导数讲义(学生新版)
高中数学全套讲义 选修1-1 导数概念中挡 学生版

目录目录 (1)考点一导数的概念 (2)题型1 变化的快慢和变化率 (2)题型2 导数的概念 (4)考点二导数的几何意义 (4)题型3 有关斜率的判断与计算 (4)课后综合巩固练习 (5)考点一 导数的概念1.平均变化率:已知函数()y f x =在点0x x =及其附近有定义,令0x x x ∆=-,0000()()()()y y y f x f x f x x f x ∆=-=-=+∆-,则当0x ∆≠时,比值00()()f x x f x yx x+∆-∆=∆∆叫做函数()y f x =在0x 到0x x +∆之间的平均变化率.2.瞬时变化率:如果当x ∆趋近于0时,平均变化率00()()f x x f x x+∆-∆趋近于一个常数l ,则数l 称为函数()f x 在点0x 的瞬时变化率.可用符号记为:当0x ∆→时,00()()f x x f x l x+∆-→∆.还可以说:当0x ∆→时,函数平均变化率的极限等于函数在0x 的瞬时变化率l ,记作:000()()lim x f x x f x l x∆→+∆-=∆.3.导数:函数在0x 的瞬时变化率,通常就定义为()f x 在0x x =处的导数.并记作()0f x '0|x x y ='可以写为:0000()()lim()x f x x f x f x x∆→+∆-'=∆.4.导函数:如果()f x 在开区间()a b ,内每一点x 导数都存在,则称()f x 在区间()a b ,可导,这样,对于开区间()a b ,内的每个值x ,都对应一个确定的导数()f x ',于是在区间()a b ,内构成一个新的函数,我们把这个函数称为函数()y f x =的导函数,记为()f x '.导函数通常简称为导数,今后,如不特别指明求某一点的导数,求导数指的就是求导函数.题型1 变化的快慢和变化率1.(2018春•菏泽期中)已知函数()y f x =,其导函数()y f x '=的图象如图,则对于函数()y f x =的描述正确的是( )A .在(,0)-∞上为减函数B .在0x =处取得最大值C .在(4,)+∞上为减函数D .在2x =处取得最小值2.(2019春•韩城市期末)设函数()f x 在定义域内可导,()y f x =的图象如图所示,则导函数()y f x ='的图象可能为( )A .B .C .D .3.(2018春•思明区校级月考)已知函数()f x 的图象如图所示,()f x '是函数()f x 的导函数,则下列数值排序正确的是( )A .2f '(2)f <(4)f -(2)2f <'(4)B .2f '(4)2f <'(2)f <(4)f -(2)C .2f '(2)2f <'(4)f <(4)f -(2)D .f (4)f -(2)2f <'(4)2f <'(2)4.(2017春•东坡区校级月考)函数()f x 的图象如图所示,则下列关系正确的是( )A .0f '<(2)f '<(3)f <(3)f -(2)B .0f '<(2)f <(3)f -(2)f '<(3)C .0f '<(3)f <(3)f -(2)f '<(2)D .0f <(3)f -(2)f '<(2)f '-(3) 5.函数1y x=在区间0[x ,0x +△0](0x x ≠,0x +△0)x ≠内的平均变化率为 .题型2 导数的概念6.(2017春•邢台月考)设函数()1sin 2f x x =+,则等于0()(0)lim (x f x f x→- ) A .2-B .0C .3D .27.(2019•濮阳一模)已知21()(0)2f x alnx x a =+>,若对任意两个不等的正实数1x ,2x ,都有1212()()2f x f x x x ->-恒成立,则a 的取值范围是( )A .(0,1]B .(1,)+∞C .(0,1)D .[1,)+∞8.(2018春•商丘期中)已知函数3()(2)x f x x x e =-,则0(1)(1)lim x f x f x→+-的值为( )A .e -B .1C .eD .09.(2016春•邯郸期中)已知f '(2)2=,则0(22)(2)lim 4x f x f x→--= .考点二 导数的几何意义导数的几何意义:曲线()y f x =在点()00()x f x ,的切线的斜率等于()0f x '.题型3 有关斜率的判断与计算10.(2018•海南三模)已知函数42()2(1)f x x ax a x =-++-为偶函数,则()f x 的导函数()f x '的图象大致为( )A .B .C .D .11.(2016春•海淀区期中)若小球自由落体的运动方程为21()(2s t gt g =为常数),该小球在1t =到3t =的平均速度为v ,在2t =的瞬时速度为2v ,则v 和2v 关系为( )A .2v v >B .2v v <C .2v v =D .不能确定12.(2018秋•中山市期末)已知曲线y lnx =的切线过原点,则此切线的斜率为( ) A .eB .e -C .1eD .1e-13.(2016秋•福州期末)一质点做直线运动,由始点经过t 秒后的距离为322s t t t =-+,则2t =秒时的瞬时速度为( )A .8/m sB .10/m sC .16/m sD .18/m s14.(2018•邯郸二模)若过点(1,)P m -可以作三条直线与曲线:x C y xe =相切,则m 的取值范围是( ) A .23(e -,)+∞ B .1(,0)e-C .(0,)+∞D .231(,)e e-- 15.(2018秋•龙岩期末)已知P 为函数y lnx =图象上任意一点,点Q 为圆222(1)1x y e +--=上任意一点,则线段PQ 长度的最小值为 .16.