洛必达法则解决高考问题
新人教版高中数学《洛必达法则在高考中的应用》精品PPT课件

注意:lim6x 2 为已定式,不能再用洛必达法则。
x1 6 x
例5.若f(x0 )
2
,求lim h0
f(x0
2h) 5h
f(x0
h)
解析:l i m h0
f(
x0
2 h ) 5h
f
( x0
h)
lim 2f(x0
h0
2
h ) 5
f( x0
h)
3 5
f( x0
2a
g(3) 9a 1 0
①若g(1) a 1 0 a 1 时,
g(t)
则 g(t) 在 [1,3]必有唯一零点t0
所以 y(t) 在[1, t0 ] 减,[t0 ,3]增
1 t0 3
又y(1) 0 ,所以 y(t0 ) 0不适合。
②若g(1) a 1 0 a 1时,
若 x (0,),则
ax 1 0 ax 1 x f (x)
a
1 1 ex
1 x
xex ex 1 x(ex 1)
h(x)恒成立。
下面求 h(x),x (0,) 的最小值或最小极限值。
用导数法判断单调性难以解决,所以猜测最小
极限值点在0或 位置,由洛必达法则:
g(x) xe x 2e x x 2 0(x 0)
因为 g(x) xex ex 1 ,g (x) xe x 0
所以 g(x) 在(0,) 增
g(x) g(0) 0 所以 g(x) 在(0,)增
g(x) g(0) 0 h(x) 1
高考培优点 洛必达法则

跟踪训练 1 若∀x∈[1,+∞),不等式 ln x≤mx-1x恒成立,求实数 m 的 取值范围.
当x=1时,不等式恒成立,m∈R;
当 x>1 时,m≥xx2l-n x1恒成立,
令 h(x)=xx2l-n x1,x>1,
则
h′(x)=ln
x+1x2-1-2x·xln x2-12
x=x2-x2lxn2-x-1ln2
4.若条件符合,洛必达法则可连续多次使用,直到求出极限为止.
lim
x→a
gfxx=lxi→ma
gf′′xx=lxi→ma
gf″″xx,如满足条件,可继续使用洛必达法则.
0 题型一 用洛必达法则处理 型函数
0
例 1 设函数 f(x)=2+sincoxs x.如果对任何 x≥0,都有 f(x)≤ax,求 a 的取值 范围.
思维升华
∞
∞
用洛必达法则处理∞型函数的步骤:(1)分离变量;(2)出现∞型式子;(3)运
用洛必达法则求值.
跟踪训练2 已知函数f(x)=2ax3+x.当x∈(1,+∞)时,恒有f(x)>x3-a, 求a的取值范围.
当x∈(1,+∞)时,f(x)>x3-a恒成立,
即2ax3+x>x3-a恒成立,
12
且 h(x)>h(0)=0,所以 g′(x)=hxx2>0,
从而 g(x)=ex-x 1在(0,+∞)上单调递增,
所以 a≤lim x→0
ex-1 x.
由洛必达法则得lim x→0
g(x)=lim x→0
ex-x 1=lxi→m0
e1x=1,
即当x→0时,g(x)→1,所以g(x)>1,即有a≤1.
例析洛必达法则在解高考导数题中的运用

