导数复习讲义
导数复习讲义

高中数学复习讲义 导数及其应用【知识图解】第1课 导数的概念及运算【考点导读】1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);2.掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念;3.熟记基本导数公式;4.掌握两个函数和、差、积、商的求导法则;5.了解复合函数的求导法则.会求某些简单函数的导数. 【基础练习】1.设函数f (x )在x =x 0处可导,则0lim→h hx f h x f )()(00-+与x 0,h 的关系是 仅与x 0有关而与h 无关 。
2.已知32'()(1)f x x x f =+, 则=)2('f 。
3.已知),(,cos 1sin ππ-∈+=x xxy ,则当2'=y 时,=x __________。
4.已知a x x a x f =)(,则=)1('f ______________。
5.已知两曲线ax x y +=3和c bx x y ++=2都经过点P (1,2),且在点P 处有公切线,试求a,b,c 值。
解:因为点P (1,2)在曲线ax x y +=3上,1=∴a函数ax x y +=3和c bx x y ++=2的导数分别为a x y +='23和b x y +='2,且在点P 处有公切线b a +⨯=+⨯∴12132,得b=2又由c +⨯+=12122,得1-=c 【范例导析】例1.下列函数的导数:①2(1)(231)y x x x =++- ②y ③()(cos sin )x f x e x x =⋅+分析:利用导数的四则运算求导数。
点评:利用基本函数的导数、导数的运算法则及复合函数的求导法则进行导数运算,是高考对导数考查的基本要求。
例2. 如果曲线103-+=x x y 的某一切线与直线34+=x y 平行,求切点坐标与切线方程.分析:本题重在理解导数的几何意义:曲线()y f x =在给定点00(,())P x f x 处的切线的斜率0()k f x '=,用导数的几何意义求曲线的斜率就很简单了。
高中数学《导数》讲义(全)

高中数学导数讲义完整版第一部分 导数的背景一、导入新课 1. 瞬时速度问题1:一个小球自由下落,它在下落3秒时的速度是多少? (221gt s =,其中g 是重力加速度).2. 切线的斜率问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.3. 边际成本问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2+=q q C ,我们来研究当q =50时,产量变化q ∆对成本的影响. 二、小结:瞬时速度是平均速度ts∆∆当t ∆趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率xy∆∆当x ∆趋近于0时的极限;边际成本是平均成本q C ∆∆当q ∆趋近于0时的极限.三、练习与作业:1. 某物体的运动方程为25)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度. 2. 判断曲线22x y =在点P (1,2)处是否有切线,如果有,求出切线的方程. 3. 已知成本C 与产量q 的函数关系式为522+=q C ,求当产量q =80时的边际成本. 4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2t h =,求t =4s 时此球在垂直方向的瞬时速度. 5. 判断曲线221x y =在(1,21)处是否有切线,如果有,求出切线的方程.6. 已知成本C 与产量q 的函数关系为742+=q C ,求当产量q =30时的边际成本.第二部分 导数的概念一、新课:1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数()y f x =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比xy∆∆(也叫函数的平均变化率)有极限(即xy∆∆无限趋近于某个常数),我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/。
高考数学复习讲义:导数的概念及运算、定积分

返回
[基本能力]
一、判断题(对的打“√”,错的打“×”) (1)曲线的切线与曲线不一定只有一个公共点. ( ) (2)求曲线过点 P 的切线时 P 点一定是切点. ( ) 答案:(1)√ (2)×
返回
看成常数,再求导 复合函数 确定复合关系,由外向内逐层求导
返回
[针对训练]
1.设 f(x)=x(2 019+ln x),若 f′(x0)=2 020,则 x0 等于( )
A.e2
B.1
C.ln 2
D.e
解析:f′(x)=2 019+ln x+1=2 020+ln x,由 f′(x0)= 2 020,得 2 020+ln x0=2 020,则 ln x0=0,解得 x0=1. 答案:B
返回
2.曲线 y=log2x 在点(1,0)处的切线与坐标轴所围成三角形的 面积等于________. 解析:∵y′=xln1 2,∴切线的斜率 k=ln12,∴切线方程为 y=ln12(x-1),∴所求三角形的面积 S=12×1×ln12=2ln1 2= 1 2log2e. 答案:12log2e
二、填空题 1.已知函数 f(x)=axln x+b(a,b∈R),若 f(x)的图象在 x=1
处的切线方程为 2x-y=0,则 a+b=________. 解析:由题意,得 f′(x)=aln x+a,所以 f′(1)=a,因为函 数 f(x)的图象在 x=1 处的切线方程为 2x-y=0,所以 a=2, 又 f(1)=b,则 2×1-b=0,所以 b=2,故 a+b=4. 答案:4
答案:-xsin x 2.已知 f(x)=13-8x+2x2,f′(x0)=4,则 x0=________.