(2019春•襄阳期末)正弦曲线sin y x =上一点P ,正弦曲线的以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是 .17.(2017秋•海陵区校级期中)已知点P 在曲线sin y x =上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 .课后综合巩固练习1.(2017•红桥区模拟)已知函数321()3f x x x =--,则曲线()y f x =在点(1,f (1))处的切线斜率为 .2.(2017春•昌平区校级月考)曲线3123y x =-在点7(1,)3--处的切线的倾斜角为 .3.(2015秋•徐州期末)若函数()x f x e ax =-在(1,)+∞上单调增,则实数a 的最大值为 . 4.(2018春•江岸区校级月考)已知一个物体的运动方程为21s t t =-+,其中s 的单位是m ,t 的单位是s ,那么物体在3s 时的瞬时速度为( )A .5 /m sB .6 /m sC .7 /m sD .8 /m s5.(2018•咸阳三模)已知三次函数32()f x ax bx cx d =+++的图象如图所示,则(0)(1)f f '=' .6.(2018春•昌吉市期末)如图函数()f x 的图象在点P 处的切线为:25y x =-+,则f (2)f +'(2)= .7.(2019春•让胡路区校级月考)已知函数()()y f x x R =∈上任一点0(x ,0())f x 处的切线斜率200(3)(1)k x x =-+,则该函数的单调递增区间为 .8.(2017春•昌平区校级月考)曲线3123y x =-在点7(1,)3--处的切线的倾斜角为 .9.(2016春•鹤壁期末)已知点P 在曲线41x y e =+上,a 为曲线在点P 处的切线的倾斜角,则a 的取值范围是 .10.(2016春•安徽校级月考)现有一倒放圆锥形容器,该容器深24m ,底面直径为6m ,水以35/m s π的速度流入,则当水流入时间为1s 时,水面上升的速度为 .。
导数与函数的单调性、极值与最值-讲义(学生版)

导数与函数的单调性、极值与最值一、课堂目标1.掌握利用导数求解函数单调区间的方法步骤 .2.掌握极值与极值点的概念,能够结合函数与导数图象找出极值点与极值 .3.掌握利用导数求解函数极值的方法步骤.4.掌握利用导数求解给定区间上可导函数最值的方法步骤.二、知识讲解1. 导数与函数单调性知识精讲(1)导数与函数单调性①如果在区间内,,则曲线在区间对应的那一段上每一点处切线的斜率都大于,曲线呈上升状态,因此在上是增函数,如下图所示;,()(),(),②如果在区间内,,则曲线在区间对应的那一段上每一点处切线的斜率都小于,曲线呈下降状态,因此在上是减函数,如下图所示.,()(),(),(2)导数绝对值的大小与函数图象的关系一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得较快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数在这个范围内变化得较慢,函数的图象就比较“平缓.知识点睛函数在区间可导.(1)若,则函数在此区间内单调递增;(2)若,则函数在此区间内单调递减;(3)若,则函数在此区间内为常数函数.经典例题A.① B.② C.③ D.④1.已知函数的导函数的图象如图所示,那么函数的图象最有可能的是().巩固练习2.是函数的导函数,的图像如图所示,则的图像最有可能是下列选项中的( ).A.B.C. D.经典例题A. B.C.D.3.函数的图象如图所示,则的图像可能是( ).A.4.已知函数的图像如图所示,则等式的解集为( ).B.C.D.巩固练习A.B.C.D.5.如果函数的图像如右图,那么导函数的图像可能是().2. 利用导数求函数的单调区间的步骤知识精讲(1)确定的定义域;(2)求导数;(3)由(或)解出相应的的取值范围.当时,在相应区间上是增函数;当时,在相应区间上是减函数.知识点睛需要注意的是:1.在利用导数求函数的单调区间时,首先要确定函数的定义域,解决问题是必须在定义域内进行;2.在对函数划分单调区间时,除了必须确定使导数等于零的点(即导函数的零点)外,还要注意定义域内的不连续点和不可导点.经典例题A. B.C.D.6.函数的单调递增区间是().巩固练习A. B.C. D.7.函数的单调递增区间为().A.B.C.D.8.函数,的单调递减区间是( ).和和和和经典例题A. B.C.D.9.函数在上是减函数,则的取值范围是().巩固练习A. B.C. D.10.若为函数的递增区间,则的取值范围为().A. B.C.D.11.若函数为增函数,则实数的取值范围为( ).经典例题12.已知在区间上不单调,实数的取值范围是( ).A. B.C.D.巩固练习A. B.C. D.13.已知函数在上不单调,则的取值范围是().经典例题14.函数在上存在单调增区间,则实数的范围是.巩固练习A. B.C.D.15.若函数存在单调递增区间,则的取值范围是().3. 导数与函数的极值知识精讲函数极值与极值点的定义一般地,设函数的定义域为,设,如果对于附近的任意不同于的,都有:①,则称为函数的一个极大值点,且在处取极大值;②,则称为函数的一个极小值点,且在处取极小值.极大值点与极小值点都称为极值点,极大值与极小值都称为极值.显然,极大值点在其附近函数值最大,极小值点在其附近函数值最小.()()()()()()()()()知识点睛极值点的判断一般地,设函数在处可导,且.①如果对于左侧附近的任意,都有,对于右侧附近的任意,都有,那么此时是的极大值点;②如果对于左侧附近的任意,都有,对于右侧附近的任意,都有,那么此时是的极小值点;()()()()()()()()③如果在的左侧附近与右侧附近均为正号(或均为负号),则一定不是的极值点.