例析洛必达法则在解高考导数题中的运用2014年全国高考数学试题中,有许多与函数的综合运用有关的考题,其中涉及到恒成立问题和有解问题,而这些问题几乎都需要求解参数的取值范围。
解决这类问题的方式有两种,一种是选主元法,另一种是分离参数法。
分离参数法的优点在于将函数关系由隐变显,避免了繁琐的分类讨论,因此备受教师和学生的喜爱。
然而,在实际应用中,有时函数在某点处的极限难以求出,导致解答中途失败。
但是,利用高等数学中的洛必达法则,这些问题就可以迎刃而解。
洛必达法则是一种通过求导和求极限来确定未定式值的方法。
当x趋于某一点a时,若f(x)和g(x)都趋于零(或无穷大),且f'(x)和g'(x)都存在且g'(x)不为零,则可以使用洛必达法则。
在使用时需要注意两点:一是要检查函数极限是否满足∞/∞或0/0型;二是可以连续使用多次。
以2014年陕西高考数学试题为例,其中一道压轴试题涉及到分离参数法和洛必达法则的应用。
在求解过程中,需要使用洛必达法则来解决函数在某点处的极限问题,从而得到最终的答案。
这表明,在解决高考数学导数题时,洛必达法则的应用是非常重要的。
已知函数$f(x)=(1+x)\ln(1+x)-x\ln(1+x)$,其中$x>0$。
1)设$h(x)=\frac{f(x)}{x^2}$,求$h(x)$在$(0,+\infty)$上的单调性和最小值;2)设$a=\min\{h(x)\}$,求$a$的取值范围。
解:1)首先求出$h(x)$的导数$h'(x)$:h'(x)=\frac{f'(x)x^2-2xf(x)}{x^4}=\frac{x\ln(1+x)}{(1+x)^2}$$由于$x>0$,所以$h'(x)>0$,即$h(x)$在$(0,+\infty)$上单调递增。
接下来求$h(x)$的最小值:h'(x)=0\Rightarrow x=0\text{或}x=e-1$$当$x=e-1$时,$h(x)$取得最小值:h(e-1)=\frac{(e-1)\ln e}{e^2}=\frac{1-e^{-1}}{e}$$2)由于$f(0)=0$,所以$h(0)=0$。
【优质文档】用洛必达定理来解决高考压轴题

e
2x
lim
x0
e
2
1
,
2
故a 1 2
综上,知 a 的取值范围为
1 ,
。
2
2 .( 20XX 年全国新课标理)已知函数,曲线
y f ( x) 在点 (1, f (1))处的切线方程为
x 2y 3 0。 (Ⅰ)求 a 、 b 的值; (Ⅱ)如果当 x 0 ,且 x 1 时, f ( x) ln x k ,求 k 的取值范围。 x1 x
原解:(Ⅰ) f '( x)
( x 1 ln x) x
b
( x 1)2
x2
由于直线 x 2 y 3 0 的斜率为
1
,且过点
(1,1),故
2
f (1) 1,
f '(1)
1即 ,
2
b 1,
a
1
b
,
2
2
解得 a 1, b 1。
ln x 1
(Ⅱ)由(Ⅰ)知 f ( x)
,所以
x1 x
ln x k 1
(k 1)(x2 1)
,1
2
原解在处理第( II )时较难想到,现利用洛必达法则处理如下:
另解 :( II )当 x 0 时, f (x) 0,对任意实数 a,均在 f (x) 0 ;
x
e 当 x 0时, f (x) 0等价于 a
x1
2
x
x
令
gx
e x1 2
(x>0),
则
x
g ( x)
x
x
xe 2e x 2
3
x
,令
x
x
h x xe 2e x
洛必达法则(简版)

导数结合洛必达法则巧解高考压轴题洛必达法则:设函数()f x 、()g x 满足:(1)lim ()lim ()0x ax a f x g x →→==; (2)在()U a 内,()f x '和()g x '都存在,且()0g x '≠;(3)()lim()x a f x A g x →'=' (A 可为实数,也可以是±∞). 则()()lim lim ()()x a x a f x f x A g x g x →→'==' 例1、(2011新课标理)已知函数ln ()1a x b f x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围.例2(2010新课标理)设函数2()1x f x e x ax =---.(Ⅰ)若0a =,求()f x 的单调区间;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.例3、若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围 例4、(2010海南宁夏文)已知函数2()(1)x f x x e ax =--. (Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.例5、(2010全国大纲理)设函数()1xf x e -=-. (Ⅰ)证明:当1x >-时,()1x f x x ≥+;(Ⅱ)设当0x ≥时,()1x f x ax ≤+,求a 的取值范围.例6、(2008年全国2理)设函数sin ()2cos xf x x =+. (Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.课后练习:1.(2006年全国理2)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围.2.(2006全国理1)已知函数()11ax x f x e x -+=-.(Ⅰ)设0a >,讨论()y f x =的单调性;(Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围.3.(2007全国理1)设函数()e e x x f x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围.4.(2008辽宁理)设函数ln ()ln ln(1)1x f x x x x =-+++.⑴求()f x 的单调区间和极值; ⑵是否存在实数a ,使得关于x 的不等式()f x a …的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由.5.(2010新课标文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.6、若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围.。
2023年高考数学复习:洛必达法则

