(完整版)利用洛必达法则来处理高考中的恒成立问题
最新利用洛必达法则来处理高考中的恒成立问题27105

利用洛必达法则来处理高考中的恒成立问题27105利用洛必达法则来处理高考中的恒成立问题近几年,随着新课标在全国的范围内的实施,高考命题也在悄悄发生变化,在命题组中高校教师占很重要的地位。
他们在命题时,会受到自身研究氛围的影响,有关高等数学背景的问题会逐渐增加丰富起来。
函数图像的凸凹性,导数中的拐点,拉格朗日中值定理,李普希茨条件,洛必达法则……特别是解答题中的函数与导数题,高等数学的观点尤其突出。
虽然高考考试没有要求学生掌握,但是可以利用已有的知识和方法来解决有关背景的问题。
例如2010年和2011年高考中的全国新课标卷中的第21题中的第○2步,由不等式恒成立来求参数的取值范围问题,用初等方法处理,分析难度大,变化技巧高。
但用洛必达法则来处理却可达到事半功倍的效果。
一.洛必达法则法则1 若函数f(x) 和g(x)满足下列条件:(1) «Skip Record If...»及«Skip Record If...»;(2)在点a的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0;(3)«Skip Record If...»,那么«Skip Record If...»=«Skip Record If...»。
法则2 若函数f(x) 和g(x)满足下列条件:(1)«Skip Record If...»及«Skip Record If...»;(2)«Skip Record If...»,f(x) 和g(x)在«Skip Record If...»与«Skip Record If...»上可导,且g'(x)≠0;(3)«Skip Record If...»,那么«Skip Record If...»=«Skip Record If...»。
高中数学《洛必达法则在不等式恒成立问题中的运用》

利用洛必达法则来处理高考中的恒成立问题(一)应用场景近些年高考函数与导数经常考查不等式恒成立问题求参数范围,此类问题主要采用分类讨论最值和参变分离求最值,由于含参讨论比较困难,因此学生更多选择参变分离来处理。
但有时分离后的函数的最值会在无意义点处或者趋近于无穷大。
此时利用洛必达法则可达到事半功倍的效果。
(二)知识链接洛必达法则: 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=()lim 0x ag x →=(或∞); (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。
例:(1)lim x ®p 2sin x -1cos x //22(sin 1)cos 0lim lim 0(cos )sin 1x x x x x x ππ→→-====-- (00型) (2)1ln 1lim lim lim 01x x x x x x x →+∞→+∞→+∞=== (+∞+∞型)注意事项:①将上面公式中的x→a,x→∞换成x→+∞,x→-∞,洛必达法则也成立。
②洛必达法则可处理00,+∞+∞,-∞-∞等,着手求极限以前,首先要检查是否满足00,+∞+∞,-∞-∞型定式,否则滥用洛必达法则会出错。
当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
③若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
(三)典例示范例1:(全国新课标理)已知函数ln ()1a x b f x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x>+-,求k 的取值范围。
洛必达法则与恒成立问题

洛必达法则与恒成立问题洛必达法则的应用:若()()()0x x x g x f k ≥≥,令()()()0lim 0x x x g x f p x x ≥=→,此时()()0,000==x g x f ,故()()()()()()()0lim lim lim 000x x x g x f x g x f x g x f p x x x x x x ≥''''''===→→→,故当p k ≥时()()()0x x x g x f k ≥≥恒成立。
若()()()0x x x g x f k ≥≤恒成立,令()()()0lim 0x x x g x f p x x ≥=→,此时()()0,000==x g x f ,故()()()()()()()0lim lim lim 000x x x g x f x g x f x g x f p x x x x x x ≥''''''===→→→,故当p k ≤时()()()0x x x g x f k ≥≤恒成立。
