专题】动点型.【分析】根据在电脑上打字录入这篇文稿,录入字数增加,因事暂停,字数不变,继续录入并加快了录入速度,字数增加,变化快,可得答案.【解答】解:A.暂停后继续录入并加快了录入速度,字数增加,故A不符合题意;B.字数先增加再不变最后增加,故B不符合题意错误;C.开始字数增加的慢,暂停后再录入字数增加的快,故C符合题意;D.中间应有一段字数不变,不符合题意,故D错误;故选:C.【点评】本题考查了函数图象,字数先增加再不变最后增加的快是解题关键.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A. B.C.D.【考点】函数的图象.【分析】根据匀速行驶,可得路程随时间匀速增加,根据原地休息,路程不变,根据加速返回,可得路程随时间逐渐减少,可得答案.【解答】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选:C.【点评】本意考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【考点】函数的图象.【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【解答】解:因为开始以正常速度匀速行驶﹣﹣﹣停下修车﹣﹣﹣加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选:D.【点评】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B. C. D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.【考点】函数的图象.【分析】根据函数图象的纵坐标,可得答案.【解答】解:由函数图象的纵坐标,得故选:B.【点评】本题考查了函数图象,利用了有理数大大小比较.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟【考点】函数的图象.【分析】根据图象可以确定小强离公共汽车站2公里,步行用了多长时间,等公交车时间是多少,两人乘公交车运行的时间和对应的路程,然后确定各自的速度.【解答】解:A、依题意得小强从家到公共汽车步行了2公里,故选项正确;B、依题意得小强在公共汽车站等小明用了10分钟,故选项正确;C、公交车的速度为15÷=30公里/小时,故选项正确.D、小强和小明一起乘公共汽车,时间为30分钟,故选项错误;故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t (小时)之间的函数图象是()A. B.C. D.【考点】函数的图象.【专题】压轴题.【分析】根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.【解答】解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C.【点评】本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】立方体的上下底面为正方形,立方体的高为x,则得出y﹣x=2x,再得出图象即可.【解答】解:正方形的边长为x,y﹣x=2x,∴y与x的函数关系式为y=x,故选:B.【点评】本题考查了一次函数的图象和综合运用,解题的关键是从y﹣x等于该立方体的上底面周长,从而得到关系式.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】生活中比较运动快慢通常有两种方法,即比较相同时间内通过的路程多少或通过相同路程所用时间的多少,但统一的方法是直接比较速度的大小.【解答】解:根据题中信息可知,相同的路程,跑步比漫步的速度快;在一定时间内没有移动距离,则速度为零.故小华的爷爷跑步到公园的速度最快,即单位时间内通过的路程最大,打太极的过程中没有移动距离,因此通过的路程为零,还要注意出去和回来时的方向不同,故B符合要求.故选B.【点评】此题考查函数图象问题,关键是根据速度的物理意义和比较物体运动快慢的基本方法.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B. C. D.【考点】函数的图象.【专题】压轴题.【分析】开始一段的弹簧称的读数保持不变,当铁块进入空气中的过程中,弹簧称的读数逐渐增大,直到全部进入空气,重量保持不变.【解答】解:根据铁块的一点过程可知,弹簧称的读数由保持不变﹣逐渐增大﹣保持不变.故选:A.【点评】本题考查了函数的概念及其图象.关键是根据弹簧称的读数变化情况得出函数的图象.11.函数y=的图象为()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】从x<0和x>0两种情况进行分析,先化简函数关系式再确定函数图象即可.【解答】解:当x<0时,函数解析式为:y=﹣x﹣2,函数图象为:B、D,当x>0时,函数解析式为:y=x+2,函数图象为:A、C、D,故选:D.【点评】本题考查的是函数图象,利用分情况讨论思想把函数关系式进行正确变形是解题的关键,要能够根据函数的系数确定函数的大致图象.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.【考点】函数的图象.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为C.故选C.【点评】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤3【考点】函数的图象.【分析】根据图象,找到y的最高点是(﹣2,3)及最低点是(1,0),确定函数值y的取值范围.【解答】解:∵图象的最高点是(﹣2,3),∴y的最大值是3,∵图象最低点是(1,0),∴y的最小值是0,∴函数值y的取值范围是0≤y≤3.故选:D.