模拟量光耦隔离
模拟量光耦隔离

线性光耦原理与电路设计1. 线形光耦介绍光隔离是一种很常用的信号隔离形式。
常用光耦器件及其外围电路组成。
由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。
对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。
对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。
一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。
集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。
模拟信号隔离的一个比较好的选择是使用线形光耦。
线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。
这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。
市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,C LARE的LOC111等。
这里以HCNR200/201为例介绍2. 芯片介绍与原理说明HCNR200/201的内部框图如下所示其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。
1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD 2。
输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和K2,即K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得K1和K2相等。
模拟量光电隔离_解释说明以及概述

模拟量光电隔离解释说明以及概述1. 引言1.1 概述模拟量光电隔离是一种重要的电子技术,用于隔离和保护模拟信号。
它通过使用光学器件将输入信号与输出信号之间进行物理隔离,从而实现信号的传递和保护。
模拟量光电隔离在工业自动化、仪表控制和通信系统等领域中广泛应用,对于提高系统的可靠性和安全性起到了关键作用。
1.2 文章结构本文将围绕着模拟量光电隔离展开讨论,主要分为以下几个部分:第二部分将详细解释说明模拟量光电隔离的概念、原理以及应用领域;第三部分将深入探讨模拟量光电隔离技术,包括光耦合器件及其工作原理、光电隔离器件的分类和特点以及选择方法;第四部分将通过实际案例分析与应用实践来进一步了解设备或系统中模拟量光电隔离的需求分析、选型依据,以及在工业自动化中的应用案例以及遇到的挑战与解决方案;第五部分将总结模拟量光电隔离的优势与不足,并对未来模拟量光电隔离发展进行展望。
1.3 目的本文的目的是提供读者对于模拟量光电隔离技术的全面理解。
通过阐述其概念、原理和应用领域,以及深入探讨其技术细节和实际案例,帮助读者了解模拟量光电隔离在工业自动化中的重要性和价值。
同时,本文还旨在为今后相关领域的研究和开发提供参考和指导。
2. 模拟量光电隔离解释说明2.1 模拟量信号与光电隔离的概念模拟量信号指的是连续变化的电信号,其数值可以在一定范围内任意取值。
而光电隔离是指通过使用光耦合器件将模拟量信号转换成光信号,实现信号之间的隔离和传递。
2.2 光电隔离的原理与作用光电隔离器件采用了光耦合技术,利用发射器将输入电信号转换成相应的光信号,然后经过介质空气或者光纤传输到接收器,接收器再将光信号转换回原始电信号输出。
这样就实现了输入与输出之间的完全电气隔离。
光电隔离主要有以下几个作用:1. 电气隔离:通过光学方法将输入和输出之间进行绝缘,避免了由于共地引起的潜在危险。
2. 抗干扰能力强:由于采用了光学传输方式,在一些噪声环境下具有很好的抗干扰能力,可以有效地防止外界干扰对模拟量信号的影响。
0-5V0-10V转0-20mA4-20mA光耦隔离技术

0-5V0-10V转0-20mA4-20mA光耦隔离技术0-5V/0-10V转0-20mA/4-20mA光耦隔离技术智能高隔离变送器仪表采用智能化设计,具备了传统产品所不具备的多种功能。
只需单电源供电就可将模拟信号进行隔离变送,并按设定范围线性对应地以十进制数字量显示出来。
传统嵌入的模拟显示表采用电位器调节,调节参数单一,不灵活,受温度影响较大。
相比于传统的模拟显示表,这种智能数字显示表采用两个按键组合操作,由中央处理器CPU进行控制,可实现零点、满量程、小数点、报警、延时等多种参数的设定,具有较强的灵活性和实用性。
数显表采用LED显示板,并具有反向、过流保护功能。
产品广泛用于高铁、地铁750V/1500V轨道电压隔离监测,电力仪器仪表与传感器信号收发及监控,高压变频器信号远程抗干扰无失真传输,电网变压器设备运行信号检测、隔离及长线传输,电力监控、医疗设备隔离安全栅。
智能化隔离变送器,是一种将模拟电压或电流信号隔离放大、转换成精度、线性度相匹配的显示控制变送器。
该产品在原有隔离放大器IC基础上增加了显示控制功能,可将模拟电压或电流信号隔离放大、变送控制并实时显示出来。
产品集隔离、显示、报警控制、变送于一体,内部包含有一组高效率多隔离的DC/DC 电源变换电路、信号调制解调电路、信号耦合隔离变换电路、显示和报警控制电路等。
特别适用于:0-75mV/0-5V/0-10V/0-1mA/0-20mA/4-20mA等模拟量的免调节隔离放大变送、显示和控制。
产品采用磁电偶合的低成本方案,主要用于对EMC(电磁干扰)无特殊要求的场合。
内部集成工艺结构及新技术隔离措施使该器件能达到:辅助电源、信号输入与输出3000VDC三隔离。
并且能满足工业级宽温度、潮湿、震动环境要求。
智能化设计的新型隔离变送器系列产品内置反接、过载、抗浪涌等多种保护电路,无需外接其它元件,免零点增益调节,采用标准DIN35导轨安装方式,方便用户现场使用。
模拟量隔离电路