注意:①()()()()()()()0lim lim lim 000x x x g x f x g x f x g x f p x x x x x x ≥''''''===→→→求导直到分母为非零数;②分母不为零后,不能再求导;③()()()()x g x f x g x f '''''',出现繁分式一定要化简。
例1:(2010新课标理改)设函数()012≥---=ax x e x f x 对[)+∞∈,0x 恒成立,求实数a 的取值范围。
分析:()22101x x e a ax x e x f x x --≤⇒≥---=()0≥x ,属于00类型,故可以利用洛必达法则求出a 的取值范围。
(完整版)洛必达法则巧解高考压轴题

洛必达法则巧解高考压轴题 洛必达法则:法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x ag x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。
00型 法则2 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x ag x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。
∞∞型 注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则也成立。
○2若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
典例剖析例题1。
求极限(1)xx x 1ln lim 0+→ (∞∞型) (2)lim x ®p 2sin x -1cos x (00型) (3) 20cos ln lim x x x → (00型) (4)x x x ln lim +∞→ (∞∞型) 变式练习: 求极限(1)x x x )1ln(lim 0+→ (2)a x a x a x --→sin sin lim (3)x e e x x x sin lim 0-→- (4)22)2(sin ln lim x x x -→ππ 例题2。
已知函数R m x e x m x f x ∈+-=,)1()(2(1)当1-=m 时,求)(x f 在[]1,2-上的最小值(2)若)()2('2x f x m x >++在()0,∞-上恒成立,求m 的取值范围 例题3.已知函数)0(,)(>++=a c xb ax x f 的图像在点())1(,1f 处的切线方程为1-=x y , (1)用a 表示c b , (2)若x x f ln )(≥在[)+∞,1上恒成立,求a 的取值范围例题4.若不等式3sin ax x x ->在⎪⎭⎫ ⎝⎛∈2,0πx 是恒成立,求a 的取值范围 例题5.已知2)1()(ax e x x f x --=(1)若)(x f 在1-=x 时有极值,求函数)(x f 的解析式(2)当0≥x 时,0)(≥x f ,求a 的取值范围强化训练1. 设函数x e x f -1)(-=(1)证明:当1->x 时,1)(+≥x x x f 。
导数结合洛必达法则巧解恒成立问题PPT课件

所以 h '(x) (x 1)ex 1在 (0,+) 上单调递增,且 h'(x) h '(0) 0,所以 h( x) (x 2)ex x 2在
(0,+) 上单调递增,且
h(x)
h(0)
0
,因此当
x
(0,+)
时,g
'(x)
h(x) x3
0
,从而
g(x)
ex
1 x2
x
在 (0,+) 上单调递增.
0
,
所以当
x (0,1)
时,
h(x)
0
,可得 1 1 x2
h(x)
0
;当
x (1, ) 时,
h(x)
0
,可
得
1 1 x2
h(x)
0
,从而当
x
0且
x
1时,
f
(x)
( ln x x 1
k) x
0 ,即
f
(x)
ln x x 1
k x
;
(ii)当 0 k 1时,由于当 x (1, 1 ) 时, (k 1)(x2 1) 2x 0,故 h '(x) 0 ,而 1 k
•14
3.洛必达法则
— — 0 型 及 型 函 数 未 定 式 的 一 种 解 法 0
虽然这些压轴题可以用分类讨论和假设反证的方 法求解,但这种方法往往讨论多样、过于繁杂, 学生掌握起来非常困难.研究发现利用分离参数
的方法不能解决这部分问题的原因是出现了 0 ” 0
型的式子,而这就是大学数学中的不定式问题, 解决这类问题的有效方法就是洛必达法则.