【点评】本题考查了函数的图象,解答本题的关键是会观察图象,找到y的最高点及最低点.14.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点【考点】函数的图象.【分析】根据给出的函数图象对每个选项进行分析即可.【解答】解:从图象可以看出,甲、乙两人进行1000米赛跑,A说法正确;甲先慢后快,乙先快后慢,B说法正确;比赛到2分钟时,甲跑了500米,乙跑了600米,甲、乙两人跑过的路程不相等,C说法不正确;甲先到达终点,D说法正确,故选:C.【点评】本题考查的是函数的图象,从函数图象获取正确的信息是解题的关键.15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A.B.C.D.【考点】函数的图象.【分析】根据容器内的水匀速流出,可得相同时间内流出的水相同,根据圆柱的直径越长,等体积的圆柱的高就越低,可得答案.【解答】解:圆柱的直径较长,圆柱的高较低,水流下降较慢;圆柱的直径变长,圆柱的高变低,水流下降变慢;圆柱的直径变短,圆柱的高变高,水流下降变快.故选:A.【点评】本题考查了函数图象,利用了圆柱的直径越长,等体积的圆柱的高就越低.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B. C.D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器容器最小,用时最短,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器较粗,那么用时较短.故选B.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.【考点】函数的图象;中心投影.【专题】压轴题;数形结合.【分析】根据中心投影的性质得出小红在灯下走的过程中影长随路程之间的变化,进而得出符合要求的图象.【解答】解:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l 与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选:C.【点评】此题主要考查了函数图象以及中心投影的性质,得出l随S的变化规律是解决问题的关键.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程的增加幅度会变大一点.据此即可选择.【解答】解:由题意知,前1小时路程随时间增大而增大,1小时后路程的增加幅度会变大一点.故选:C.【点评】本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟【考点】函数的图象.【分析】A.从4分钟到8分钟时间增加而离家的距离没变,所以这段时间在看报;B.4分钟时散步到了报栏,据此知公共阅报栏距小明家200米;C.据图形知,12分钟时离家最远,小明离家最远的距离为400米;D.据图知小明从出发到回家共用时16分钟.【解答】解:A.小明看报用时8﹣4=4分钟,本项错误;B.公共阅报栏距小明家200米,本项正确;C.据图形知,12分钟时离家最远,小明离家最远的距离为400米,本项正确;D.据图知小明从出发到回家共用时16分钟,本项正确.故选:A.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.20.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米【考点】函数的图象.【分析】根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,然后可得绿化速度.【解答】解:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,每小时绿化面积为100÷2=50(平方米).故选:B.【点评】此题主要考查了函数图象,关键是正确理解题意,从图象中找出正确信息.21.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时【考点】函数的图象.【专题】行程问题.【分析】结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千米;平均速度=总路程÷总时间.【解答】解:A、由函数图象可知,体育场离张强家2.5千米,故A选项正确;B、由图象可得出张强在体育场锻炼30﹣15=15(分钟),故B选项正确;C、体育场离张强家2.5千米,体育场离早餐店距离无法确定,因为题目没说体育馆,早餐店和家三者在同一直线上,故C选项错误;D、∵张强从早餐店回家所用时间为95﹣65=30(分钟),距离为1.5km,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时),故D选项正确.故选:C.【点评】此题主要考查了函数图象与实际问题,根据已知图象得出正确信息是解题关键.22.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B.C.D.【考点】函数的图象.【分析】根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打6折,可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,即可得到答案.【解答】解:可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,故选:B.【点评】本题主要考查了函数的图象,关键是分析出分两段,每段y都随x的增大而增大,只不过快慢不同.23.若函数,则当函数值y=8时,自变量x的值是()A.± B.4 C.±或4 D.4或﹣【考点】函数值.【专题】计算题.【分析】把y=8直接代入函数即可求出自变量的值.。