模拟量隔离电路模拟量隔离电路是一种常用的电路设计,在工业自动化控制系统和电子设备中被广泛应用。
它的主要作用是实现输入信号和输出信号之间的电气隔离,以保证系统的稳定性和安全性。
本文将介绍模拟量隔离电路的工作原理、常见的隔离电路形式以及应用案例。
一、工作原理模拟量隔离电路通过电气隔离的方式,将输入信号和输出信号之间的直流电气隔离开,从而避免了信号互相干扰和传输时的电气噪声。
它采用了光电耦合器、变压器和差动放大器等元件来实现电气隔离。
光电耦合器是模拟量隔离电路中最常用的元件之一。
它由一个发光二极管和一个光敏三极管组成。
输入信号通过发光二极管转换为光信号,然后光敏三极管将光信号转换为输出电压信号。
由于光信号不受电气干扰的影响,因此能够实现输入信号和输出信号的电气隔离。
二、常见的隔离电路形式1. 光耦合隔离电路光耦合隔离电路是一种基于光电耦合器的隔离电路。
它通过光电耦合器将输入信号和输出信号之间隔离开,从而实现电气隔离。
该电路结构简单、成本较低,因此被广泛应用于工业控制系统和电子仪器仪表中。
2. 变压器隔离电路变压器隔离电路是一种基于变压器的隔离电路。
它通过变压器将输入信号和输出信号之间的电气隔离开,从而实现隔离。
该电路具有高隔离效果和较低的传输损耗,适用于一些对信号传输质量要求较高的场合。
3. 差动放大器隔离电路差动放大器隔离电路是一种基于差动放大器的隔离电路。
它通过差动放大器将输入信号和输出信号之间的电气隔离开,从而实现隔离。
该电路具有良好的信号传输特性和较低的传输损耗,适用于一些对信号传输精度要求较高的场合。
三、应用案例1. 工业自动化控制系统模拟量隔离电路在工业自动化控制系统中起到了重要的作用。
它能够将传感器采集到的模拟量信号与控制系统之间进行电气隔离,从而保证了控制系统的稳定性和可靠性。
例如,在温度控制系统中,通过模拟量隔离电路将温度传感器采集到的模拟信号与控制系统之间隔离开,可以防止传感器信号对控制系统的干扰,确保温度控制的精度和稳定性。
线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

1. 线形光耦介绍光隔离是一种很常用的信号隔离形式。
常用光耦器件及其外围电路组成。
由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。
对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。
对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。
一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。
集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。
模拟信号隔离的一个比较好的选择是使用线形光耦。
线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。
这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。
市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。
这里以HCNR200/201为例介绍2. 芯片介绍与原理说明HCNR200/201的内部框图如下所示其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。
1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。
输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和 K2,即K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得 K1和K2相等。
0-5V0-10V转0-20mA4-20mA光耦隔离技术

