洛必达法则解决高考问题
新人教版高中数学《洛必达法则在高考中的应用》精品PPT课件

注意:lim6x 2 为已定式,不能再用洛必达法则。
x1 6 x
例5.若f(x0 )
2
,求lim h0
f(x0
2h) 5h
f(x0
h)
解析:l i m h0
f(
x0
2 h ) 5h
f
( x0
h)
lim 2f(x0
h0
2
h ) 5
f( x0
h)
3 5
f( x0
2a
g(3) 9a 1 0
①若g(1) a 1 0 a 1 时,
g(t)
则 g(t) 在 [1,3]必有唯一零点t0
所以 y(t) 在[1, t0 ] 减,[t0 ,3]增
1 t0 3
又y(1) 0 ,所以 y(t0 ) 0不适合。
②若g(1) a 1 0 a 1时,
若 x (0,),则
ax 1 0 ax 1 x f (x)
a
1 1 ex
1 x
xex ex 1 x(ex 1)
h(x)恒成立。
下面求 h(x),x (0,) 的最小值或最小极限值。
用导数法判断单调性难以解决,所以猜测最小
极限值点在0或 位置,由洛必达法则:
g(x) xe x 2e x x 2 0(x 0)
因为 g(x) xex ex 1 ,g (x) xe x 0
所以 g(x) 在(0,) 增
g(x) g(0) 0 所以 g(x) 在(0,)增
g(x) g(0) 0 h(x) 1
洛必达法则巧解高考压轴题(好东西)

3.洛必达法则
虽然这些压轴题可以用分类讨论和假设反证的方 法求解,但这种方法往往讨论多样、过于繁杂, 学生掌握起来非常困难.研究发现利用分离参数
①当
x
0
时,
a
R
;②当
x
0
时,
ex
1
x
ax2
等价于
a
ex
1 x2
x
.
记
g(x)
ex
1 x2
x
x
(0,+)
,则
g
'( x)
(x
2)ex x3
x
2
.
记 h(x) (x 2)ex x 2 x (0,+) ,则 h '(x) (x 1)ex 1,当 x (0,+) 时, h ''(x) xex 0 ,
理
当 x 0 ,且 x 1时, f (x) ln x k ,即 ln x 1 ln x k , x 1 x x 1 x x 1 x
也即 k
x ln x x 1
1 x
x ln x x 1
2x ln x 1 x2
1,记
g(x)
2x ln x 1 x2
1,
x
0 ,且
x
1
则
g
'( x)
2( x 2
1 x
(Ⅰ)设 a 0 ,讨论 y f x 的单调性;
(word完整版)导数结合洛必达法则巧解高考压轴题.doc

导数结合洛必达法则巧解高考压轴题○2 洛必达法则可处理0 0, ,0 ,1 ,,0 , 型。
2010 年和 2011 年高考中的全国新课标卷中的第 21 题中的第 ○2 步,由不等式恒成立来求参数的0 0取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。
则不适用,应从另外途径求极限。
洛必达法则简介: ○4 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
法则 1 若函数 f(x) 和 g(x) 满足下列条件: (1) lim f x 0 及 lim g x 0;x a x a(2) a f(x) g(x) g'(x) 0 在点 的去心邻域内, 与 可导且 ≠ ;二.高考题处理1.(2010 年全国新课标理 )设函数x 2f (x) e 1 x ax 。
(3) limx af xg xl ,(1) 若a 0,求 f (x) 的单调区间; (2) 若当 x 0时 f (x) 0,求 a 的取值范围那么 limx af xg x= limx af xg xl 。
x x原解:(1) a 0时, ( ) 1f x e x , f '( x) e 1.法则 2 若函数 f(x) 和 g(x) 满足下列条件: (1) lim f x 0 及lim g x 0;x x当 x ( ,0) 时, f '( x) 0;当 x (0, ) 时, f '( x) 0 .故 f (x) 在( ,0) 单调减少,在(2) A f 0,f(x) 和 g(x) 在 ,A 与 A, 上可导,且 g'(x) ≠0;(0, ) 单调增加(3) limxf xg x l ,x(II ) '( ) 1 2f x e ax那么 limxf xg x=limxf xg xl。
x 由(I )知 1e x ,当且仅当 x 0时等号成立 .故f '( x) x 2ax (1 2a)x ,法则 3 若函数 f(x) 和 g(x) 满足下列条件: (1) limx af x 及 lim x ag x ;从而当 1 2a 0,即 1 a 时, f '( x) 0 ( x 0) ,而 f (0) 0 ,2(2) 在点 a 的去心邻域内, f(x) 与 g(x) 可导且 g'(x) ≠0;于是当 x 0时, f (x) 0 .(3) limx af xg xl ,x x由 e 1 x(x 0) 可得 e 1 x(x 0) .从而当1 a 时, 2那么 limf x= limx af xl 。