第四章一次函数单元测试 2024—2025学年北师大版数学八年级上册

第四章一次函数单元测试 2024—2025学年北师大版数学八年级上册

第四章一次函数单元测试北师大版2024—2025学年秋季八年级上册(考试时间:120 分钟试卷满分: 120分)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。

3.回答第II卷时,将答案写在第II卷答题卡上。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.若点(3,m)在函数y=x+2的图象上.则m的值为()A.0B.1C.2D.32.一个正比例函数的图象经过点(﹣2,4),它的表达式为()A.y=﹣2x B.y=2x C.y=﹣x D.y=x3.在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(6,0)D.(﹣6,0)4.关于一次函数y=2x+4,下列说法正确的是()A.图象经过第一、三、四象限B.图象与y轴交于点(0,﹣2)C.函数值y随自变量x的增大而增大D.当x>﹣1时,y<25.点A(2,y1)与点B(3,y2)在直线y=﹣2024x+2024上,则y1与y2的关系是()A.y1<y2B.y1≤y2C.y1>y2D.y1=y26.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中,如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象,则下列结论中不正确的是()A.公园离小明家1600米B.小明出发分钟后与爸爸第一次相遇C.小明在公园停留的时间为5分钟D.小明与爸爸第二次相遇时,离家的距离是960米7.若一次函数y=(4﹣3k)x﹣2的图象经过点A(x1,y1)和点B(x2,y2),当x1>x2时,y1<y2,则k的取值范围是()A.B.C.D.8.一次函数y=kx﹣k和正比例函数y=kx在同一平面直角坐标系中的函数图象可能是()A.B.C.D.9.将直线y=2x+1向右平移2个单位后所得图象对应的函数表达式为()A.y=2x+5B.y=2x+3C.y=2x﹣2D.y=2x﹣3 10.一次函数y=(m﹣1)x+m+2的图象过一、二、三象限,则m的取值范围是()A.m>1B.﹣1<m<2C.﹣2<m<1D.m>﹣2二、填空题(每小题3分,满分18分)11.已知关于x的函数y=(k﹣1)x|k﹣2|是正比例函数,则k=.12.当直线y=(2﹣2k)x+k﹣3,不经过第一象限时,则k的取值范围是.13.在函数y=中,自变量x的取值范围是.14.若,则直线y=kx﹣k必经过第象限.15.如图,直线y=x+4与x轴、y轴分别交于A、B两点,点C在OB 上,若将△ABC沿AC折叠,使点B恰好落在x轴上的点D处,则点C的坐标是.16.如图,在平面直角坐标系中,一次函数y=k(x﹣1)的图象分别交x 轴,y轴于A,B两点,且OB=2OA,将直线AB绕点B按顺时针方向旋转45°,交x 轴于点C,则直线BC的函数表达式是.第II卷第四章一次函数单元测试北师大版2024—2025学年秋季八年级上册考生注意:本试卷共三道大题,24道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18题每题8分,19、20、21、22每题9分,23、24每题10分,共计72分,解答题要有必要的文字说明)17.如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.18.如图,直线l1:y=2x+4与x轴交于点A,与y轴交于点B,直线l2:y=﹣x+1与y轴交于点C,直线l1和直线l2相交于点D.(1)直接写出点A、B、C的坐标分别为:A,B,C;(2)在x轴上是否存在一点P,使得S△ADP=4,若存在,求点P坐标;若不存在,请说明理由.19.“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?20.已知y=y1+y2,y1与x成正比例,y2与x﹣2成正比例,当x=1时,y=﹣3;当x=﹣2时,y=0.(1)求y与x的函数关系式;(2)当x=3时,求y的值.21.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?22.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.23.已知函数y=其中m为常数,该函数的图象记为G.(1)当m=﹣2时,若点D(3,n)在图象G上,求n的值;(2)当3﹣m≤x≤4﹣m时,若函数最大值与最小值的差为,求m的值;(3)已知点A(0,1),B(0,﹣2),C(2,1),当图象G与△ABC有两个公共点时,直接写出m的取值范围.24.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C,D,且点D的坐标为(1,n).(1)求一次函数y=kx+b的解析式;(2)求四边形AOCD的面积;(3)在平面内直线CD的右侧是否存在点P,使得以点P,C,D为顶点的三角形是以CD为腰的等腰直角三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由.。

北师大版八年级数学上名校课堂单元测试(四)(含答案)

北师大版八年级数学上名校课堂单元测试(四)(含答案)