()()经典例题A.B.C. D.16.函数在上的极小值点为().A.B.C.D.17.已知,在处有极值,则,的值为( ).,或,,或,,以上都不正确巩固练习A.B.C.D.18.函数的极大值为,那么等于().4. 求函数的极值的方法知识精讲求极值的步骤:(1)求导数;(2)求方程的所有实数根;(3)检验在方程的根的左右两侧的值的符号:①如果是左正右负,则在这个根处去的极大值;②如果是左负右正,则在这个根处去的极小值;③如果是左右同号,则在这个根处无极值.知识点睛导数与极值的关系:如果函数在区间上是单调递增的,在区间上是单调递减的,则是极大值点,是极大值.如果函数在区间上是单调递减的,在区间上是单调递增的,则是极小值点,是极小值.经典例题(1)(2)19.求下列函数的极值...巩固练习(1)(2)20.求下列函数的极值...A. B. C.D.21.设函数,则函数的极小值为().经典例题22.判断下列函数是否有极值,如果有极值,请求出其极值;若无极值,请说明理由..巩固练习23.判断下列函数是否有极值,如果有极值,请求出其极值;若无极值,请说明理由..经典例题24.设函数在和处有极值,且,求,,的值及函数的极值.25.若有极大值和极小值,则的取值范围是 .巩固练习26.已知函数在处取得极值,求的值.5. 求函数在上的最值的步骤知识精讲(1)函数的最大(小)值一般地,如果在上函数的图象是一条连续不断的曲线,那么它必有最大值和最小值,且函数的最值必在极值点或区间端点处取得.(2)求函数在上的最值的步骤①求函数在区间上的极值;②将函数的各极值点与端点处的函数值比较,其中最大的一个是最大值,最小的一个是最小值.知识点睛最值与极值的区别与联系(1)函数的最值是一个整体性的概念,反映的是函数在整个定义域上的情况,是对整个区间上的函数值的比较;函数的极值是在局部上对函数值的比较,具有相对性;(2)函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有唯一性;而极大值和极小值可能多于一个,也可能没有;(3)极值只能在区间内取得,最值则可以在区间端点处取得;函数有极值时不一定有最值,有最值时也未必有极值;极值有可能成为最值,最值只要不在区间端点处取得必定是极值.经典例题27.已知函数,求函数在上的最大值和最小值.巩固练习28.函数的最大值为.A., B.,C.,D.,29.函数在区间上的最大值,最小值分别为().30.函数,的最小值等于.经典例题A. B.C.D.31.函数在上最大值为,最小值为,则实数取值范围为().巩固练习A. B.C. D.32.若函数在内有最小值,则的取值范围是().经典例题(1)(2)33.已知函数.求曲线在点处的切线方程.求函数在区间上的最大值和最小值.巩固练习(1)(2)34.已知函数,曲线在处的切线经过点.求实数的值.设,求在区间上的最大值和最小值.三、思维导图你学会了吗?画出思维导图总结本节课所学吧!四、出门测(1)(2)35.已知函数.写出函数的单调递减区间.求函数的极值.11(1)(2)36.已知函数.求曲线在点处的切线方程;求在区间上的最小值和最大值.。
高中数学《导数》讲义(全)

高中数学导数讲义完整版第一部分 导数的背景一、导入新课 1. 瞬时速度问题1:一个小球自由下落,它在下落3秒时的速度是多少? (221gt s =,其中g 是重力加速度).2. 切线的斜率问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.3. 边际成本问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2+=q q C ,我们来研究当q =50时,产量变化q ∆对成本的影响. 二、小结:瞬时速度是平均速度ts∆∆当t ∆趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率xy∆∆当x ∆趋近于0时的极限;边际成本是平均成本q C ∆∆当q ∆趋近于0时的极限.三、练习与作业:1. 某物体的运动方程为25)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度. 2. 判断曲线22x y =在点P (1,2)处是否有切线,如果有,求出切线的方程. 3. 已知成本C 与产量q 的函数关系式为522+=q C ,求当产量q =80时的边际成本. 4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2t h =,求t =4s 时此球在垂直方向的瞬时速度. 5. 判断曲线221x y =在(1,21)处是否有切线,如果有,求出切线的方程.6. 已知成本C 与产量q 的函数关系为742+=q C ,求当产量q =30时的边际成本.第二部分 导数的概念一、新课:1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数()y f x =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比xy∆∆(也叫函数的平均变化率)有极限(即xy∆∆无限趋近于某个常数),我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/。
数学选修2-2人教A讲义:第一章导数及其应用1.3.2(一)

(0 ,e) + ↗
e 0 极大值
(e,+ ∞ ) - ↘
因此, x= e 是函数的极大值点,极大值为
f(e) =1,没有极小值. e
反思与感悟 函数极值和极值点的求解步骤
(1)确定函数的定义域.