导数的概念及基本运算复习ppt课件

【思维总结】 对于未给出切点的题目,要求切线方程,先 设出切点坐标,建立切线方程,再利用过已知点求切点坐标.
跟踪训练
2.对于本题函数 y=13x3+43,求曲线在点 P(2,4)的切线方程.
解:∵y′=x2, ∴在 P(2,4)的切线的斜率为 k=y′|x=2=4, ∴曲线在 P(2,4)的切线方程为 y-4=4(x-2), 即 4x-y-4=0.
() A.0
B.1
C.-2
D.2
答案:C
4.(2012·高考广东卷)曲线y=x3-x+3在点(1,3)处的切线方程 为________. 答案:y=2x+1 5.若函数f(x)=(x+1)2(x-1),则f′(2)=________. 答案:15
考点探究讲练互动
考点突破
考点 1 求函数的导数
函数的导数与函数在某点的导数其意义是不同的,前者是指 导函数,后者是指导函数在某点的具体函数值.
即 y=x20·x-23x30+43.
∵P(2,4)在切线上,∴4=2x20-23x30+43, 即 x30-3x20+4=0. ∴x30+x20-4x20+4=0,∴x20(x0+1)-4(x0+1)(x0-1)=0, ∴(x0+1)(x0-2)2=0,解得 x0=-1 或 x0=2. 故所求切线方程为 4x-y-4=0 或 x-y+2=0.
2.导函数
如果函数f(x)在开区间(a,b)内每一点可导,就说f(x)在开区间
(a,b)内可导.对于开区间(a,b)内每一个确定的x0,都对应 着一个确定的导数f′(x0),这样就在开区间(a,b)内构成一个 新 的 函 数 , 我 们 把 这 一 新 函 数 叫 做 f(x) 在 开 区 间 (a , b) 内 的 _导__函__数___,记作f′(x)或y′.
导数讲义

导数讲义一、导数的概念1.切线的斜率 如图5—1所示,曲线)(x f y =在其上一点),(00y x P 处的切线PT 是割线PQ 当动点Q 沿此曲线无限接近于点P 时的极限位置.由于割线PQ 的斜率为0)()(x x x f x f k --=,因此当0x x →时如果k 的极限存在,则极限=k 00)()(limx x x f x f x x --→ ………………..(1) 即为切线PT 的斜率.2、导数的定义 设函数)(x f y =在点0x 的某邻域内有定义,若极限)()(lim00x x x f x f x x --→ (2)存在,则称函数f 在点0x 处可导,并称该极限为函数f 在点0x 处的导数,记作)(0x f '. 令),()(,000x f x x f y x x x -∆+=∆∆+=则(2)式可改写为).()()(lim lim00000x f x x f x x f x y x x '=∆-∆+=∆∆→∆→∆=000)()(lim )(0x x x f x f x f x x --='→ (3)所以,导数是函数增量y ∆与自变量增量x ∆之比xy∆∆的极限.这个增量比称为函数关于自变量的平均变化率(又称差商),而导数)(0x f '则为f 在0x 处关于x 的变化率. 若(2)(或(3))式极限不存在,则称f 在点0x 处不可导.3、倒数的几何意义:由导数的定义,)(x f k '=,所以曲线)(x f y =在点),(00y x 的切线方程是).)((000x x x f y y -'=-由解析几何知道,若切线斜率为k ,则法线斜率为.1k -从而过点P 的法线方程为).