单元测试(四) 一次函数(时间:45分钟 满分:100分)一、选择题(每小题3分,共30分)1.已知函数y =ax +a -3是正比例函数,则a 的值是( )A .0B .1C .2D .32.下图中,分别给出了变量x 与y 之间的对应关系,y 不是x 的函数的是( )A B C D3.在平面直角坐标系中,函数y =-x +1的图象经过( ) A .第一、二、三象限 B .第二、三、四象限 C .第一、三、四象限D .第一、二、四象限4.已知点(-4,y 1),(2,y 2)都在直线y =-x +2上,则y 1、y 2大小关系是( ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2D .不能比较5.直线y =kx +b 的图象如图所示,则k 、b 的值为( )A .k =-23,b =-2B .k =23,b =-2C .k =-23,b =2D .k =23,b =26.小明用20元零花钱购买水果慰问老人,已知水果单价是每千克4元,设买水果x 千克用去的钱为y元,用图象表示y与x的函数关系,其中正确的函数图象是( )A B C D7.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,二者的关系式为y=kx-600,那么旅客携带50 kg行李时的运费为( )A.300元B.500元C.600元D.900元8.已知一次函数的图象过点(0,3),且与两坐标轴所围成的三角形面积为3,则这个一次函数的表达式为( )A.y=1.5x+3 B.y=-1.5x+3C.y=1.5x+3或y=-1.5x+3 D.y=1.5x-3或y=-1.5x-39.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x<3时,y1<y2,错误的个数是( )A.0 B.1 C.2 D.310.一辆汽车和一辆摩托车分别从A,B两地去同一城市(与A,B两地在同一直线上),它们离A地的路程随时间变化的图象如图所示.则下列结论:①摩托车比汽车晚到1 h;②A,B两地的路程为20 km;③摩托车的速度为45 km/h,汽车的速度为60 km/h;④汽车出发1小时后与摩托车相遇,此时距B地40千米;⑤相遇前摩托车的速度比汽车的速度快.其中正确结论的个数是( )A.2 B.3 C.4 D.5二、填空题(每小题4分,共16分)11.点(-3,2),(a,a+1)在函数y=kx-1的图象上,则k=________,a=________. 12.已知直线y=-2x+8与x轴交于点P,欲使直线y=3x+3经过点P,须将其向________平移________个单位长度.13.请根据以下信息写出函数的表达式:________.①它的图象是不经过第二象限的一条直线,且与y轴的交点P到原点O的距离为3;②当x为2时,函数y的值就为0.14.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是________升.三、解答题(共54分)15.(8分)在平面直角坐标系中,一次函数y=kx+b的图象经过点A(2,1),B (0,2),C(-1,n),试求n的值.16.(10分)已知一次函数y=ax+b.(1)当点P(a,b)在第二象限时,直线y=ax+b经过哪几个象限?(2)如果ab<0,且y随x的增大而增大,则函数的图象不经过哪些象限?17.(10分)已知一次函数y=2x-3,试解决下列问题:(1)在所给的平面直角坐标系中画出它的图象;(2)判断点C(-4,-8)是否在该一次函数图象上,并说明理由.18.(12分)一辆旅游车从大理返回昆明,旅游车距昆明的路程y(千米)与行驶时间x (小时)之间的函数关系如图所示,试回答下列问题:(1)求此函数的表达式(不必求出自变量的取值范围);(2)若旅游车8:00从大理出发,11:30在某加油站加油,问此时旅游车距昆明还有多少千米(途中停车时间不计)?19.(14分)如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M 在线段OA 和射线AC 上运动,试解决下列问题:(1)求直线AC 的表达式;(2)求△OAC 的面积;(3)是否存在点M ,使△OMC 的面积是△OAC 的面积的14若存在,求出此时点M 的坐标;若不存在,请说明理由.参考答案1.D 2.D 3.D 4.A 5.B 6.C 7.D 8.C 9.C 10.B 11.-1 -1 12.右 5 13.y =32x -3 14.2 15.因为函数图象经过点A(2,1)和点B(0,2),所以⎩⎪⎨⎪⎧2k +b =1,b =2,解得⎩⎪⎨⎪⎧k =-12,b =2.故函数关系式为y =-12x +2.因为图象经过点(-1,n),所以n =12+2=52.16.(1)因为点P(a ,b)在第二象限,所以a<0,b>0.所以直线y =ax +b 经过一、二、四象限. (2)因为y 随x 的增大而增大,所以a>0.又因为ab<0,所以b<0.所以一次函数y =ax +b 的图象不经过第二象限17.(1)因为当x =0时,y =-3,当y =0时,x =32,所以一次函数图象经过(0,-3)和(32,0)两个点,图象图略. (2)当x =-4时,2×(-4)-3=-11≠-8,因此点C(-4,-8)不在该一次函数图象上.18.(1)设函数表达式为y =kx +b ,由图象可知直线经过点(0,360),(1.5,240),所以可得b =360,1.5k +b =240,解得k =-80,b =360,故函数表达式为y =-80x +360. (2)因为当x =3.5时,y =-80×3.5+360=80,即此时旅游车距昆明还有80千米.19.(1)因为点C 的坐标为(0,6),所以设直线AC 的函数表达式为y =kx +6.因为点A 的坐标为(4,2),所以4k +6=2,解得k =-1.所以直线AC 的函数表达式为y =-x +6. (2)因为点C 的坐标为(0,6),所以OC =6.因为点A 的坐标为(4,2),所以△OAC 边OC 上的高为4.所以S △OAC =12×6×4=12. (3)①如图1,当点M 位于线段OA 上时,设M 点的坐标为(a ,b),则△OMC 边OC 上的高为a.由题意,知S △OMC =14S △OAC =14×12=3.因为OC =6,所以12×6×a =3.所以a =1.因为A 点的坐标为(4,2),所以直线OA 的函数表达式为y =12x.因为点M 在直线OA 上,所以b =12×1=12.所以当点M 的坐标为(1,12)时,△OMC 的面积是△OAC 的面积的14;②如图2,当点M 位于线段AC 上时,设点M 的坐标为(m ,n),同(1)可得m =1.因为点M 在直线AC 上,所以n =-1+6=5,故当点M 的坐标为(1,5)时,△OMC 的面积是△OAC 的面积的14;③如图3,当点M 位于射线CM 上时,设点M 的坐标为(s ,t),同(1)可得s =-1.因为点M 在直线AC 上,所以t =-(-1)+6=7,故当点M 的坐标为(-1,7)时,△OMC 的面积是△OAC 的面积的14.综上所述,存在满足题意的点M ,其坐标为(1,12)或(1,5)或(-1,7).。