洛必达法则在高考解答题中的应用(高二下)

洛必达法则在高考解答题中的应用(高二下)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN导数结合洛必达法则巧解高考压轴题一.洛必达法则:法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x ag x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞;(2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立.○2洛必达法则可处理00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限. ○4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解1. 函数2()1x f x e x ax =---.(Ⅰ)若0a =,求()f x 的单调区间;(Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围.2. 已知函数xb x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x>+-,求k 的取值范围. 3.若不等式3sin ax x x ->对于)2,0(π∈x 恒成立,求实数a 的取值范围. 4.设函数xx x f cos 2sin )(+=。
2023届高考数学专项练习洛必达法则含解析

洛必达法则思路引导“洛必达法则”是高等数学中的一个重要定理,用分离参数法(避免分类讨论)解决成立、或恒成立命题时,经常需要求在区间端点处的函数(最)值,若出现00型或∞∞型可以考虑使用洛必达法则。
法则1 若函数f(x)和g(x)满足下列条件:(1)limx→a f(x)=0及limx→ag(x)=0;(2)在点a的某去心邻域内,f(x)与g(x)可导且g′(x)≠0;(3)limx→a f′xg′x=A,那么limx→af xg x=limx→af′xg′x=A.法则2 若函数f(x)和g(x)满足下列条件:(1)limx→a f(x)=∞及limx→ag(x)=∞;(2)在点a的某去心邻域内,f(x)与g(x)可导且g′(x)≠0;(3)limx→a f′xg′x=A,那么limx→af xg x=limx→af′xg′x=A.例题讲解类型一:用洛必达法则处理00型函数【例1】已知函数f(x)=x(e x-1)-ax2,当x≥0时,f(x)≥0,求a的取值范围.【方法总结】用洛必达法则处理00型函数的步骤:1.可以分离变量;2.出现“0”型式子;3.运用洛必达法则求值2023届高考数学专项练习【针对训练】若∀x∈[1,+∞),不等式ln x≤m x-1 x恒成立,求实数m的取值范围.类型二:用洛必达法则处理∞∞型函数【例2】已知函数f(x)=(x+1)ln x-a(x-1),若当x∈(1,+∞)时,f(x)>0,求a的取值范围.【方法总结】用洛必达法则处理∞∞型函数的步骤:1.可以分离变量;2.出现“∞∞”型式子;3.运用洛必达法则求值【针对训练】设函数f(x)=e x-1-x-ax2,若当x≥0时f(x)≥0,求a的取值范围模拟训练1.已知函数f(x)=a ln x+bx(a,b∈R)在x=12处取得极值,且曲线y=f(x)在点(1,f(1))处的切线与直线x-y+1=0垂直.(1)求实数a,b的值;(2)若∀x∈[1,+∞),不等式f(x)≤(m-2)x-m x恒成立,求实数m的取值范围.2.已知函数f(x)=x(e x-1)-ax2.(1)若f(x)在x=-1时有极值,求函数f(x)的解析式;(2)当x≥0时,f(x)≥0,求a的取值范围.3.已知函数f(x)=a ln xx+1+bx,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0。
妙用洛必达法则-2023年新高考数学导数压轴题(解析版)