(2)求方程 f′ (x)= 0 的根. (3)用方程 f′ (x)= 0 的根顺次将函数的定义域分成若干个小开区间,并列成表格. (4)由 f′ (x) 在方程 f′ (x)= 0 的根左右的符号,来判断 f(x)在这个根处取极值的情况. 特别提醒:当实数根较多时,要充分利用表格,使极值点的确定一目了然. 跟踪训练 1 求下列函数的极值点和极值.
1. 3.2 函数的极值与导数 (一 )
学习目标 1.了解函数极值的概念, 会从几何方面直观理解函数的极值与导数的关系 函数极值的判定及求法 .3.掌握函数在某一点取得极值的条件.
.2. 掌握
知识点一 函数的极值点和极值 思考 观察函数 y= f( x)的图象,指出其极大值点和极小值点及极值.
答案 极大值点为 e, g, i,极大值为 f (e), f( g), f(i );极小值点为 d, f,
(- 1,3)
3
(3 ,+ ∞ )
f′ (x)
+
0
-
0
+
f(x)
↗
极大值
↘
极小值
↗
由上表可以看出,当 x=- 1 时,函数有极大值,且极大值
极小值,且极小值 f(3) =- 6.
(2)函数 f(x) 的定义域为 R.
f′
(
x)
=
-
2xe
x-
x2e-
x=
x(2
-
x)e-
x
19寒假讲义导数综合(理科)学生版

7.已知函数 f (x) = xex + ax2 + 2ax(a R) . (Ⅰ)若曲线 y = f (x) 在点 (0, f (0)) 处的切线方程为 3x + y = 0 ,求 a 的值;
8.设函数 f (x) = x(k − ln x) ,( k 为常数), g(x) = 1 − 1 f (x) .曲线 y = f (x) 在点 (1, f (1)) 处的 xx
切线方程: y − f (x0 ) = f '(x0 )(x − x0 )
Ste p1: 明 确 切点(*)
在点 (x0, f (x0 ))处的切线,
过点 P(m, n)处的切线,
(x0, f (x0 ))是切点
点 P(m, n)不一定是切点
Step2:对原函数求导 f '(x)
Step2:设切点为 (x0, f (x0 ))
a2 的切线.
3.已知函数 f (x) = ex (x2 + ax + a) . (Ⅲ)若曲线 y = f (x) 存在两条互相垂直的切线,求实数 a 的取值范围.(只需直接写出结果)
13
考点二:求函数的单调区间
方法总结:
首先对函数 f (x) 求导得到其导函数 f '(x),然后判断导函数 f '(x)的正负性 若 x (a,b)时 f '(x) 0 则函数 f (x) 在区间 (a,b)上单调递增; 若 x (a,b)时 f '(x) 0 函数则 f (x) 在区间 (a,b)上单调递减. 题型一:求函数的单调区间—— f '(x)有一个零点
1
高考考纲要求:
导数 及其 应用
考试内容
导 数 概念及其
高中物理竞赛讲义2_导数的应用_学生版

第二讲 导数的应用如果你学完上一讲有隔岸观火、雾里看花的感觉,甚至有神魂颠倒、飘飘欲仙的感觉,请不要害怕,不要彷徨,因为包括牛顿在内的大师们当年的感觉,和你们是一样一样的。
也不要害怕掌握不熟,对以后学习有什么影响,我们帮你把今后要用的东西给你准备好了:(()())''()'()f x g x f x g x ±=±; (()())''()()()'()f x g x f x g x f x g x ⋅=+; 2()'()()()'()()'()()f x f xg x f x g x g x g x -=;(())''()'()f g x f g g x =; 1()'n n x nx -=;(sin )'cos x x =;(cos )'sin x x =-;1(ln )'x x =;()'x x e e =在本讲讲详细介绍导数的各种应用。
在练习中体会深化巩固求导的概念和运算。
洛比达法则:这是计算极限的一种常用方法,也可以用来比较小量的阶数.函数求极值:掌握极值和最值的区别,体会能量取极值的意义。
多元函数极值和条件极值:这是导数与实际生活联系最紧密的领域。
不仅物理问题,许多经济学问题,生活问题都可以用这些方法解决。
小量展开:这是导数在物理竞赛中应用得最多的部分。
小量展开体现的一种逐阶展开、通过 抓住主要矛盾来抽象物理本质的思想。
在使用小量展开中注意体会小量阶数的比较与取舍的关系。
讲义的风格与上将类似,一个类目的纯数学例题尽量只有一个,但复杂的提供自学例题课后复习提高。
第一部分 洛比达法则 知识点睛有时候会遇到0/0型的极限式,即分子分母的极限分别为0,例如2320lim 2x x x x x →++。
当0x →的时候,32x x x <<<<,可见x 的高阶量相对于低阶量可以忽略。
高中数学第一章几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)讲义