时,h(x) 0 ;当 x (0,1) 时,g '(x) 0 ,当 x (1, ) 时,g '(x) 0 ,所以 g(x) 在 (0,1)
导数结合“洛必达法则”巧解恒成立问答

导数结合“洛必达法则”巧解恒成立问答洛必达法则是求解极限的一种重要方法,常用于计算复杂函数的导数。
本文将通过一些问题和解答的方式,来巧妙运用洛必达法则解决恒成立问题。
问题1:求证lim(x→0) sin(x)/x = 1解答1:直接计算lim(x→0) sin(x)/x,我们会得到0/0的形式,这是无法直接计算的。
利用洛必达法则,我们可以将这个问题转化为求极限lim(x→0) cos(x)/1、因为cos(0)=1,所以lim(x→0) cos(x)/1=1、所以,我们得到lim(x→0) sin(x)/x = 1,也就是恒成立的。
问题2:求证lim(x→0) (1-cos(x))/x = 0解答2:直接计算lim(x→0) (1-cos(x))/x,我们会得到0/0的形式。
利用洛必达法则,我们可以将这个问题转化为求极限lim(x→0)sin(x)/1、因为sin(0)=0,所以lim(x→0) sin(x)/1=0。
所以,我们得到lim(x→0) (1-cos(x))/x = 0,也就是恒成立的。
问题3:求证lim(x→1) (x^2-1)/(x-1) = 2解答3:直接计算lim(x→1) (x^2-1)/(x-1),我们会得到0/0的形式。
利用洛必达法则,我们可以将这个问题转化为求极限lim(x→1)2x/1、当x趋近于1时,2x也会趋近于2、所以,lim(x→1) (x^2-1)/(x-1) = 2,也就是恒成立的。
问题4:求证lim(x→∞) (x^2-1)/(x+1) = ∞解答4:直接计算lim(x→∞) (x^2-1)/(x+1),我们会得到∞/∞的形式。
利用洛必达法则,我们可以将这个问题转化为求极限lim(x→∞)2x/(1)= 2x。
当x趋近于∞时,2x也会趋近于∞。
所以,lim(x→∞) (x^2-1)/(x+1) = ∞,也就是恒成立的。
通过以上的例子,我们可以看到洛必达法则在解决恒成立问题时的巧妙应用。
利用洛必达法则来处理高考中的恒成立问题

导数结合洛必达法则巧解高考压轴题法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x af x →= 及()lim 0x ag x →=;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()()limx af x lg x →'=',那么 ()()limx af xg x →=()()limx af x lg x →'='。
法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=;(2)0A ∃ ,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)()()limx f x l g x →∞'=',那么 ()()limx f x g x →∞=()()limx f x l g x →∞'='。
法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()()limx af x lg x →'=',那么 ()()limx af xg x →=()()limx af x lg x →'='。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: 1.将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a+→,x a -→洛必达法则也成立。
2.洛必达法则可处理00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型。
3.在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。
当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
“洛必达法则”巧解高考恒成立问题

“洛必达法则”巧解高考恒成立问题程汉波 杨春波(华中师范大学 数学与统计学学院,湖北 武汉 430079)含参数的不等式恒成立问题是高考的一个难点与热点,历年高考中该问题层出不穷、精彩纷呈.参数分离——讨论最值(数形结合)是该类问题的惯用方法,然而,笔者发现一个奇特的现象是许多高考试题采用参数分离法求解入手容易,思路简单,但皆因中途函数在某区间内单调性或极值难以求出而致使解答半途而废.笔者研究后发现若借助高等数学中的洛必达法则往往能化险为夷,柳暗花明.本文结合近几年全国各地高考中的恒成立问题,谈谈“洛必达法则”在其中的美妙应用.以下定理在《数学分析》(《高等数学》)即可查到,故将其证明略去.定理 若函数()x f 、()x g 在定义域D 内可导,D a ∈,满足()()0==a g a f ,()a f '、()a g '存在且()0'≠a g ,则()()()()()()()()a g a f x g x f x g x f x g x f a x a x a x ''lim lim lim ===-+→→→.例1 (2012年湖南卷理22)已知函数()x e x f ax-=,其中0≠a .(1)若对一切R x ∈,()1≥x f 恒成立,求实数a 的取值范围.解:()1≥x f 等价于1+≥x e ax.当1-≤x 或0=x 时,不等式1+≥x e ax对一切R a ∈恒成立;当1->x 且0≠x 时,不等式1+≥x e ax等价于()1ln +≥x ax ,也即等价于:当01<<-x 时,()x x a 1ln +≤;当0>x 时,()x x a 1ln +≥.