妙用洛必达法则【典型例题】例1.已知f(x)=(x+1)ln x.(1)求f(x)的单调区间;(2)若对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立,求a的取值范围.【解析】解:(1)f(x)的定义域为(0,+∞),f′(x)=ln x+1+1 x,令g(x)=ln x+1+1x(x>0),则g (x)=1x-1x2=x-1x2所以当0<x<1时,g (x)<0;当x>1时,g (x)>0,所以g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以x>0时,g(x)>g(1)=2>0,即f(x)在(0,+∞)上单调递增,所以f(x)的增区间为(0,+∞),无减区间.(2)对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x≥1,ln x-a x-1x≤0恒成立.当x=1,a∈R对任意x>1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x>1,a≥x ln xx2-1恒成立.记m(x)=x ln xx2-1(x>1),则m (x)=(1+ln x)(x2-1)-2x2ln x(x2-1)2=x2-1-(1+x2)ln x(x2-1)2=1 x2+11-2x2+1-ln x (x2-1)2,记t(x)=1-21+x2-ln x(x>1),则t (x)=4x(1+x2)2-1x=4x2-(1+x2)2x(1+x2)2=-(1-x2)2x(1+x2)2<0,所以t(x)在(1,+∞)单调递减,又t(1)=0,所以,x>1时,t(x)<0,即m (x)<0,所以m(x)在(1,+∞)单调递减.所以m(x)max<m(1)=limx→1x ln xx2-1=limx→1x ln xx+1-0x-1=x ln xx+1x=1=x+1-ln x(x+1)2x=1=12,综上所述,a的取值范围是12,+∞.例2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)极值点的个数,并说明理由;(3)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】解:(1)当a=1时,切点为(1,ln2),则f′(x)=1x+1+2x-1,所以f′(1)=32,切线方程为y-ln2=32(x-1),即3x-2y+2ln2-3=0,所以切线方程为:3x-2y+2ln2-3=0;(2)由题意可知,函数f(x)的定义域为(-1,+∞),则f′(x)=1x+1+a(2x-1)=2ax2+ax-a+1x+1,令g(x)=2ax2+ax-a+1,x∈(-1,+∞),①当a=0时,f′(x)>0,函数f(x)在(-1,+∞)上单调递增,无极值点,②当a>0时,△=a(9a-8),当0<a≤89时,△≤0,g(x)≥0,f′(x)≥0,所以f(x)在(-1,+∞)上单调递增,无极值点,当a>89时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1<x2,因为x1+x2=-12,x1<-14,x2>-14,g(-1)=1>0,所以-1<x1<-14,因为x∈(-1,x1),(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增,x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有两个极值点,当a<0时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1>x2,因为g(-1)=1>0,所以x2<-1,所以,x∈(-1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增,当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有一个极值点,综上可知,当a<0时,函数f(x)有一个极值点;当0≤a≤89时,函数f(x)无极值点;当a>89时,函数f(x)有两个极值点;(3)当0≤a≤89时,函数f(x)在(0,+∞)上单调递增,因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当89<a≤1时,g(0)>0,得x2<0,所以函数f(x)在(0,+∞)上单调递增,又因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当a>1时,由g(0)<0,得x2>0,所以x∈(0,x2)时,函数f(x)单调递减,因为f(0)=0,所以x∈(0,x2)时,f(x)<0时,不符合题意,当a<0时,设h(x)=x-ln(x+1),因为x∈(0,+∞)时,h′(x)=1-1x+1=xx+1>0,所以h(x)在(0,+∞)上单调递增,所以当x∈(0,+∞)时,h(x)>h(0)=0,即h(x+1)<x,可得f(x)<x+a(x2-x)=ax2+(1-a)x,当x>1-1a时,ax2+(1-a)x<0,此时f(x)<0,不合题意,综上,a的取值范围为[0,1].