1.2.2 基本初等函数的导数公式及导数的运算法则(一)1.几个常见函数的导数2.基本初等函数的导数公式设两个函数分别为f(x)和g(x).4.导数的加法与减法法则(1)两个函数和(或差)的导数等于两个函数的导数的和(或差),可推广到多个函数的和(或差),即(f1±f2±…±f n)′=□17f1′±f2′±…±f n′.(2)两个函数和(或差)的导数还可推广为[mf(x)±ng(x)]′=□18mf′(x)±ng′(x)(m,n为常数).基本初等函数的四类求导公式(1)第一类为幂函数,y ′=(x α)′=α·xα-1(注意幂指数α可推广到全体实数).对于解析式为根式形式的函数,首先应把根式化为分数指数幂的形式,再求导数.(2)第二类为三角函数,可记为正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数.注意余弦函数的导数,不要漏掉前面的负号.(3)第三类为指数函数,y ′=(a x)′=a x·ln a ,当a =e 时,e x的导数是(a x )′的一个特例.(4)第四类为对数函数,y ′=(log a x )′=1x ·ln a ,也可记为(log a x )′=1x·log a e ,当a=e 时,ln x 的导数也是(log a x )′的一个特例.1.判一判(正确的打“√”,错误的打“×”) (1)若y =2,则y ′=12×2=1.( )(2)若f ′(x )=sin x ,则f (x )=cos x .( ) (3)若f (x )=-1x ,则f ′(x )=12x x.( ) 答案 (1)× (2)× (3)√ 2.做一做(1)⎝ ⎛⎭⎪⎫1x 3′=________. (2)(2x)′=________.(3)若f (x )=x 3,g (x )=log 3x ,则f ′(x )-g ′(x )=________. 答案 (1)-3x4 (2)2x ln 2 (3)3x 2-1x ln 3探究1 利用导数公式及运算法则求导 例1 求下列函数的导数.(1)y =5x 3;(2)y =log 5x ;(3)f (x )=(x +1)2(x -1); (4)f (x )=2-2sin 2x2;(5)f (x )=e x+1e x -1.[解] (1)y ′=(5x 3)′=(x 35 )′=35x - 25 =355x 2.(2)y ′=(log 5x )′=1x ln 5. (3)因为f (x )=(x +1)2(x -1)=(x 2+2x +1)(x -1)=x 3+x 2-x -1,所以f ′(x )=3x 2+2x -1.(4)因为f (x )=2-2sin 2x2=1+cos x ,所以f ′(x )=-sin x .(5)解法一:f ′(x )=x +x--x+x-x -2=-2e xx -2.解法二:因为f (x )=e x+1e x -1=1+2e x -1,所以f ′(x )=x--x -x -2=-2e xx -2.拓展提升(1)利用函数的和、差、积、商的求导法则求函数的导数时,要分清函数的结构,再利用相应的法则进行求导.(2)遇到函数的表达式是乘积形式或是商的形式,有时先将函数表达式展开或化简,然后再求导.【跟踪训练1】 求下列函数的导数. (1)y =13x2;(2)y =x 3·e x;(3)y =cos x x.解 (1)y ′=⎝ ⎛⎭⎪⎪⎫13x 2′=(x - 23 )′=-23x -23-1 =-23x - 53 .(2)y ′=(x 3·e x )′=(x 3)′·e x +x 3·(e x)′ =3x 2·e x +x 3·e x=x 2e x(3+x ). (3)y ′=⎝ ⎛⎭⎪⎫cos x x ′=xx -cos x xx 2=-x ·sin x -cos x x2=-x sin x +cos xx2. 探究2 曲线切线方程的确定与应用例2 过原点作曲线y =e x的切线,求切点的坐标及切线的斜率.[解] 因为(e x )′=e x,设切点坐标为(x 0,e x 0),则过该切点的直线的斜率为e x 0,所以所求切线方程为y -ex 0=ex 0(x -x 0).因为切线过原点,所以-ex 0=-x 0·ex 0,x 0=1.所以切点为(1,e),斜率为e.[条件探究] 已知点P 是曲线y =e x上任意一点,求点P 到直线y =x 的最小距离.[解] 根据题意设平行于直线y =x 的直线与曲线y =e x相切于点(x 0,y 0),该切点即为与y =x 距离最近的点,如图.则在点(x 0,y 0)处的切线斜率为1,即y ′|x =x 0=1.y ′=(e x )′=e x,ex 0=1,得x 0=0,代入y =e x,y 0=1,即P (0,1). 利用点到直线的距离公式得距离为22. 拓展提升利用基本初等函数的求导公式和导数的四则运算法则,结合导数的几何意义可以解决一些与距离、面积相关的几何的最值问题.解题的关键是正确确定所求切线的位置,进而求出切点坐标.【跟踪训练2】 已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.解 因为y ′=(x 2)′=2x ,设切点为M (x 0,y 0), 则y ′| x =x 0=2x 0.又因为PQ 的斜率为k =4-12+1=1,而切线平行于PQ ,所以k =2x 0=1,即x 0=12,所以切点为M ⎝ ⎛⎭⎪⎫12,14. 所以所求的切线方程为y -14=x -12,即4x -4y -1=0. 探究3 导数的综合应用例3 已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5, ∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0. (2)设切点坐标为(x 0,x 30-4x 20+5x 0-4), ∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2), 又切线过点(x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. 拓展提升求曲线方程或切线方程时,应注意:(1)切点是曲线与切线的公共点,切点坐标既满足曲线方程也满足切线方程; (2)曲线在切点处的导数就是切线的斜率;(3)必须明确已知点是不是切点,如果不是,应先设出切点.