北师大版数学八年级下册:第四章 因式分解 单元测试(附答案)

北师大版数学八年级下册:第四章 因式分解  单元测试(附答案)

第四章因式分解单元测试(时间:40分钟满分:100分)一、选择题(每小题3分,共30分)1.下列从左边到右边的变形中,是因式分解的是()A.(3-x)(3+x)=9-x2B.m4-n4=(m2+n2)(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1)D.4yz-2y2z+z=2y(2z-yz)+z2.下列多项式中,能用公式法因式分解的是()A.x2-xy B.x2+xyC.x2-y2D.x2+y23.把8a3-8a2+2a进行因式分解,结果正确的是()A.2a(4a2-4a+1)B.8a2(a-1)C.2a(2a+1)2D.2a(2a-1)24.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+15.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是()A.4x2-4x+1=(2x-1)2B.x3-x=x(x2-1)C.x2y-xy2=xy(x-y)D.x2-y2=(x+y)(x-y)6.若x2+ax-24=(x+2)(x-12),则a的值为()A.-10 B.±10 C.14 D.-147.小明用四张如图所示的纸片拼成一个大长方形,并据此写出一个多项式的因式分解,正确的是()A.x2+2x=x(x+2)B.x2-2x+1=(x-1)2C.x2+2x+1=(x+1)2D.x2+3x+2=(x+2)(x+1)8.已知a-b=1,则a2-b2-2b的值为()A.4 B.3 C.1 D.09.对于任何整数m ,多项式(4m +5)2-9都能( )A .被8整除B .被m 整除C .被m -1整除D .被2m -1整除 10.某同学粗心大意,因式分解时,把等式x 4-■=(x 2+4)(x +2)(x -▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A .8,1B .16,2C .24,3D .64,8二、填空题(每小题3分,共15分)11.因式分解:2m 3-8m = .12.若二次三项式x 2-kx +9是一个完全平方式,则k 的值是 .13.若x +y =2,则代数式14x 2+12xy +14y 2= . 14.计算:1.222×9-1.332×4= .15.两名同学将同一个二次三项式因式分解,甲因看错了一次项系数而分解成(x +1)(x +9);乙因看错了常数项而分解成(x -2)(x -4),则将原多项式因式分解后的正确结果应该是 .三、解答题(共55分)16.(16分)因式分解:(1)3m 2n -12mn +12n ; (2)n 2(m -2)-n(2-m );(3)(a +b )3-4(a +b ); (4)8(x 2-2y 2)-x(7x +y )+xy.17.(8分)不解方程组⎩⎨⎧2x +y =6,x -3y =1,求7y(x -3y )2-2(3y -x )3的值.18.(9分)商贸大楼共有四层,第一层有商品(a+b)2种,第二层有商品a(a+b)种,第三层有商品b(a+b)种,第四层有商品(b+a)2种.若a+b=10,则这座商贸大楼共有商品多少种?19.(10分)阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.20.(12分)【知识再现】在研究平方差公式时,我们在边长为a的正方形中剪掉一个边长为b的小正方形(a>b),如图1,把余下的阴影部分再剪拼成一个长方形(如图2),根据图1、图2阴影部分的面积关系,可以得到一个关于a,b的等式.【知识迁移】在边长为a的正方体上挖去一个边长为b(a>b)的小正方体后余下的部分(如图3)再切割拼成一个几何体(如图4).图3中的几何体的体积为,图4中的几何体的体积为,根据它们的体积关系得到关于a,b的等式为:.(结果写成整式的积形式)【知识运用】(1)因式分解:8x3-1;(2)已知a-b=4,ab=3,求a3-b3的值.参考答案:一、选择题(每小题3分,共30分)1.下列从左边到右边的变形中,是因式分解的是(B)A.(3-x)(3+x)=9-x2B.m4-n4=(m2+n2)(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1)D.4yz-2y2z+z=2y(2z-yz)+z2.下列多项式中,能用公式法因式分解的是(C)A.x2-xy B.x2+xyC.x2-y2D.x2+y23.把8a3-8a2+2a进行因式分解,结果正确的是(D)A.2a(4a2-4a+1)B.8a2(a-1)C.2a(2a+1)2D.2a(2a-1)24.将下列多项式因式分解,结果中不含有因式a+1的是(C)A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+15.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是(B)A.4x2-4x+1=(2x-1)2B.x3-x=x(x2-1)C.x2y-xy2=xy(x-y)D.x2-y2=(x+y)(x-y)6.若x2+ax-24=(x+2)(x-12),则a的值为(A)A.-10 B.±10 C.14 D.