0-5V/0-10V转0-20mA/4-20mA光耦隔离技术智能高隔离变送器仪表采用智能化设计,具备了传统产品所不具备的多种功能。
只需单电源供电就可将模拟信号进行隔离变送,并按设定范围线性对应地以十进制数字量显示出来。
传统嵌入的模拟显示表采用电位器调节,调节参数单一,不灵活,受温度影响较大。
相比于传统的模拟显示表,这种智能数字显示表采用两个按键组合操作,由中央处理器CPU进行控制,可实现零点、满量程、小数点、报警、延时等多种参数的设定,具有较强的灵活性和实用性。
数显表采用LED显示板,并具有反向、过流保护功能。
产品广泛用于高铁、地铁750V/1500V轨道电压隔离监测,电力仪器仪表与传感器信号收发及监控,高压变频器信号远程抗干扰无失真传输,电网变压器设备运行信号检测、隔离及长线传输,电力监控、医疗设备隔离安全栅。
智能化隔离变送器,是一种将模拟电压或电流信号隔离放大、转换成精度、线性度相匹配的显示控制变送器。
该产品在原有隔离放大器IC基础上增加了显示控制功能,可将模拟电压或电流信号隔离放大、变送控制并实时显示出来。
产品集隔离、显示、报警控制、变送于一体,内部包含有一组高效率多隔离的DC/DC 电源变换电路、信号调制解调电路、信号耦合隔离变换电路、显示和报警控制电路等。
特别适用于:0-75mV/0-5V/0-10V/0-1mA/0-20mA/4-20mA等模拟量的免调节隔离放大变送、显示和控制。
产品采用磁电偶合的低成本方案,主要用于对EMC(电磁干扰)无特殊要求的场合。
内部集成工艺结构及新技术隔离措施使该器件能达到:辅助电源、信号输入与输出3000VDC三隔离。
并且能满足工业级宽温度、潮湿、震动环境要求。
智能化设计的新型隔离变送器系列产品内置反接、过载、抗浪涌等多种保护电路,无需外接其它元件,免零点增益调节,采用标准DIN35导轨安装方式,方便用户现场使用。
>>精度等级:0.1级、0.2级、0.5级。
基于ATt i n y 1 3的模拟量隔离采集

基于ATt i n y 1 3 的模拟量隔离采集1 概述在工控应用中,模拟信号采集通常需要采用隔离技术,以避免大型电气设备启合或切换过程中造成的电源和地线波动影响弱电控制系统。
常见的模拟量隔离方法主要有隔离放大器、电磁隔离和光电隔离3 种方式。
隔离放大器,精度很好,但成本高;电磁隔离,设备体积较大,精度较差。
光电隔离技术是一种非常有效的抗干扰手段。
光耦作为常见的光电隔离器件,主要用于数字量隔离传输。
如果使用光耦传输模拟量,那么要求光耦的非线性度非常小,以保证输入的模拟信号的线性,绝大部分的光耦都很难达到。
为了实现对模拟量的光电隔离采集,必须先进行模/数(A/D)转换,才能将转换后的数字量经由光耦传递给下一级电路。
传统方法,直接使用A/D 芯片进行模/数转换,然后经光耦传输。
按接口形式,A/D 芯片可分并行和串行访问2 种方式。
并行A/D 芯片采集精度越高,并行数据线占用的光耦数目越多,而且需要配以控制A/D 转换操作相应的隔离信号,这种方式接线多,占用资源也多;串行A/D 芯片可以节省不少光耦,但需要复杂的时序才能完成对A/D 的读写操作。
本文提出一种使用集成A/D 的微型单片机AT-tiny13 进行模拟量隔离采集,使用单根数据线完成数据传输。
模拟量隔离采集采用了简化的UART 通信方式,即单工通信方式,只需要发送线TXD,无需接收线RXD。
这样,单根数据线就能承担发送A/D 转换值任务,接收方只要具备硬件UART 或软件UART(接收),就可以轻松获取隔离模拟量值。
2 ATtiny13 简介ATtiny13 具有1 KB Flash,64 字节EEPROM,64 字节SRAM,6 个通用I/O 口线,32 个通用工作寄存器,1 个具有比较模式的8 位定时器/计数器,片内/外中断,以及4 路10 位ADC。
3 硬件设计模拟量隔离采集电路如图1 所示。
ATtiny13 有2 路10 位ADC。
光耦隔离的原理及其使用技巧