例3.已知函数f(x)=x2-mx-e x+1.(1)若函数f(x)在点(1,f(1))处的切线l经过点(2,4),求实数m的值;(2)若关于x的方程|f(x)|=mx有唯一的实数解,求实数m的取值范围.【解析】解:(1)f (x)=2x-m-e x,∴在点(1,f(1))处的切线l的斜率k=f (1)=2-e-m,又f(1)=2-e-m,∴切线l的方程为y-(2-e-m)=(2-e-m)(x-1),即l:y=(2-e-m)x,由l经过点(2,4),可得4=2(2-e-m)⇒m=-e.(2)证明:易知|f(0)|=0=m×0⇒x=0为方程的根,由题只需说明当x>0和x<0时原方程均没有实数解即可.①当x>0时,若m<0,显然有mx<0,而|f(x)|≥0恒成立,此时方程显然无解,若m=0,f(x)=x2-e x+1⇒f (x)=2x-e x,f (x)=2-e x,令f (x)>0⇒x<ln2,故f (x)在(0,ln2)单调递增,在(ln2,+∞)单调递减,故f (x)<f (ln2)=2ln2-2<0⇒f(x)在(0,+∞)单调递减⇒f(x)<f(0)=0,从而|f(x)|>0,mx=0×x=0,此时方程|f(x)|=mx也无解.若m>0,由|f(x)|=mx⇒m=x+1x-e xx-m,记g(x)=x+1x-e xx-m,则g (x)=(x-1)(x+1-e x)x2,设h(x)=x+1-e x,则h (x)=1-e x<0有(0,+∞)恒成立,∴h(x)<h(0)=0恒成立,故令g (x )>0⇒0<x <1⇒g (x )在(0,1)上递增,在(1,+∞)上递减⇒g (x )≤g (1)=2-e -m <0⇒|g (x )|≥e -2+m >m ,可知原方程也无解,由上面的分析可知x >0时,∀m ∈R ,方程|f (x )|=mx 均无解.②当x <0时,若m >0,显然有mx <0,而|f (x )|≥0恒成立,此时方程显然无解,若m =0,和①中的分析同理可知此时方程|f (x )|=mx 也无解.若m <0,由|f (x )|=mx ⇒-m =x +1x -e x x-m,记g (x )=x +1x -e x x -m ,则g(x )=(x -1)(x +1-e x )x 2,由①中的分析知h (x )=x +1-e x <0,故g (x )>0在(-∞,0)恒成立,从而g (x )在(-∞,0)上单调递增,当x →0时,g (x )→lim x →0-g (x )=lim x →0-x 2+1-e x x -m =lim x →0-2x -e x1-m =-1-m ,如果-1-m ≤0,即m ≥-1,则|g (x )|>m +1,要使方程无解,只需-m ≤m +1⇒m ≥-12,即有-12≤m <0如果-1-m >0,即m <-1,此时|g (x )|∈[0,+∞),方程-m =|g (x )|一定有解,不满足.由上面的分析知x <0时,∀m ∈-12,+∞ ,方程|f (x )|=mx 均无解,综合①②可知,当且仅当m ∈-12,+∞ 时,方程|f (x )|=mx 有唯一解,∴m 的取值范围为-12,+∞ .【同步练习】1.设函数f (x )=e x -1-x -ax 2,(1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.【解析】(1)a =0时,f (x )=e x -1-x ,f '(x )=e x -1.当x ∈(-∞,0)时,f '(x )<0;当x ∈(0,+∞)时,f '(x )>0.故f (x )在(-∞,0)单调减少,在(0,+∞)单调增加.(2)当x =0时,f (x )=0,对于任意实数a ,f (x )≥0恒成立;当x >0时,f (x )≥0等价于a ≤e x -1-x x 2,令g (x )=e x -x -1x 2(x >0),则g(x )=xe x -2e x +x +2x 3,令h (x )=xe x -2e x +x +2(x >0),则h (x )=xe x -e x +1,h (x )=xe x >0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以g (x)>0,g(x)在(0,+∞)上为增函数.而limx→0+(e x-1-x)=0,limx→0+(x2)=0,由洛必达法则知,lim x→0+e x-1-xx2=limx→0+e x-12x=limx→0+e x2=12,故a≤12.