【跟踪训练3】 已知f (x )=13x 3+bx 2+cx (b ,c ∈R ),f ′(1)=0,当x ∈[-1,3]时,曲线y =f (x )的切线斜率的最小值为-1,求b ,c 的值.解 f ′(x )=x 2+2bx +c =(x +b )2+c -b 2, 且f ′(1)=1+2b +c =0.① 若-b ≤-1,即b ≥1,则f ′(x )在[-1,3]上是增函数, 所以f ′(x )min =f ′(-1)=-1, 即1-2b +c =-1,②由①②,解得b =14,不满足b ≥1,应舍去.若-1<-b <3,即-3<b <1, 则f ′(x )min =f ′(-b )=-1, 即b 2-2b 2+c =-1,③由①③,解得b =-2,c =3或b =0,c =-1. 若-b ≥3,即b ≤-3,f ′(x )在[-1,3]上是减函数, 所以f ′(x )min =f ′(3)=-1, 即9+6b +c =-1,④由①④,解得b =-94,不满足b ≤-3,应舍去.综上可知,b =-2,c =3或b =0,c =-1.1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式.解题时,要认真观察函数的结构特征,积极地进行联想划归.2.准确记忆导数的运算法则是进行导数运算的前提,但在解题过程中要注意如何使用运算法则可使运算较为简单,例如求y =x ·x 的导数,若使用积的导数公式可以求出结果,但不如先化简为y =x ·x =x 32 ,再求y ′=32x 12简单.3.三次函数的导数为二次函数,当涉及与二次函数最值有关的问题时,常需要讨论,而讨论的立足点是二次函数的图象的对称轴与区间的位置关系.1.已知函数f (x )=5,则f ′(1)等于( ) A .5 B .1 C .0 D .不存在 答案 C解析 因为f (x )=5,所以f ′(x )=0,所以f ′(1)=0. 2.已知f (x )=x 3+3x+ln 3,则f ′(x )为( ) A .3x 2+3xB .3x 2+3x·ln 3+13C .3x 2+3x ·ln 3D .x 3+3x·ln 3答案 C解析 (ln 3)′=0,注意避免出现(ln 3)=13的错误,∵f (x )=x 3+3x +ln 3,∴f ′(x )=3x 2+3x·ln 3.3.曲线y =cos x 在点A ⎝ ⎛⎭⎪⎫π6,32处的切线方程为________.答案 x +2y -3-π6=0解析 因为y ′=(cos x )′=-sin x ,所以k =-sin π6=-12,所以在点A 处的切线方程为y -32=-12⎝ ⎛⎭⎪⎫x -π6,即x +2y -3-π6=0.4.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________.答案 1解析 ∵f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x , ∴f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x , ∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4sin π4+cos π4,即f ′⎝ ⎛⎭⎪⎫π4=2-1,从而有f ⎝ ⎛⎭⎪⎫π4=(2-1)cos π4+sin π4=1,故填1. 5.已知直线y =kx 是函数y =ln x 的一条切线,试求k 的值. 解 设切点坐标为(x 0,y 0).∵y =ln x ,∴y ′=1x ,∴y ′| x =x 0=1x 0=k .∵点(x 0,y 0)既在直线y =kx 上,也在曲线y =ln x 上, ∴⎩⎪⎨⎪⎧y 0=kx 0,①y 0=ln x 0,②把k =1x 0代入①式得y 0=1,再把y 0=1代入②式求出x 0=e ,∴k =1x 0=1e .。
2.7导数的应用(讲义+典型例题+小练)(原卷版)

2.7导数的应用(讲义+典型例题+小练)1. 基本方法:(1)函数的导数与函数的单调性的关系:设函数y =f (x )在某个区间内有导数,如果在这个区间内/y >0,那么函数y =f (x )为这个区间内的增函数;如果在这个区间内/y <0,那么函数y =f (x )为这个区间内的减函数.(2)用导数求函数单调区间的步骤:①求函数f (x )的导数f ′(x ). ②令f ′(x )>0解不等式,得x 的范围就是递增区间. ③令f ′(x )<0解不等式,得x 的范围,就是递减区间.(3)判别f (x 0)是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值.(4)求函数f (x )的极值的步骤:①确定函数的定义区间,求导数f ′(x ). ②求方程f '(x )=0的根. ③用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格. 检查f '(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,即都为正或都为负,则f (x )在这个根处无极值.2、基本思想:学习的目的,就是要会实际应用,本讲主要是培养学生运用导数知识解决实际问题的意识,思想方法以及能力.解决实际应用问题关键在于建立数学模型和目标函数. 把“问题情景”译为数学语言,找出问题的主要关系,并把问题的主要关系近似化,形式化,抽象成数学问题,再化为常规问题,选择合适的数学方法求解.根据题设条件作出图形,分析各已知条件之间的关系,借助图形的特征,合理选择这些条件间的联系方式,适当选定变化区间,构造相应的函数关系,是这部分的主要技巧.知识当回归于生活,在现实生活中,有很多时候我们需要用到最大、最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数一、导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f ’(x 0)或y ’|0x x =。