光耦使用技巧光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。
光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。
目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1 a所示。
光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。
对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。
但是,使用光耦隔离需要考虑以下几个问题:①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题;②光耦隔离传输数字量时,要考虑光耦的响应速度问题;③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。
1 光电耦合器非线性的克服光电耦合器的输入端是发光二极管,因此,它的输入特性可用发光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管,因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。
由图可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精度较差。
图1 光电耦合器结构及输入、输出特性解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。
如果T1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输特性是完全一致的,即K1(I1)=K2 (I1),则放大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R 2。
由此可见,利用T1和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。
图2 光电耦合线性电路另一种模拟量传输的解决方法,就是采用VFC(电压频率转换)方式,如图3所示。
现场变送器输出模拟量信号(假设电压信号),电压频率转换器将变送器送来的电压信号转换成脉冲序列,通过光耦隔离后送出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性光耦原理与电路设计
1. 线形光耦介绍
光隔离是一种很常用的信号隔离形式。
常用光耦器件及其外围电路组成。
由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。
对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。
对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。
一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。
集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。
模拟信号隔离的一个比较好的选择是使用线形光耦。
线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。
这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。
市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,C LARE的LOC111等。
这里以HCNR200/201为例介绍
2. 芯片介绍与原理说明
HCNR200/201的内部框图如下所示
其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。
1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。
输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和K2,即
K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得K1和K2相等。
在后面可以看到,在合理的外围电路设计中,真正影响输出/输入比值的是二者的比值K3,线性光耦正利用这种特性才能达到满意的线性度的。
HCNR200和HCNR201的内部结构完全相同,差别在于一些指标上。
相对于HCNR200,HCNR201提供更高的线性度。
采用HCNR200/201进行隔离的一些指标如下所示:
* 线性度:HCNR200:0.25%,HCNR201:0.05%;
* 线性系数K3:HCNR200:15%,HCNR201:5%;
* 温度系数: -65ppm/oC;
* 隔离电压:1414V;
* 信号带宽:直流到大于1MHz。
从上面可以看出,和普通光耦一样,线性光耦真正隔离的是电流,要想真正隔离电压,需要在输出和输出处增加运算放大器等辅助电路。
下面对HCNR200/201的典型电路进行分析,对电路中如何实现反馈以及电流-电压、电压-电流转换进行推导与说明。
3. 典型电路分析
Agilent公司的HCNR200/201的手册上给出了多种实用电路,其中较为典型的一种如下图所示:
图2
设输入端电压为Vin,输出端电压为Vout,光耦保证的两个电流传递系数分别为K1、K2,显然,,和之间的关系取决于和之间的关系。
将前级运放的电路提出来看,如下图所示:
设运放负端的电压为,运放输出端的电压为,在运放不饱和的情况下二者满足下面的关系:Vo=Voo-GVi (1)
其中是在运放输入差模为0时的输出电压,G为运放的增益,一般比较大。
忽略运放负端的输入电流,可以认为通过R1的电流为IP1,根据R1的欧姆定律得:
通过R3两端的电流为IF,根据欧姆定律得:
其中,为光耦2脚的电压,考虑到LED导通时的电压()基本不变,这里的作为常数对待。
根据光耦的特性,即
K1=IP1/IF (4)
将和的表达式代入上式,可得:
上式经变形可得到:
将的表达式代入(3)式可得:
考虑到G特别大,则可以做以下近似:
这样,输出与输入电压的关系如下:
可见,在上述电路中,输出和输入成正比,并且比例系数只由K3和R1、R2确定。
一般选R1=R2,达到只隔离不放大的目的。
4. 辅助电路与参数确定
上面的推导都是假定所有电路都是工作在线性范围内的,要想做到这一点需要对运放进行合理选型,并且确定电阻的阻值。
4.1 运放选型
运放可以是单电源供电或正负电源供电,上面给出的是单电源供电的例子。
为了能使输入范围能够从0到VCC,需要运放能够满摆幅工作,另外,运放的工作速度、压摆率不会影响整个电路的性能。
TI公司的LM V321单运放电路能够满足以上要求,可以作为HCNR200/201的外围电路。
4.2 阻值确定
电阻的选型需要考虑运放的线性范围和线性光耦的最大工作电流IFmax。
K1已知的情况下,IFmax又确定了IPD1的最大值IPD1max,这样,由于Vo的范围最小可以为0,这样,由于
考虑到IFmax大有利于能量的传输,这样,一般取
另外,由于工作在深度负反馈状态的运放满足虚短特性,因此,考虑IPD1的限制,
这样,
R2的确定可以根据所需要的放大倍数确定,例如如果不需要方法,只需将R2=R1即可。
另外由于光耦会产生一些高频的噪声,通常在R2处并联电容,构成低通滤波器,具体电容的值由输入频率以及噪声频率确定。
4.3 参数确定实例
假设确定Vcc=5V,输入在0-4V之间,输出等于输入,采用LMV321运放芯片以及上面电路,下面给出参数确定的过程。
* 确定IFmax:HCNR200/201的手册上推荐器件工作的25mA左右;
* 确定R3:R3=5V/25mA=200;
* 确定R1:;
* 确定R2:R2=R1=32K。
5. 总结
本文给出了线性光耦的简单介绍以及电路设计、参数选择等使用中的注意事项与参考设计,并对电路的设计方法给出相应的推导与解释,供广大电子工程师参考。