综上得a的取值范围为-∞,1 2.2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)讨论函数f(x)极值点的个数,并说明理由;(2)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】(1)f(x)=ln(x+1)+a(x2-x),定义域为(-1,+∞)f (x)=1x+1+a(2x-1)=a(2x-1)(x+1)+1x+1=2ax2+ax+1-ax+1,当a=0时,f (x)=1x+1>0,函数f(x)在(-1,+∞)为增函数,无极值点.设g(x)=2ax2+ax+1-a,g(-1)=1,Δ=a2-8a(1-a)=9a2-8a,当a≠0时,根据二次函数的图像和性质可知g(x)=0的根的个数就是函数f(x)极值点的个数.若Δ=a(9a-8)≤0,即0<a≤89时,g(x)≥0,f(x)≥0函数在(-1,+∞)为增函数,无极值点.若Δ=a(9a-8)>0,即a>89或a<0,而当a<0时g(-1)≥0此时方程g(x)=0在(-1,+∞)只有一个实数根,此时函数f(x)只有一个极值点;当a>89时方程g(x)=0在(-1,+∞)都有两个不相等的实数根,此时函数f(x)有两个极值点;综上可知当0≤a≤89时f(x)的极值点个数为0;当a<0时f(x)的极值点个数为1;当a>89时,f(x)的极值点个数为2.(2)函数f(x)=ln(x+1)+a(x2-x),∀x>0,都有f(x)≥0成立,即ln(x+1)+a(x2-x)≥0恒成立,设h(x)=-ln x+1x2-x,则h (x)=-1x+1(x2-x)+(2x-1)ln(x+1)(x2-x)2=(2x-1)-x2-x(2x-1)(x+1)+ln(x+1)(x2-x)2,设φ(x)=-x2-x(2x-1)(x+1)+ln(x+1),则φ (x)=(x2-x)(4x+1)(2x-1)2(x+1)2,所以x∈0,1 2和x∈12,1时,φ (x)<0,所以φ(x)在对应区间递减,x∈(1,+∞)时,φ (x)>0,所以φ(x)在对应区间递增,因为φ(0)=0,limx→12+-x2-x(2x-1)(x+1)>0,φ(1)=ln2>0,所以x∈(0,1)和x∈(1,+∞)时,h (x)>0,所以h(x)在(0,1)与(1,+∞)上递增.当x∈0,1时,x2-x<0,所以a≤-ln x+1x2-x,由h(x)的单调性得,a≤limx→0-ln x+1x2-x=limx→0-1x+12x-1=limx→0-12x-1x+1=1;当x=1时,f(x)=0,恒成立;当x∈1,+∞时,x2-x>0,所以a≥-ln x+1x2-x,由h(x)的单调性得,所以a≥-ln x+1x2-x=limx→+∞-ln x+1x2-x=limx→+∞-1x+12x-1=limx→+∞-12x-1x+1=0,综上,a∈0,13.已知函数f(x)=e x,g(x)=bx+1,若f(x)≥g(x)对于任意x∈R恒成立,求b的取值集合.【解析】e x≥bx+1恒成立,即e x-1≥bx.当x=0时显然成立,即b∈R.当x>0时,b<e x-1x,令F(x)=e x-1x,则F(x)=e x(x-1)+1x2,令G(x)=e x(x-1)+1,则G (x)=xe x>0,所以G(x)递增,所以G(x)>G(0)=0,所以F (x)在(0,+∞)上恒成立.所以F(x)在(0,+∞)上递增,根据洛必达法则得,limx→0+e x-1x=limx→0+e x1=1,所以b≤1.同理,当x<0时,b≥1.综上所述,b的取值集合为1 .4.设函数f(x)=ln(x+1),g(x)=xf (x),x≥0,其中f (x)是f(x)的导函数,若f(x)≥ag(x)恒成立,求实数a的取值范围.【解析】已知f(x)≥ag(x)恒成立,即ln(x+1)≥axx+1恒成立.当x=0时,a为任意实数,均有不等式恒成立.当时x>0,不等式变形为a≤(x+1)ln(x+1)x恒成立.令h(x)=(x+1)ln(x+1)x,则h(x)=x-ln(x+1)x2,再令φ(x)=x-ln(x+1),则φ (x)=xx+1.因为x>0,所以φ (x)>0,所以φ(x)在(0,+∞)上递增,从而有φ(x)>φ(0)=0.进而有h (x)>0,所以h(x)在(0,+∞)上递增.当x→0+时,有(x+1)ln(x+1)→0,x→0,由洛必达法则得limx→0+h(x)=limx→0+(x+1)ln(x+1)x=limx→0+ln(x+1)+11=1,所以当x→0+时,h(x)→1.所以a≤(x+1)ln(x+1)x恒成立,则a≤1.综上,实数的取值范围为(-∞,1].5.若不等式sin x>x-ax3对于x∈0,π2恒成立,求a的取值范围.【解析】当x∈0,π2时,原不等式等价于a>x-sin xx3.记f(x)=x-sin xx3,则f (x)=3sin x-x cos x-2xx4.记g(x)=3sin x-x cos x-2x,则g (x)=2cos x+x sin x-2.