()(1000x x x f y y -'-=-二、常用的求导公式(1)(C )'=0, (2)n nx x n n ,)(1-='为正整数; (3);sin )(cos ,cos )(sin x x x x -='=' (4)(tan x )'=sec 2x , (cot x )'=-csc 2x , (5)),0,1,0(log 1)(log >≠>='x a a e x x a a 特别xx 1)(ln ='. (6)(a x )'=a x ln a ,特别的(e x )'=e x , (7) 211)(arcsin x x -=', 211)(a r c c o s x x --=' 211)(arctan x x +=', 211)cot arc (x x +-='.三、导数的运算法则1.、设u =u (x ), v =v (x )都可导, 则(1)(u ±v )'=u '±v ', (2)(C u )'=C u ',(3)(u v )'=u '⋅v +u ⋅v ', (4)2)(vv u v u vu '-'='. 2、复合函数的求导法则设y =f (x ), 而u =g (x )且f (u )及g (x )都可导, 则复合函数y =f [g (x )]的导数为:y '(x )=f '(u )⋅g '(x ).证明: 当u =g (x )在x 的某邻域内为常数时, y =f [ϕ(x )]也是常数, 此时导数为零, 结论自然成立. 当u =g (x )在x 的某邻域内不等于常数时, ∆u ≠0, 此时有xx g x x g x g x x g x g f x x g f x x g f x x g f x y ∆-∆+⋅-∆+-∆+=∆-∆+=∆∆)()()()()]([)]([)]([)]([ xx g x x g u u f u u f ∆-∆+⋅∆-∆+=)()()()(,xx g x x g u u f u u f x y dx dy x u x ∆-∆+⋅∆-∆+=∆∆=→∆→∆→∆)()(lim)()(lim lim 000= f '(u )⋅g '(x ). 简要证明:x u u y x y dx dy x x ∆∆⋅∆∆=∆∆=→∆→∆00lim lim )()(l i ml i m 00x g u f xu u y x u ''=∆∆⋅∆∆=→∆→∆.四、导数的应用 1. 函数的单调性⑴ 函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则)(x f 为 .反之,设函数y =)(x f 在某个区间内可导,如果)(x f 在该区间上单调递增(或递减),则在该区间内)(x f ' (或()f x ' )恒成立。
高考数学-导数-专题复习课件

)
v0t
,求1物gt体2 在时刻
2
时的瞬t0时速度.
解析:
s(t)
v0
1 2
g
2t
v0
gt
∴物体在 t时0 刻瞬时速度为 s(t0 ) v0 gt0. 题型四 导数的几何意义及几何上的应用
【例4】(12分)已知曲线 y 1 x3 4 .
33
(1)求曲线在点P(2,4)处的切线方程; (2)求过点P(2,4)的曲线的切线方程.
x0
x0
x0
典例分析
题型一 利用导数求函数的单调区间
【例1】已知f(x)= e-xax-1,求f(x)的单调增区间.
分析 通过解f′(x)≥0,求单调递增区间.
解 ∵f(x)= -aexx -1,∴f′(x)= -a. ex 令f′(x)≥0,得 ≥ae. x 当a≤0时,有f′(x)>0在R上恒成立; 当a>0时,有x≥ln a. 综上,当a≤0时,f(x)的单调增区间为(-∞,+∞); 当a>0时,f(x)的单调增区间为[ln a,+∞).
分析 (1)在点P处的切线以点P为切点.关键是求出切线斜率k=f′(2). (2)过点P的切线,点P不一定是切点,需要设出切点坐标.