lim
x→0+
ex2-x 1=xl→ im0+
e2x=12,故 a≤12.
综上,实数 a 的取值范围是-∞,12.
则h′(x)=xex-ex+1,
记φ(x)=h′(x),则φ′(x)=xex>0,
∴h′(x)在(0,+∞)上单调递增,h′(x)>h′(0)=0,
∴h(x)在(0,+∞)上单调递增,h(x)>h(0)=0,
∴g′(x)>0,g(x)在(0,+∞)上单调递增.
由洛必达法则知
lim
x→0+
ex-xx2-1=
gf′′xx=A(可连续使用).
例 已知函数f(x)=x2ln x-a(x2-1),a∈R.若当x≥1时,f(x)≥0恒成立, 求实数a的取值范围.
解 方法一 由f(x)=x2ln x-a(x2-1)≥0,
当x=1时,不等式成立,
当 x>1 时,a≤xx22-ln 1x, 令 g(x)=xx22-ln 1x(x>1),则 g′(x)=xx2- x21--122ln x,
因为 x>1,则(x2-1-2ln x)′=2x-2x>0,
故y=x2-1-2ln x在(1,+∞)上单调递增,
则y=x2-1-2ln x>0,
故
g′(x)=xx2- x21--122ln
x >0.
所以g(x)在(1,+∞)上单调递增.
则 g(x)>g(1),由洛必达法则知lim x→1
x2ln x x2-1
2 a 1
所以f(x)min=f( e 2 )
2 a 1
=(e 2
)2·2a2-1-a[( e
2a1 2
洛必达法则在高考解答题中的应用(高二下)

洛必达法则在高考解答题中的应用(高二下)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN导数结合洛必达法则巧解高考压轴题一.洛必达法则:法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x ag x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞;(2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立.○2洛必达法则可处理00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限. ○4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解1. 函数2()1x f x e x ax =---.(Ⅰ)若0a =,求()f x 的单调区间;(Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围.2. 已知函数xb x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x>+-,求k 的取值范围. 3.若不等式3sin ax x x ->对于)2,0(π∈x 恒成立,求实数a 的取值范围. 4.设函数xx x f cos 2sin )(+=。
洛必达法则在高考解答题中的应用