因为g (x)=x cos x-sin x=cos x(x-tan x),g (x)=-x sin x<0,所以g (x)在0,π2上单调递减,且g (x)<0,所以g (x)在0,π2上单调递减,且g (x)<0.因此g(x)在0,π2上单调递减,且g(x)<0,故f (x)=g(x)x4<0,因此f(x)=x-sin xx3在0,π2上单调递减.由洛必达法则有lim x→0f(x)=limx→0x-sin xx3=limx→01-cos x3x2=limx→0sin x6x=limx→0cos x6=16即当x→0时,g(x)→16,即有f(x)<16.故a≥16时,不等式sin x>x-ax3对于x∈0,π2恒成立.6.设函数f(x)=1-e-x.设当x≥0时,f(x)≤xax+1,求a的取值范围.【解析】应用洛必达法则和导数由题设x≥0,此时f(x)≥0.(1)当a<0时,若x>-1a,则xax+1<0,f(x)≤xax+1不成立;(2)当a≥0时,当x≥0时,f(x)≤xax+1,即1-e -x≤xax+1;若x=0,则a∈R;若x>0,则1-e-x≤xax+1等价于1-e-xx≤1ax+1,即a≤xe x-e x+1xe x-x.记g(x)=xe x-e x+1xe x-x,则g (x)=e2x-x2e x-2e x+1xe x-x2=e x xe x-x 2e x-x2-2+e-x.记h(x)=e x-x2-2+e-x,则h (x)=e x-2x-e-x,h (x)=e x+e-x-2>0.因此,h (x)=e x-2x-e-x在(0,+∞)上单调递增,且h (0)=0,所以h (x)>0,即h(x)在(0,+∞)上单调递增,且h(0)=0,所以h(x)>0.因此g (x)=e xxe x-x2h(x)>0,所以g(x)在(0,+∞)上单调递增.由洛必达法则有lim x→0g(x)=limx→0xe x-e x+1xe x-x=limx→0xe xe x+xe x-1=limx→0e x+xe x2e x+xe x=12,即当x→0时,g(x)→12,即有g(x)>12,所以a≤12.综上所述,a的取值范围是-∞,12.。
用洛必达法则巧解高考数学压轴题-李文星

用洛必达法则巧解高考数学压轴题-李文星洛必达法则是高等数学中的一个重要定理,可以用来解决一些极限问题。
在高考数学中,也经常会遇到一些需要使用洛必达法则来解决的压轴题。
以我遇到的一个高考数学压轴题为例,题目如下:
已知函数\(f(x) = \frac{x^2-2x+1}{x^2-1}\),求函数\(y = f(x)\)在点\(x = 1\)处的极限。
根据洛必达法则,我们需要计算\(\lim_{x\to 1}\frac{f(x)}{x-
1}\)。
首先,我们计算\(\lim_{x\to 1}(x-1)\)。
显然,当\(x\)趋近于1时,\(x-1\)也趋近于0。
接下来,我们计算\(\lim_{x\to 1}f(x)\)。
将函数\(f(x)\)代入后,得到:
\(\lim_{x\to 1}\frac{x^2-2x+1}{x^2-1}\)。
因此,我们有\(\lim_{x\to 1}\frac{f(x)}{x-1} = \lim_{x\to
1}\frac{0}{x-1} = 0\)。
所以,函数\(y=f(x)\)在点\(x=1\)处的极限为0。
通过以上步骤,我们成功地使用洛必达法则解决了这个压轴题。
洛必
达法则的核心思想是将问题转化为求导数的问题,通过求导数的方式来计
算极限。
在解决高考数学压轴题时,洛必达法则可以帮助我们更快地得到
答案,提高解题效率。
除了洛必达法则,高考数学中还有许多其他的解题方法和技巧。
在备战高考数学时,我们不仅需要掌握这些方法和技巧,还需要多做题、多总结,提高自己的解题能力。
希望我们都能在高考中取得好成绩!。
洛必达法则巧解高考压轴题

洛必达法则巧解高考压轴题洛必达法则:法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x ag x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。
00型 法则2 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。
∞∞型 注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则也成立。
○2若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
典例剖析例题1。