解(1)∵y′= ,…x2……………………………2′ ∴在点P(2,4)处的切线的斜率 k y |x..23′ 4. ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2), 即4x-y-4=0……………………………………….4′ (2)设曲线 y 1 x过3 点4 .P(2,4)的切线相切于点
33
则切线的斜率 k y |xx0……x02…. …………..6′
∴切线方程为
y
(1 3
第一节++导数的概念及其运算讲义-2025届高三数学一轮复习

第一节 导数的概念及其运算【课标要求】了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达, 体会导数的内涵与思想。
体会极限思想。
通过函数图象直观理解导数的几何意义,能根据导数定义求函数y=c,y=x ,x y x y x y ===,,32的导数,能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(f(ax+b) 的导数。
会使用导数公式表.教学目标:1.了解导数的概念,理解导数的几何意义;2.掌握基本初等函数的导数,能够用导数公式和导数的四则运算法则求简单函数的导数,理解简单的复合函数的导数。
教学重点:导数的运算及导数的几何意义。
教学难点:正确求导及曲线切线的理解教学过程:环节1:知识检测2.已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列数值排序正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f ′(2)<f (3)-f (2)C .0<f ′(3)<f (3)-f (2)<f ′(2)1.某市一天12小时内的气温变化图如图所示,则在区间[0,4]内温度的平均变化率为________℃/h.D .0<f (3)-f (2)<f ′(2)<f ′(3)环节2:知识梳理1.函数的平均变化率及其意义(1)函数y=f(x)在区间[]21x x 的平均变化率: 平均变化率为=∆∆=∆∆x fx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212(2)函数y =f (x )的平均变化率反映了函数f (x )在区间[]21x x 上的变化快慢, (3)函数y =f (x )的图象在点A(()()()()2211,,,x f x B x f x A 割线的斜率,是曲线倾斜程度的“数量化”。
高二导数讲义

导数【知识归纳】1.导数的概念函数y=f(x),如果自变量x 在x 处有增量 , 那么函数y 相应地有增量 =f (x + )-f (x ), 比值 叫做函数y=f (x )在x 到x + 之间的平均变化率, 即 = 。
如果当 时, 有极限, 我们就说函数y=f(x)在点x 处可导, 并把这个极限叫做f (x )在点x 处的导数, 记作f ’(x )或y ’| 。
即f (x 0)=0lim →∆x x y ∆∆=0lim →∆x xx f x x f ∆-∆+)()(00。
说明: (1)函数f (x )在点x 处可导, 是指 时, 有极限。
如果 不存在极限, 就说函数在点x 处不可导, 或说无导数。
(2) 是自变量x 在x 处的改变量, 时, 而 是函数值的改变量, 可以是零。
由导数的定义可知, 求函数y=f (x )在点x 处的导数的步骤:(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=xx f x x f ∆-∆+)()(00; (3)取极限, 得导数f ’(x )= 。
2.导数的几何意义函数y=f (x )在点x 处的导数的几何意义是曲线y=f (x )在点p (x , f (x ))处的切线的斜率。
也就是说, 曲线y=f (x )在点p (x , f (x ))处的切线的斜率是f ’(x )。
相应地, 切线方程为y -y =f/(x )(x -x )。
3.几种常见函数的导数:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '=⑥()ln x x a a a '=;⑦()1ln x x '=; ⑧()1l g log a a o x e x '=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: (法则2: 两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即:若C 为常数, .即常数与函数的积的导数等于常数乘以函数的导数:法则3:两个函数的商的导数, 等于分子的导数与分母的积, 减去分母的导数与分子的积再除以分母的平方: ‘= (v 0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学复习讲义 第十二章 导数及其应用【知识图解】【方法点拨】导数的应用极其广泛,是研究函数性质、证明不等式、研究曲线的切线和解决一些实际问题的有力工具,也是提出问题、分析问题和进行理性思维训练的良好素材。