所以 ①一方面,()1111lim 1ln lim 00≤⇒=+=+≤--→→a x x x a x x ;()1111lim 1ln lim 00≥⇒=+=+≥++→→a x x x a x x .故1=a .②另一方面,当1=a 时,令()1--=x e x g x,则()1'-=xe x g ,当0<x 时,()0'<x g ;当0>x 时,()0'>x g ,所以()()()00min ==≥g x g x g ,即不等式1≥-x e x恒成立.综上:实数a 的取值范围为1=a .例2 (2012年天津卷理20)已知函数()()a x x x f +-=ln 的最小值为0,其中0>a . (1)求a 的值.(2)若对任意的),0[+∞∈x ,有()2kx x f ≤恒成立,求实数k 的最小值.解:易得1=a ,过程略去;()2kx x f ≤即为()21ln kx x x ≤+-.当0=x 时,即00=,不等式对一切R k ∈恒成立;只需考略0>x 的情形,原不等式即等价于()21ln x x x k +-≥对一切0>x 恒成立.所以,①一方面,()()21121lim 2111lim 1ln lim 2002=+=+-=+-≥+++→→→x x x xx x k x x x ; ②另一方面,当21=k 时,令()()1ln 212++-=x x x x g ,则()=++-=111'x x x g ()()00012=≥⇒≥+g x g x x ,所以()2211ln x x x ≤+-对一切0≥x 成立.显然当21≥k 时,不等式()22211ln kx x x x ≤≤+-对一切0≥x 恒成立. 综上:实数k 的最小值为21=k .例3 (2012年大纲全国卷理20)设函数()[]π,0,cos ∈+=x x ax x f . (1)讨论()x f 的单调性.(2)设()x x f sin 1+≤,求实数a 的取值范围.解:(1)略去;()x x f sin 1+≤即为x x ax cos sin 1-+≤.当0=x 时,即00=,不等式对一切R a ∈恒成立;只需考略0>x 的情形,原不等式即等价于xxx a cos sin 1-+≤对一切π≤<x 0恒成立.所以,①一方面,()11sin cos lim cos sin 1lim 00≤⇒=-=-+≤++→→a x x xxx a x x ;πππ22cos sin 1lim ≤⇒=-+≤-→a x x x a x .故π2≤a .②另一方面,当π2=a 时,()[]ππ,0,cos 2∈+=x x x x f当20π≤≤x 时,由x y sin =上的点与原点连线斜率大小关系易得π2sin ≥x x ,即x x π2sin ≥,所以()1sin cos 2+≤+=x x x x f π;当ππ≤≤x 2时,220ππ≤-≤x ,则()x x x x x x f sin 112sin 221cos 2+≤≤⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+≤+=ππππ.所以当π≤≤x 0时,有 ()1sin cos 2+≤+=x x x x f π成立.显然当π2≤a 时,()≤+≤+=x x x ax x f cos 2cos π1sin +x 对于π≤≤x 0恒成立.综上:实数a 的取值范围为π2≤a .例4 (2011年新课标全国卷理21)设函数()xbx x a x f ++=1ln ,曲线()x f y =在点()()11f ,处的切线方程为032=-+y x .(1)求b a ,的值.(2)如果当0>x 且1≠x 时,有()x kx x x f +->1ln ,求实数k 的取值范围. 解:(1)易得1,1==b a ,过程略去;()x k x x x f +->1ln 等价于1ln 212--<x xx k . ①一方面,1112lim 11ln 2lim 11ln 21lim 20020≤⇒=⎪⎭⎫ ⎝⎛+-=⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--≤+++→→→k x x x x x x x x k x x x ;0022ln 2lim 11ln 21lim 121≤⇒=⎪⎭⎫⎝⎛+-=⎪⎭⎫ ⎝⎛--≤→→k x x x x x k x x .故0≤k .②另一方面,当0=k 时,令()⎪⎪⎭⎫ ⎝⎛---=--=x x x x x x x x x g ln 2111ln 21222,考虑 ()x xx x h ln 212--=,则()()01211222'>-=-+=x x x x x h ,所以()x h 在0>x 且1≠x 上单调递增,于是,当10<<x 时,()()01=<h x h ,()()012>-=x h x xx g ;当1>x 时,()()01=>h x h ,()()012>-=x h x x x g ;所以不等式1ln 2102--<=x xx k 对于0>x 且1≠x 成立.显然,当0≤k 时,不等式1ln 2102--<≤x xx k 对于0>x 且1≠x 恒成立.综上:实数k 的取值范围为0≤k .例5 (2010年新课标全国卷理21)设函数()21ax x e x f x---=.(1)若0=a ,求()x f 的单调区间.(2)若当0≥x 时,()0≥x f ,求实数a 的取值范围.解:(1)略去;()0≥x f 即为x e ax x--≤12.当0=x 时,即00=,不等式对一切R a ∈恒成立;只需考略0>x 的情形,原不等式即等价于21x x e a x --≤对一切0>x 恒成立.