-147.小明用四张如图所示的纸片拼成一个大长方形,并据此写出一个多项式的因式分解,正确的是(D)A.x2+2x=x(x+2)B .x 2-2x +1=(x -1)2C .x 2+2x +1=(x +1)2D .x 2+3x +2=(x +2)(x +1)8.已知a -b =1,则a 2-b 2-2b 的值为(C )A .4B .3C .1D .09.对于任何整数m ,多项式(4m +5)2-9都能(A )A .被8整除B .被m 整除C .被m -1整除D .被2m -1整除 10.某同学粗心大意,因式分解时,把等式x 4-■=(x 2+4)(x +2)(x -▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是(B )A .8,1B .16,2C .24,3D .64,8二、填空题(每小题3分,共15分)11.因式分解:2m 3-8m =2m(m +2)(m -2).12.若二次三项式x 2-kx +9是一个完全平方式,则k 的值是±6.13.若x +y =2,则代数式14x 2+12xy +14y 2=1. 14.计算:1.222×9-1.332×4=6.32.15.两名同学将同一个二次三项式因式分解,甲因看错了一次项系数而分解成(x +1)(x +9);乙因看错了常数项而分解成(x -2)(x -4),则将原多项式因式分解后的正确结果应该是(x -3)2.三、解答题(共55分)16.(16分)因式分解:(1)3m 2n -12mn +12n ;解:原式=3n(m 2-4m +4)=3n(m -2)2.(2)n 2(m -2)-n(2-m );解:原式=n 2(m -2)+n(m -2)=n(n +1)(m -2).(3)(a +b )3-4(a +b );解:原式=(a +b )[(a +b )2-4]=(a +b )(a +b +2)(a +b -2).(4)8(x 2-2y 2)-x(7x +y )+xy.解:原式=8x 2-16y 2-7x 2-xy +xy=x 2-16y 2=(x +4y )(x -4y ).17.(8分)不解方程组⎩⎨⎧2x +y =6,x -3y =1,求7y(x -3y )2-2(3y -x )3的值. 解:原式=(x -3y )2[7y +2(x -3y )]=(x -3y )2(2x +y ).∵⎩⎨⎧2x +y =6,x -3y =1,∴原式=12×6=6.18.(9分)商贸大楼共有四层,第一层有商品(a +b )2种,第二层有商品a(a +b )种,第三层有商品b(a +b )种,第四层有商品(b +a )2种.若a +b =10,则这座商贸大楼共有商品多少种?解:(a +b )2+a(a +b )+b(a +b )+(b +a )2=2(a +b )2+(a +b )(a +b )=2(a +b )2+(a +b )2=3(a +b )2.因为a +b =10,所以3(a +b )2=300.答:这座商贸大楼共有商品300种.19.(10分)阅读下列解题过程:已知a ,b ,c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状. 解:∵a 2c 2-b 2c 2=a 4-b 4,①∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2).②∴c 2=a 2+b 2.③∴△ABC 为直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号③;(2)写出该题正确的解法.解:正确的解法如下:∵a 2c 2-b 2c 2=a 4-b 4,∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2).∴c2(a2-b2)-(a2+b2)(a2-b2)=0.∴(a2-b2)[c2-(a2+b2)]=0.分三种情况讨论:①当a2-b2=0,c2-(a2+b2)≠0时,则a=b,∴△ABC为等腰三角形;②当a2-b2≠0,c2-(a2+b2)=0时,则c2=a2+b2,∴△ABC为直角三角形;③当a2-b2=0,且c2-(a2+b2)=0时,则a=b,c2=a2+b2,∴△ABC为等腰直角三角形.综上所述,△ABC为直角三角形或等腰三角形或等腰直角三角形.20.(12分)【知识再现】在研究平方差公式时,我们在边长为a的正方形中剪掉一个边长为b的小正方形(a>b),如图1,把余下的阴影部分再剪拼成一个长方形(如图2),根据图1、图2阴影部分的面积关系,可以得到一个关于a,b的等式a2-b2=(a+b)(a-b).【知识迁移】在边长为a的正方体上挖去一个边长为b(a>b)的小正方体后余下的部分(如图3)再切割拼成一个几何体(如图4).图3中的几何体的体积为a3-b3,图4中的几何体的体积为a2(a-b)+ab(a-b)+b2(a-b),根据它们的体积关系得到关于a,b的等式为:a3-b3=(a-b)(a2+ab+b2).(结果写成整式的积形式)【知识运用】(1)因式分解:8x3-1;(2)已知a-b=4,ab=3,求a3-b3的值.解:(1)8x3-1=(2x)3-1=(2x-1)(4x2+2x+1).(2)∵a-b=4,ab=3,∴a2+b2=(a-b)2+2ab=16+6=22.∴a3-b3=(a-b)(a2+ab+b2)=4×(22+3)=100.。