同时,导数是初等数学与高等数学紧密衔接的重要内容,体现了高等数学思想及方法。
1.重视导数的实际背景。
导数概念本身有着丰富的实际意义,对导数概念的深刻理解应该从这些实际背景出发,如平均变化率、瞬时变化率和瞬时速度、加速度等。
这为我们解决实际问题提供了新的工具,应深刻理解并灵活运用。
2.深刻理解导数概念。
概念是根本,是所有性质的基础,有些问题可以直接用定义解决。
在理解定义时,要注意“函数()f x 在点0x 处的导数0()f x '”与“函数()f x 在开区间(,)a b 内的导数()f x '”之间的区别与联系。
3.强化导数在函数问题中的应用意识。
导数为我们研究函数的性质,如函数的单调性、极值与最值等,提供了一般性的方法。
4.重视“数形结合”的渗透,强调“几何直观”。
在对导数和定积分的认识和理解中,在研究函数的导数与单调性、极值、最值的关系等问题时,应从数值、图象等多个方面,尤其是几何直观加以理解,增强数形结合的思维意识。
5.加强“导数”的实践应用。
导数作为一个有力的工具,在解决科技、经济、生产和生活中的问题,尤其是最优化问题中得到广泛的应用。
6.(理科用)理解和体会“定积分”的实践应用。
定积分也是解决实际问题(主要是几何和物理问题)的有力工具,如可以用定积分求一些平面图形的面积、旋转体的体积、变速直线运动的路程和变力作的功等,逐步体验微积分基本定理。
第1课 导数的概念及运算【考点导读】1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);2.掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念;3.熟记基本导数公式;4.掌握两个函数和、差、积、商的求导法则;5.了解复合函数的求导法则.会求某些简单函数的导数.(理科) 【基础练习】1.设函数f (x )在x =x 0处可导,则0lim →h hx f h x f )()(00-+与x 0,h 的关系是 仅与x 0有关而与h 无关 。
2.已知)1()('23f x x x f +=, 则=)2('f 0 。
3.已知),(,cos 1sin ππ-∈+=x x x y ,则当2'=y 时,=x 32π±。
4.已知a x x a x f =)(,则=)1('f 2ln a a a +。
5.已知两曲线ax x y +=3和c bx x y ++=2都经过点P (1,2),且在点P 处有公切线,试求a,b,c 值。
解:因为点P (1,2)在曲线ax x y +=3上,1=∴a函数ax x y +=3和c bx x y ++=2的导数分别为a x y +='23和b x y +='2,且在点P 处有公切数b a +⨯=+⨯∴12132,得b=2又由c +⨯+=12122,得1-=c 【范例导析】例1.下列函数的导数:①2(1)(231)y x x x =++- ②y = ③()(cos sin )xf x e x x =⋅+分析:利用导数的四则运算求导数。
解:①法一:13232223-++-+=x x x x x y 125223-++=x x x ∴ 26102y x x '=++法二:)132)(1()132()1(22'-+++-+'+='x x x x x x y =1322-+x x +)1(+x )34(+x26102x x =++ ② 231212332----+-=xx xx y∴ 252232123233---+-+='x x x x y③()f x '=e -x(cos x +sin x )+e -x(-sin x +cos x )=2e -xcos x ,点评:利用基本函数的导数、导数的运算法则及复合函数的求导法则进行导数运算,是高考对导数考查的基本要求。
例2. 如果曲线103-+=x x y 的某一切线与直线34+=x y 平行,求切点坐标与切线方程. 分析:本题重在理解导数的几何意义:曲线()y f x =在给定点00(,())P x f x 处的切线的斜率0()k f x '=,用导数的几何意义求曲线的斜率就很简单了。
解: 切线与直线34+=x y 平行, 斜率为4又切线在点0x 的斜率为0320(10)31x x x x y x x x ==''=+-=+∵ 41320=+x ∴10±=x∴⎩⎨⎧-==8100y x 或⎩⎨⎧-=-=12100y x∴切点为(1,-8)或(-1,-12)切线方程为)1(48-=+x y 或)1(412+=+x y 即124-=x y 或84-=x y点评:函数导数的几何意义揭示了导数知识与平面解析几何知识的密切联系,利用导数能解决许多曲线的切线问题,其中寻找切点是很关键的地方。
变题:求曲线32y x x =-的过点(1,1)A 的切线方程。
答案:20,5410x y x y +-=--=点评:本题中“过点(1,1)A 的切线”与“在点(1,1)A 的切线”的含义是不同的,后者是以A 为切点,只有一条切线,而前者不一定以A 为切点,切线也不一定只有一条,所以要先设切点,然后求出切点坐标,再解决问题。