所以,①一方面,21212lim 21lim 1lim 0020≤⇒==-=--≤+++→→→a e x e x x e a x x x x x x ;②另一方面,当21=a 时,令()2211x x e x g x---=,则()x e x g x --=1', ()()()()()000001''''=≥⇒=≥⇒≥-=g x g g x g e x g x ,所以x e x x--≤1212对于0≥x 成立.显然,当21≤a 时,不等式2121x x e a x --≤≤对一切0>x 恒成立.综上:实数a 的取值范围为21≤a . 例6 (2010年全国卷Ⅱ理22)设函数()xe xf --=1.(1)证明:当1->x 时,()1+≥x x x f . (2)设当0≥x 时,有()1+≤ax xx f ,求a 的取值范围. 解:(1)略去;分析两边函数正负情况易得0≥a .当0=x 时,即00=,不等式对一切R a ∈恒成立;只需考略0>x 的情形,原不等式即等价于()xx e x e x a ----+≤11对一切0>x 恒成立.所以,①一方面,()21212lim 11lim 11lim 000≤⇒=-=+--=--+≤---→---→--→+++a xe e e xe e e e x e x a x x x x x x x x x x x . ②另一方面,当21=a 时,不等式整理为()0122≥++-=xe e x x g x x ,由于 ()()()()()()000002,2122'''''=≥⇒=≥⇒>=+-=g x g g x g xe x g e xe x g xx x ,所以,()xx ex e x ----+≤1121对于0>x 成立.显然,当21≤a 时,不等式()x x e x e x a ----+≤≤1121对一切0>x 恒成立.综上;实数a 的取值范围为210≤≤a . 注:师生均反映该压轴题的标准答案完全是云里雾里,思路不好找,并且感觉拼凑痕迹明显,属于知道答案而写的答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数结合洛必达法则巧解高考压轴题法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x af x →= 及()lim 0x ag x →=;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()()limx af x lg x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。
法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=; (2)0A ∃f ,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)()()lim x f x l g x →∞'=',那么()()lim x f x g x →∞=()()lim x f x l g x →∞'='。
法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x af x →=∞及()lim x ag x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()()lim x a f x l g x →'=',那么()()limx af xg x →=()()limx af x lg x →'='。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: 1.将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则也成立。
2.洛必达法则可处理00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型。
3.在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。
当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
4.若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
二.高考题处理1.(2010年全国新课标理)设函数2()1x f x e x ax =---。
(1)若0a =,求()f x 的单调区间;(2)若当0x ≥时()0f x ≥,求a 的取值范围解:(II )当0x =时,()0f x =,对任意实数a,均在()0f x ≥;当0x >时,()0f x ≥等价于21xx a ex--≤令()21xx g x ex--=(x>0),则322()x xx x g x e e x-++'=,令()()220xxh x x x x e e =-++>,则()1xxh x x e e '=-+,()0xh x x e ''=>,知()h x '在()0,+∞上为增函数,()()00h x h ''>=;知()h x 在()0,+∞上为增函数,()()00h x h >=;()0g x '∴>,g(x)在()0,+∞上为增函数。
由洛必达法则知,200011222limlim lim xx xx x x x x ee e x+++→→→--===,故12a ≤综上,知a 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭。
2.(2011年全国新课标理)已知函数,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围。
解:(II )由题设可得,当0,1x x >≠时,k<22ln 11x xx+-恒成立。