求极限(1)xx x 1ln lim 0+→ (∞∞型) (2)lim x ®p 2sin x -1cos x (00型) (3) 20cos ln lim x x x → (00型) (4)x x x ln lim +∞→ (∞∞型)变式练习: 求极限(1)x x x )1ln(lim 0+→ (2)a x a x a x --→sin sin lim (3)x e e x x x sin lim 0-→- (4)22)2(sin ln lim x x x -→ππ例题2。
已知函数R m x e x m x f x ∈+-=,)1()(2(1)当1-=m 时,求)(x f 在[]1,2-上的最小值(2)若)()2('2x f x m x >++在()0,∞-上恒成立,求m 的取值范围例题3.已知函数)0(,)(>++=a c xb ax x f 的图像在点())1(,1f 处的切线方程为1-=x y , (1)用a 表示c b ,(2)若x x f ln )(≥在[)+∞,1上恒成立,求a 的取值范围例题4.若不等式3sin ax x x ->在⎪⎭⎫ ⎝⎛∈2,0πx 是恒成立,求a 的取值范围例题5.已知2)1()(ax e x x f x --=(1)若)(x f 在1-=x 时有极值,求函数)(x f 的解析式(2)当0≥x 时,0)(≥x f ,求a 的取值范围强化训练1. 设函数x e x f -1)(-=(1)证明:当1->x 时,1)(+≥x x x f 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洛必达法则简介:法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x af x →= 及()lim 0x ag x →=;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()lim x a f x l g x →'=',那么 ()()limx af xg x →=()()limx af x lg x →'='。
法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=; (2)0A∃,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)()()limx f x l g x →∞'=', 那么 ()()lim x f x g x →∞=()()lim x f x l g x →∞'='。
法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g'(x )≠0;(3)()()limx a f x l g x →'=', 那么 ()()lim x a f x g x →=()()limx a f x l g x →'='。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a+→,x a-→洛必达法则也成立。
○2洛必达法则可处理00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型。
○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。
当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
○4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
二.高考题处理1.(2010年全国新课标理)设函数2()1xf x e x ax =---。
(1) 若0a =,求()f x 的单调区间;(2) 若当0x ≥时()0f x ≥,求a 的取值范围 原解:(1)0a =时,()1xf x e x =--,'()1xf x e =-.当(,0)x ∈-∞时,'()0f x <;当(0,)x ∈+∞时,'()0f x >.故()f x 在(,0)-∞单调减少,在(0,)+∞单调增加(II )'()12xf x e ax =--由(I )知1xe x ≥+,当且仅当0x =时等号成立.故'()2(12)f x x ax a x ≥-=-,从而当120a -≥,即12a ≤时,'()0 (0)f x x ≥≥,而(0)0f =, 于是当0x ≥时,()0f x ≥. 由1(0)xe x x >+≠可得1(0)xe x x ->-≠.从而当12a >时,'()12(1)(1)(2)x x x x x f x e a e e e e a --<-+-=--,故当(0,ln 2)x a ∈时,'()0f x <,而(0)0f =,于是当(0,ln 2)x a ∈时,()0f x <.综合得a 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭原解在处理第(II )时较难想到,现利用洛必达法则处理如下: 另解:(II )当0x =时,()0f x =,对任意实数a,均在()0f x ≥;当0x >时,()0f x ≥等价于21xx a ex--≤令()21xx g x ex--=(x>0),则322()x xx x g x e e x-++'=,令()()220xxh x x x x e e =-++>,则()1xxh x x e e '=-+,()0xh x x e ''=>,知()h x '在()0,+∞上为增函数,()()00h x h ''>=;知()h x 在()0,+∞上为增函数,()()00h x h >=;()0g x '∴>,g(x)在()0,+∞上为增函数。