f ’(x 0)=0lim →∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
例、 若k x x f x x f x =∆-∆+→∆)()(lim000,则xx f x x f x ∆-∆⋅+→∆)()2(lim000等于( ) A .k 2 B .k C .k 21D .以上都不是变式训练: 设函数)(x f 在点0x 处可导,试求下列各极限的值.1.xx f x x f x ∆-∆-→∆)()(lim000;2..2)()(lim 000hh x f h x f h --+→3.若2)(0='x f ,则k x f k x f k 2)()(lim 000--→=?二、导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f ’(x 0)。
切线方程为y -y 0=f /(x 0)(x -x 0)。
三、导数的运算1.基本函数的导数公式: ①0;C '=(C 为常数)②()1;n n x nx -'=③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=;⑦()1ln x x '=;⑧()1l g log a a o x e x'=.习题:求下列函数的导数:(8分钟独立完成)(1)()f x π= (2)4()f x x = (3)()f x (4)()sin f x x = (5)()cos f x x =- (6)()3x f x = (7)()x f x e = (8)2()log f x x = (9)()ln f x x = (10)1()f x x = (11)31cos 44y x =+ (12)1xy x=+ (13)lg x y x e =- (14)3cos y x x = 2、导数的四则运算法则:)()(])()([)()(])()([x g x f x g x f x g x f x g x f '-'='-'+'='+)()()()()()()()()()()(])()([2x g x g x f x g x f x g x f x g x f x g x f x g x f '-'='⎥⎦⎤⎢⎣⎡'+'='练习:求下列函数的导数:(1)x x y 22+=; (2)x x y ln -=;(3)x x y sin =; (4)x x y ln =。
(5)xxy sin =; (6)x x y ln 2=。
3、复合函数求导:如果函数)(x ϕ在点x 处可导,函数f (u )在点u=)(x ϕ处可导,则复合函数y= f (u )=f [)(x ϕ]在点x 处也可导,并且(f [)(x ϕ])ˊ= [])(x f ϕ')(x ϕ' 例、求下列函数的导数(1)y=x 21-cos x (2)y=ln (x +21x +) 练习:求下列函数的导数 (1)y =2)13(1-x (2) y =sin (3x +4π)常考题型:类型一、求导数相关问题例1、若曲线y =e -x 上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.例2、曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1例3、[2014·新课标全国卷Ⅱ] 设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3类型二、求切线方程(一)已知切点坐标,求切线方程例1.曲线3231y x x =-+在点(11)-,处的切线方程 (二)已知切点斜率,求切线方程例2.与直线240x y -+=的平行的抛物线2y x =的切线方程 (三)已知曲线外一点,求切线方程例3.求过点(20),且与曲线1y x=相切的直线方程. (四)已知曲线上一点,求过该点的切线方程例4.求过曲线32y x x =-上的点(11)-,的切线方程.变式训练:1、[2014·广东卷] 曲线y =-5e x +3在点(0,-2)处的切线方程为________.2、[2014·江苏卷] 在平面直角坐标系xOy 中,若曲线y =ax 2+b x(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b的值是________.3、与直线1+-y x =0平行, 且与曲线y =132-x 相切的直线方程 类型三、求单调区间及极值、最值考点一 求不含参数的函数的单调区间例1.求函数y =x 2(1-x )3的单调区间. 变式训练:1.函数x x y ln =的单调递减区间是( )A .),(1+∞-eB .),(1--∞eC .),0(1-eD .),(+∞e2.(05年广东高考题)函数32()31f x x x =-+是减函数的区间为( ) (A)(2,)+∞(B)(,2)-∞(C)(,0)-∞(D)(0,2)考点二 求含参数的函数的单调区间考例1、已知函数 21()ln (1)2f x x m x m x =-+-,m ∈R .当 0m ≤ 时,讨论函数 ()f x 的单调性.例2、设函数f(x)= 3223(1)1, 1.x a x a --+≥其中求f(x)的单调区间;例3、设函数f (x )=ax -(a +1)ln(x +1),其中a ≥--1,求f (x )的单调区间。