令g (x)= 22ln 11x xx +-(0,1x x >≠),则()()()22221ln 121x x x g x x +-+'=⋅-, 再令()()221ln 1h x x x x =+-+(0,1x x >≠),则()12ln h x x x x x'=+-,()212ln 1h x x x ''=+-,易知()212ln 1h x x x''=+-在()0,+∞上为增函数,且()10h ''=;故当(0,1)x ∈时,()0h x ''<,当x ∈(1,+∞)时,()0h x ''>;∴()h x '在()0,1上为减函数,在()1,+∞上为增函数;故()h x '>()1h '=0∴()h x 在()0,+∞上为增函数Q ()1h =0∴当(0,1)x ∈时,()0h x <,当x ∈(1,+∞)时,()0h x >∴当(0,1)x ∈时,()0g x '<,当x ∈(1,+∞)时,()0g x '>∴()g x 在()0,1上为减函数,在()1,+∞上为增函数洛必达法则知()2111ln 1ln 12121210221lim limlim x x x x x x g x x x →→→+⎛⎫=+=+=⨯-+= ⎪--⎝⎭ ∴0k ≤,即k 的取值范围为(-∞,0]3.已知函数f(x)=x -(1+a)lnx 在x=1时,存在极值。
(1)求实数a 的值;(2)若x>1,mlnx>f x)-1x-1(成立,求正实数m 的取值范围解:ln 1ln 1(1)ln 11ln 1(1)ln (1)ln (1)ln ln 1x x x x x x m x m x x x x x x x x x ----->⇔>=+=------=g (x )()-112211()(ln +x-1),()-(1)x ln g x x g x x x -'==+-)(则=222(ln )(1),(1)(ln )x x x x x x ---令h(x)=22(ln )(1)x x x -- 2()(ln )2ln 22,h x x x x '=+-+令()(r x h x '=),则2ln 22r ()x xx x+-'=,令M (x )=r(x),M '2-2x(x)=x<0,则,r(x)为减,且r(1)=0,则h (x )为减,且h(1)=0,则g(x)为减,这样,g(x)<g(1),而g(1)不存在,对g(x)在x=1处用罗比达法则,1111ln 11/1111()limlim lim lim 1(1)ln ln 1ln 11ln122ln x x x x x x x x g x x x x x x x x x x→→→→∞----======--+-++++,则m 》1/2.4.已知函数f(x)=e x ,曲线y=f(x)在点(x 0,y 0)处的切线为y=g(x).(1) 证明:对于x R ∀∈,f(x)≥g(x); (2) 当x ≥0时,f(x) ≥1+a 1xx+,恒成立,求实数a 的取值范围。
解:分离变量:a ≤(1)(1)x e x x x +-+=h(x),去导数,()h x '=22(1)1x e x x x +-+(x>0),分子r(x)=2(1)1x e x x +-+,(x ∈[0, ∞),扩展定义域],求导2()(3xr x e x x '=+)≥0,可知,r(x)为定义域内增函数,而r (x )≥r(0)=0.所以()h x '》0.为增函数。
则a ≤h(0)----不存在,罗比达法则可得为1练习1. 2006年全国2理设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围.2. 2006全国1理已知函数()11axx f x e x-+=-.(Ⅰ)设0a >,讨论()y f x =的单调性; (Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围.3. 2007全国1理4. 设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥; (Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围.5. 2008全国2理设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. 解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++.当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<. 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数,()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数sin ()2cos xf x ax x=≤+若0x =,则a R ∈; 若0x >,则sin 2cos xax x≤+等价于sin (2cos )x a x x ≥+,即sin ()(2cos )x g x x x =+ 则222cos 2sin sin cos '()(2cos )x x x x x xg x x x --+=+.记()2cos 2sin sin cos h x x x x x x x =--+,2'()2cos 2sin 2cos cos212sin cos212sin 2sin 2sin (sin )h x x x x x x x x x x x x x x x =---+=--+=-=-而00sin cos 1lim ()limlim (2cos )2+cos sin 3x x x x x g x x x x x x →→→===+-.另一方面,当[,)x π∈+∞时,sin 111()(2cos )3x g x x x x π=≤≤<+,因此13a ≥6. 