由洛必达法则知,200011222limlim lim xx xx x x x x ee e x+++→→→--===,故12a ≤综上,知a 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭。
2.(2011年全国新课标理)已知函数,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围。
原解:(Ⅰ)221(ln )'()(1)x x b x f x x xα+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。
(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x=++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--。
考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22(1)(1)2'()k x x h x x -++=。
(i )设0k ≤,由222(1)(1)'()k x x h x x+--=知,当1x ≠时,'()0h x <,h (x )递减。
而(1)0h =故当(0,1)x ∈时, ()0h x >,可得21()01h x x >-;当x ∈(1,+∞)时,h (x )<0,可得211x - h (x )>0 从而当x>0,且x ≠1时,f (x )-(1ln -x x +x k )>0,即f (x )>1ln -x x +xk. (ii )设0<k<1.由于2(1)(1)2k x x -++=2(1)21k x x k -++-的图像开口向下,且244(1)0k ∆=-->,对称轴x=111k >-.当x ∈(1,k -11)时,(k-1)(x 2 +1)+2x>0,故'h (x )>0,而h (1)=0,故当x ∈(1,k -11)时,h (x )>0,可得211x-h (x )<0,与题设矛盾。
(iii )设k ≥1.此时212x x +≥,2(1)(1)20k x x -++>⇒'h (x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x )>0,可得211x- h (x )<0,与题设矛盾。
综合得,k 的取值范围为(-∞,0]原解在处理第(II )时非常难想到,现利用洛必达法则处理如下:另解:(II )由题设可得,当0,1x x >≠时,k<22ln 11x xx+-恒成立。
令g (x)= 22ln 11x xx +-(0,1x x >≠),则()()()22221ln 121x x x g x x +-+'=⋅-, 再令()()221ln 1h x x x x =+-+(0,1x x >≠),则()12ln h x x x x x'=+-,()212ln 1h x x x ''=+-,易知()212ln 1h x x x''=+-在()0,+∞上为增函数,且()10h ''=;故当(0,1)x ∈时,()0h x ''<,当x ∈(1,+∞)时,()0h x ''>;∴()h x '在()0,1上为减函数,在()1,+∞上为增函数;故()h x '>()1h '=0 ∴()h x 在()0,+∞上为增函数()1h =0∴当(0,1)x ∈时,()0h x <,当x ∈(1,+∞)时,()0h x > ∴当(0,1)x ∈时,()0g x '<,当x ∈(1,+∞)时,()0g x '> ∴()g x 在()0,1上为减函数,在()1,+∞上为增函数由洛必达法则知()2111ln 1ln 12121210221lim limlim x x x x x x g x x x →→→+⎛⎫=+=+=⨯-+= ⎪--⎝⎭ ∴0k ≤,即k 的取值范围为(-∞,0]规律总结:对恒成立问题中的求参数取值范围,参数与变量分离较易理解,但有些题中的求分离出来的函数式的最值有点麻烦,利用洛必达法则可以较好的处理它的最值,是一种值得借鉴的方法。