北师大版八年级上册数学第四章一次函数单元测试卷(Word版,含答案)

北师大版八年级上册数学第四章一次函数单元测试卷(Word版,含答案)

第 1 页 共 9 页北师大版八年级上册数学第四章一次函数单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.甲、乙两种物质的溶解度(g)y 与温度()t ℃之间的对应关系如图所示,则下列说法中,错误的是( )A .甲、乙两种物质的溶解度均随着温度的升高而增大B .当温度升高至2t ℃时,甲的溶解度比乙的溶解度大C .当温度为0℃时,甲、乙的溶解度都小于20gD .当温度为30℃时,甲、乙的溶解度相等2.举世瞩目的2022北京冬季奥运会由北京市和河北省张家口市联合举办,以下表述能够准确表示张家口市地理位置的是( ).A .位于东经114.8°,北纬40.8°B .位于中国境内河北省C .西边和西南边与山西省接壤D .距离北京市180千米3.如图,点、、A B C 都在方格纸的格点上,若点A 的坐标为(0,2),点B 的坐标为(2,0),则点C 的坐标是( )第 2 页 共 9 页 A .(2,2) B .(1,2) C .(1,1) D .(2,1)4.如图所示,一次函数()0y kx b k =+≠的图象经过点()3,2P ,则方程2kx b +=的解是( )A .1x =B .2x =C .3x =D .无法确定5.下列函数关系式中,自变量x 的取值范围错误的是( )A .y =2x 2中,x 为全体实数B .yx ≠﹣1 C .yx =0 D .yx >﹣7 6.下列变化过程中,y 是x 的正比例函数是( )A .某村共有5210m 耕地,该村人均占有耕地y (单位:2m )随该村人数x (单位:人)的变化而变化B .一天内,温岭市气温y (单位:℃)随时间x (单位:时)的变化而变化C .汽车油箱内的存油y (单位:升)随行驶时间x (单位:时)的变化而变化D .某人一年总收入y (单位:元)随年内平均月收入x (单位:元)的变化而变化 7.若2x =是关于x 的方程()00,0mx n m n +=≠>的解,则一次函数()1y m x n =---的图象与x 轴的交点坐标是( ) A .()2,0 B .()3,0 C .()0,2 D .()0,38.某个函数的图象由线段AB 和线段BC 组成,如图,其中()0,2A ,()2,1B ,()5,3C ,点()11,M x y ,()22,N x y 是这两条线段上的点,则正确的结论是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学 第四章单元测试题
(100分钟 满分120分)
班级: 姓名: 得分: 一. 选择题(30分)
1.一次函数y=kx+6,y 随x 的增大而减小,则这个一次函数的图象不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2. 函数y =3x +1的图象一定通过点( ).
A .(3,5)
B .(-2,3)
C .(2,7)
D .(4,10)
3.下列说法正确的是( )
A.正比例函数是一次函数
B.一次函数是正比例函数
C.变量y x ,,y 是x 的函数,但x 不是y 的函数
D.正比例函数不是一次函数,一次函数也不是正比例函数
4.下列函数关系式:①x y -=; ②;112+=x y ③12++=x x y ; ④x
y 1=. 其中一次函数的个数是( )
A. 1个
B.2个
C.3个
D.4个
5.在直角坐标系中,既是正比例函数kx y =,又是y 的值随x 值的增大而减小的图像是( )
A B C D
6.函数值y 随x 的增大而减小的是( )
(A)y=1+x (B)y=2
1x -1 (C)y=-x +1 (D)y=-2+3x 7.如图,直线b kx y +=经过A(0,2)和B(3,0)两点,那么
这个一次函数关系式是( )
A.32+=x y
B.23
2+-=x y C.23+=x y D.1-=x y 8. 已知油箱中有油25 L ,每小时耗油5 L ,则剩油量P (L)t (h)之间的函数关系式为( ).
A .P =25+5t
B .P =25-5t
C .P =255t
D .P =5t -25 9.一次函数y=kx+b 图象如图,准确的是( )
(A )k>0,b >0 (B )k>0,b <0
(C )k<0,b>0 (D )k<0,b <0
10.如果y=x -2a +1是正比例函数,则a 的值是( )
(A)21 (B)0 (C)-2
1 (D)-
2 二. 填空题(30分)
11.函数的三种表示方式分别是 、 、 。