2008辽宁理设函数ln ()ln ln(1)1xf x x x x=-+++. ⑴求()f x 的单调区间和极值;⑵是否存在实数a ,使得关于x 的不等式()f x a …的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由.7. 2010新课标理设函数)(x f =21x e x ax ---.(Ⅰ)若0=a ,求)(x f 的单调区间; (Ⅱ)若当x ≥0时)(x f ≥0,求a 的取值范围.8 .2010新课标文已知函数2()(1)xf x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. 解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数当0x ≥时,()0f x ≥,即2(1)xx e ax -≥. ①当0x =时,a R ∈;②当0x >时,2(1)xx e ax -≥等价于1xe ax -≥,也即1x e a x-≤.记1()x e g x x-=,(0,)x ∈+∞,则(1)1'()x x e g x x -+=.记()(1)1xh x x e =-+,(0,)x ∈+∞,则'()0xh x xe =>,因此()(1)1xh x x e =-+在(0,)+∞上单调递增,且()(0)0h x h >=,所以()'()0h x g x x=>,从而1()x e g x x -=在(0,)+∞上单调递增. 由洛必达法则有0001lim ()lim lim 11x xx x x e e g x x→→→-===,即当0x →时,()1g x → 所以()1g x >,即有1a ≤.综上所述,当1a ≤,0x ≥时,()0f x ≥成立.9. 2010全国大纲理 设函数()1xf x e -=-.(Ⅰ)证明:当1x >-时,()1x f x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围. 解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 由题设0x ≥,此时()0f x ≥.①当0a <时,若1x a >-,则01x ax <+,()1x f x ax ≤+不成立; ②当0a ≥时,当0x ≥时,()1x f x ax ≤+,即11xx e ax --≤+;若0x =,则a R ∈;若0x >,则11xxe ax --≤+等价于111x e x ax --≤+,即1x x x xe e a xe x -+≤-. 记1()x x xxe e g x xe x-+=-,则2222221'()=(2)()()x x x x x x x x e x e e e g x e x e xe x xe x ---+=--+--. 记2()2xxh x e x e -=--+,则'()2x xh x e x e -=--,''()+20xxh x e e-=->.因此,'()2x xh x e x e-=--在(0)+∞,上单调递增,且'(0)0h =,所以'()0h x >, 即()h x 在(0)+∞,上单调递增,且(0)0h =,所以()0h x >.因此2'()=()0()xx e g x h x xe x >-,所以()g x 在(0)+∞,上单调递增. 由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+,即当0x →时, 1()2g x →,即有1()2g x >,所以12a ≤.综上所述,a 的取值范围是1(,]2-∞.10. 2011新课标理 已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.押题 若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围.解:应用洛必达法则和导数 当(0,)2x π∈时,原不等式等价于3sin x xa x->. 记3sin ()x x f x x -=,则43sin cos 2'()x x x xf x x --=.记()3sin cos 2g x x x x x =--,则'()2cos sin 2g x x x x =+-. 因为''()cos sin cos (tan )g x x x x x x x =-=-,'''()sin 0g x x x =-<,所以''()g x 在(0,)2π上单调递减,且''()0g x <,所以'()g x 在(0,)2π上单调递减,且'()0g x <.因此()g x 在(0,)2π上单调递减, 且()0g x <,故4()'()0g x f x x =<,因此3sin ()x x f x x -=在(0,)2π上单调递减.由洛必达法则有320000sin 1cos sin cos 1lim ()limlim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====, 即当0x →时,1()6g x →,即有1()6f x <.故16a ≥时,不等式3sin x x ax >-对于(0,)2x π∈恒成立. 通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足: ① 可以分离变量;②用导数可以确定分离变量后一端新函数的单调性; ② 现“0”型式子.第三部分:新课标高考命题趋势及方法1. 高考命题趋势近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则,充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注重考查进入高校继续学习的潜能。