【反馈演练】1.一物体做直线运动的方程为21s t t =-+,s 的单位是,m t 的单位是s ,该物体在3秒末的瞬时速度是5/m s 。
2.设生产x 个单位产品的总成本函数是2()88x C x =+,则生产8个单位产品时,边际成本是2 。
3.已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能为 (1) 。
(1)f (x )=(x -1)2+3(x -1) (2)f (x )=2(x -1)(3)f (x )=2(x -1)2(4)f (x )=x -14.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为430x y --=。
5.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是 3 。
6.过点(0,-4)与曲线y =x 3+x -2相切的直线方程是 y =4x -4 . 7. 求下列函数的导数:(1)y=(2x 2-1)(3x+1) (2)x x y sin 2= (3))1ln(2x x y ++=(4)11-+=x x e e y (5)x x x x y sin cos ++= (6)xx xy cos sin 2cos -=解:(1)34182-+='x x y , (2)x x x x y cos sin 22+=';(3)211xy +=', (4)2)1(2--='x x e e y ; (5)2)sin (1cos sin sin cos x x x x x x x x y +--+--=', (6)x x y cos sin -='. 8 已知直线1l 为曲线22-+=x x y 在点(0,2)-处的切线,2l 为该曲线的另一条切线,且21l l ⊥(Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l ,2l 和x 轴所围成的三角形的面积 解: 设直线1l 的斜率为1k ,直线2l 的斜率为2k ,'21y x =+,由题意得10'|1x k y ===,得直线1l 的方程为2y x =-122111l l k k ⊥∴=-=- 211,1x x +=-=-令得,212,2x y x x y =-=+-=-将代入得2l ∴与该曲线的切点坐标为(1,2),A --由直线方程的点斜式得直线2l 的方程为:3y x =--(Ⅱ)由直线1l 的方程为2y x =-,令0=2y x =得:由直线2l 的方程为3y x =--,令0=3y x =-得: 由23y x y x =-⎧⎨=--⎩得:52y =-设由直线1l ,2l 和x 轴所围成的三角形的面积为S ,则:1525[2(3)]224s =⋅-⋅--=第2课 导数的应用A【考点导读】1. 通过数形结合的方法直观了解函数的单调性与导数的关系,能熟练利用导数研究函数的单调性;会求某些简单函数的单调区间。
2. 结合函数的图象,了解函数的极大(小)值、最大(小)值与导数的关系;会求简单多项式函数的极大(小)值,以及在指定区间上的最大(小)值。
【基础练习】1.若函数()f x mx n =+是R 上的单调函数,则,m n 应满足的条件是 0,m n R ≠∈ 。
2.函数5123223+--=x x x y 在[0,3]上的最大值、最小值分别是 5,-15 。
3.用导数确定函数()sin ([0,2])f x x x π=∈的单调减区间是3[,]22ππ。
4.函数1()sin ,([0,2])2f x x x x π=+∈的最大值是π,最小值是0。
5.函数2()xf x x e =⋅的单调递增区间是 (-∞,-2)与(0,+ ∞) 。
【范例导析】例1.32()32f x x x =-+在区间[]1,1-上的最大值是 2 。
解:当-1≤x <0时,()f x '>0,当0<x ≤1时,()f x '<0,所以当x =0时,f (x )取得最大值为2。
点评:用导数求极值或最值时要掌握一般方法,导数为0的点是否是极值点还取决与该点两侧的单调性,导数为0的点未必都是极值点,如:函数3()f x x =。
例2. 求下列函数单调区间:(1)5221)(23+--==x x x x f y (2)x x y 12-=(3)x xk y +=2)0(>k (4)x x y ln 22-= 解:(1)∵232--='x x y )1)(23(-+=x x ∴)32,(--∞∈x ),1(∞+ 时0>'y)1,32(-∈x 0<'y ∴ )32,(--∞,),1(∞+↑ )1,32(-↓ (2)221x x y +=' ∴ )0,(-∞,),0(∞+↑(3)221x k y -= ∴ ),(k x --∞∈),(∞+k 0>'y , ),0()0,(k k x -∈0<'y∴ ),(k --∞,↑∞+),(k )0,(k -,),0(k ↓(4)x x x x y 14142-=-='定义域为),0(∞+ )21,0(∈x 0<'y ↓ ),21(∞+∈x0>'y ↑点评:熟练掌握单调性的求法,函数的单调性是解决函数的极值、最值问题的基础。