12. 一元一次方程0.5x+1=0的解是一次函数y=0.5x+1的图象与 轴交点的横坐标。

13.已知一次函数1)2(++=x m y ,函数y 的值随x 值的增大而增大,则m 的取值
范围是 .
14.函数2+-=x y 中,y 的值随x 值的减小而 ,且函数图像与x 轴、y 轴
的交点坐标分别是 , 。

15.在函数y =1
1+x 中,自变量x 的取值范围是______. 16.点(-1,2)在直线y=2x +4上吗? (填在或不在).
17.已知变量y 和x 成正比例,且x=2时,y=-2
1,则y 和x 的函数关系式 为 。

18.直线y=kx +2与x 轴交于点(-1,0),则k= 。

19. 已知函数y =3x -6,当x =0时,y =__________;当y =0时,x =__________.
20.若直线y=kx +b 平行直线y=3x +4,且过点(1,-2),则k= .
三. 解答题(60分)
21.(13分)在同一直角坐标系上画出函数32,32,2+=-==x y x y x y 的图像,并指出它们的特点。

22、假定甲乙两人在一次赛跑中,路程s 与时间t 的关系如图所示,那么可以知道:这是一次__________ m 赛跑;甲、乙两人中先到达终点的是__________;乙在这次赛跑中的速度为__________m/s.(6分)
23.(6分)已知一次函数y=kx +b ,在x=0时的值为4,在x=-1时的值为-2,求这个一次函数的解析式,并判断点(2,-3)是否在函数图像上。

24.(8分)某种拖拉机的油箱可储油40L ,加满油并开始工作后,•油箱中的余油量y (L )与工作时间x (h )之间为一次函数关系,如图所示.
(1)求y 与x 的函数解析式.
(2)一箱油可供拖位机工作几小时?
25.(12分)某市出租车5㎞内起步价为8元,
以后每增加1㎞加价1元,请写出乘坐出租车路
程x ㎞与收费y 元的函数关系,并画出图象.小明
乘了10㎞付多少钱?如果小亮付了15元钱乘了
几千米?
26.(15分)如图信息,l 1为走私船,l 2为我公安
快艇,航行时路程与时间的函数图象,问:
(1)在刚出发时我公安快艇距走私船多少㎞?
(2)计算走私船与公安快艇的速度分别是多少?
(3)写出l 1 , l 2的解析式.
(4)问6分钟时两艇相距几海里。

(5)猜想,公安快艇能否追上走私船,若能追上,那么在几分钟追上?
)。

相关文档
最新文档