一.洛必达法例:法例 1. 若函数f (x)和g (x)知足以下条件: (1) lim f x0 及 lim g x0 ;x a x a(2) 在点a的去心邻域内, f (x) 与 g(x) 可导且 g '( x)0 ;f xl ,那么f x f xl .(3) lim lim= limx a g x x a g x x a g x法例 2. 若函数f (x)和g (x)知足以下条件: (1)lim f x及 lim g x;x a x a(2) 在点a的去心邻域内, f (x) 与 g(x)可导且 g' ( x)0 ;f xl ,那么f x f xl .(3) lim lim= limx a g x x a g x x a g x利用洛必达法例求不决式的极限是微分学中的要点之一,在解题中应注意:○1 将上边公式中的x a , x换成 x, x, x a, x a 洛必达法例也建立.○2 洛必达法例可办理0 ,, 0, 1,, 00,型.0 ,○3 在着手求极限从前,第一要检查能否知足,0, 1 ,0,00,型定式,不然滥用洛必达法例会犯错.当不知足三个前提条件时,就不可以用洛必达法例,这时称洛必达法例不合用,应从此外门路求极限.○4 若条件切合,洛必达法例可连续多次使用,直到求出极限为止.二.高考例题解说1.函数 f ( x)e x 1 x ax2.(Ⅰ)若 a0 ,求 f ( x)的单一区间;(Ⅱ)若当 x0 时f ( x)0 ,务实数 a 的取值范围.2. 已知函数aln x by f (x) 在点(1, f (1))处的切线方程为f ( x)1,曲线x xx 2 y 30 .(Ⅰ)求 a 、b的值;(Ⅱ)假如当 x0 ,且 x 1时, f ( x)ln x k,求 k 的取值范围.x 1x3. 若不等式sin x x ax3关于x (0,) 恒建立,务实数 a 的取值范围.24. 设函数 f ( x)sin x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洛必达法则简介:
法则1 若函数f(x) 和g(x)满足下列条件:(1) 及;
(2)在点a的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0;
(3),
那么=。
法则2 若函数f(x) 和g(x)满足下列条件:(1)及;
(2),f(x) 和g(x)在与上可导,且g'(x)≠0;
(3),
那么=。
法则3 若函数f(x) 和g(x)满足下列条件:(1) 及;
(2)在点a的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0;
(3),
那么=。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:
○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,,洛必达法则也成立。
○2洛必达法则可处理,,,,,,型。
○3在着手求极限以前,首先要检查是否满足,,,,,,型
定式,否则滥用洛必达法则会出错。
当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
○4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
二.高考题处理
1.(2010年全国新课标理)设函数。
(1)若,求的单调区间;
(2)若当时,求的取值范围
原解:(1)时,,.
当时,;当时,.故在单调减少,在单调增加
(II)
由(I)知,当且仅当时等号成立.故
,
从而当,即时,,而,
于是当时,.
由可得.从而当时,
,
故当时,,而,于是当时,.
综合得的取值范围为
原解在处理第(II)时较难想到,现利用洛必达法则处理如下:
另解:(II)当时,,对任意实数a,均在;
当时,等价于
令(x>0),则,令
,则,,
知在上为增函数,;知在上为增函数,;,g(x)在上为增函数。
由洛必达法则知,,
故
综上,知a的取值范围为。
2.(2011年全国新课标理)已知函数,曲线在点处的切线方程为。
(Ⅰ)求、的值;
(Ⅱ)如果当,且时,,求的取值范围。
原解:(Ⅰ)
由于直线的斜率为,且过点,故即
解得,。
(Ⅱ)由(Ⅰ)知,所以。
考虑函数,则。
(i)设,由知,当时,,h(x)递减。
而故当时,,可得;
当x(1,+)时,h(x)<0,可得h(x)>0
从而当x>0,且x1时,f(x)-(+)>0,即f(x)>+.
(ii)设0<k<1.由于=的图像开口向下,且
当x(1,)时,(k-1)(x2 +1)+2x>0,,对称轴x=
.
故(x)>0,而h(1)=0,故当x(1,)时,h(x)>0,可得h
(x)<0,与题设矛盾。
(iii)设k 1.此时,(x)>0,而h(1)=0,故当x(1,+)时,h(x)>0,可得h(x)<0,与题设矛盾。
综合得,k的取值范围为(-,0]
原解在处理第(II)时非常难想到,现利用洛必达法则处理如下:
另解:(II)由题设可得,当时,k<恒成立。
令g (x)= (),则,
再令(),则,
,易知在上为增函数,且;故当时,,当x(1,+)时,;
在上为减函数,在上为增函数;故>=0
在上为增函数
=0
当时,,当x(1,+)时,
当时,,当x(1,+)时,
在上为减函数,在上为增函数
由洛必达法则知
,即k的取值范围为(-,0]
规律总结:对恒成立问题中的求参数取值范围,参数与变量分离较易理解,但有些题
中的求分离出来的函数式的最值有点麻烦,利用洛必达法则可以较好的处理它的最值,是一种值得借鉴的方法。