变式训练:1、[2014·山东卷] 设函数f (x )=a ln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性. 2、【2014·安徽卷】设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;考点三:利用单调区间求未知参数取值范围:例1、[2014·新课标全国卷Ⅱ] 若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)例2、[2014·全国新课标卷Ⅰ] 已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)例3、[2014·辽宁卷] 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3] B.⎣⎢⎡⎦⎥⎤-6,-98 C .[-6,-2] D .[-4,-3] 变式训练:(山东省烟台市2011届高三上学期期末考试试题(数学文)) 已知函数32()f x ax bx =+的图像经过点(1,4)M ,曲线在点M 处的切线恰好与直线90x y +=垂直.(Ⅰ)求实数,a b 的值;(Ⅱ)若函数()f x 在区间[,1]m m +上单调递增,求m 的取值范围.考点四:结合单调性求极值问题求函数的极值的步骤:(1)确定函数的定义域,求导数'()f x . (2)求方程'()0f x =的根.(3)用函数的导数为0的点,顺次将函数的定义域分成若干小开区间,并列成表格.检查'()f x 在方程根左右的值的符号,如果左正右负,那么)(x f 在这个根处取得极大值;如果左负右正,那么)(x f 在这个根处取得极小值;如果左右不改变符号,那么)(x f 在这个根处无极值.注:可导函数()y f x =在0x x =处取得极值是0'()0f x =的充分不必要条件. 例1、已知函数x x b ax x f ln 42)(+-=在311==x x 与处都取得极值. (1)求a 、b 的值;变式训练:设1,2x x ==是()ln f x a x bx x =++函数的两个极值点.(1)试确定常数a 和b 的值;(2)试判断1,2x x ==是函数()f x 的极大值点还是极小值点,并求相应极值. 例2、(06安徽卷)设函数()32()f x x bx cx x R =++∈,已知()()()g x f x f x '=-是奇函数。
(Ⅰ)求b 、c 的值。
(Ⅱ)求()g x 的单调区间与极值。
例3、已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围.例4、[2014·江西卷] 已知函数f (x )=(x 2+bx +b )1-2x (b ∈R ).(1)当b =4时,求f (x )的极值;(2)若f (x )在区间⎝⎛⎭⎪⎫0,13上单调递增,求b 的取值范围.变式训练:1、已知函数()f x x b =+的图象与函数23)(2++=x x x g 的图象相切,记()()()F x f x g x =.(Ⅰ)求实数b 的值及函数()F x 的极值;(Ⅱ)若关于x 的方程k x F =)(恰有三个不等的实数根,求实数k 的取值范围.2、(2011全国Ⅱ文20)已知函数32()3(36)124()f x x ax a x a a R =++-+-∈ (Ⅰ)证明:曲线()0y f x x ==在(2,2)的切线过点; (Ⅱ)若00()(1,3)f x x x x =∈在处取得极小值,,求a 的取值范围.考点五:结合单调性求最值问题求函数在[,]a b 上最值的步骤:(1)求出()f x 在(,)a b 上的极值. (2)求出端点函数值(),()f a f b .(3)比较极值和端点值,确定最大值或最小值.例1、(2010年重庆卷)已知函数f(x)=ax 3+x 2+bx(其中常数a ,b ∈R),g(x)=f(x)+f ′(x)是奇函数.(1)求f(x)的表达式;(2)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值与最小值. 例2、设函数f(x)=ax 3+bx +c(a ≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x -6y -7=0垂直,导函数f ′(x)的最小值为-12. (1)求a ,b ,c 的值;(2)求函数f(x)的单调递增区间,并求函数f(x)在[-1,3]上的最大值和最小值.例3、已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-.(I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=L ,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.例4、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时 ,求f (x )取得最大值和最小值时的x 的值.四、导数与不等式恒成立问题:可将恒成立问题转化成函数的最值问题求解。