七年级数学二元一次方程测试题
(完整版)七年级下册数学二元一次方程组试卷及答案(人教版)

一、选择题1.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( ) A .9天B .11天C .13天D .22天2.对于实数x ,y ,定义新运算1x y ax by *=++,其中a ,b 为常数,等式右边为通常的加法和乘法运算,若3515*=,4728*=,则59*=( ) A .40B .41C .45D .463.已知方程组263a b a b m -=⎧⎨-=⎩中,a ,b 互为相反数,则m 的值是( )A .4B .4-C .0D .84.两位同学在解方程组时,甲同学由24ax by cx y +=⎧⎨-=-⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把c 写错了解得22x y =-⎧⎨=⎩,则a b c ++的值为( )A .3B .0C .1D .75.已知关于x ,y 的方程组25241x y ax y a +=-⎧⎨-=-⎩给出下列结论:①当a =1时,方程组的解也是x +y =2a +1的解;②无论a 取何值,x ,y 的值不可能是互为相反数;③x ,y 的自然数解有3对;④若2x +y =8,则a =2.正确的结论有( )个. A .1B .2C .3D .46.如图,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH DC ⊥,垂足为H .将长方形GFHD 切下,与长方形EBCH 重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是( )A .24B .32C .36D .647.若关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()538539m a b nb m a b nb ⎧--=⎪⎨-+=⎪⎩的解是( )A .23a b =⎧⎨=⎩B .32a b =⎧⎨=⎩C .42a b =⎧⎨=⎩D .53a b =⎧⎨=⎩8.我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩B .1003100x y x y +=⎧⎨+=⎩C .1003100x y x y +=⎧⎨+=⎩D .100131003x y x y +=⎧⎪⎨+=⎪⎩9.已知x ,y 互为相反数且满足二元一次方程组2321x y kx y +=⎧⎨+=-⎩,则k 的值是( )A .﹣1B .0C .1D .210.如果32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解,则a 2008+2b 2008的值为( )A .1B .2C .3D .4二、填空题11.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.12.已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______.13.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________.14.若方程组1122a x y c a x y c +=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则方程组111222a x y c a a x y c a +=-⎧⎨+=-⎩的解是______.15.已知x =4,y =1和x =2,y =﹣1都是方程mx +ny =6的解,则m +n 的值为 ___. 16.若实数a 与b 满足()24320a b a b -+-+=,则ab 的平方根为________.17.某中学七年级在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前50名获奖,原定一等奖5人,二等奖10人,三等奖35人,现调整为一等奖10人,二等奖15人,三等奖25人,调整后一等奖平均分降低5分,二等奖平均分降低3分,三等奖平均分降低1分,如果原来一等奖比二等奖平均分数多2分,则调整后二等奖比三等奖平均分数多______分.18.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.19.关于x ,y 的方程组215x ay bx y -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则6a b -的平方根是______.20.已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则34m n -的立方根=________.三、解答题21.如图,在平面直角坐标系中,已知,点()0,A a ,(),0B b ,()0,C c ,a ,b ,c 满足()282122a b c -+-=-+,(1)直接写出点A ,B ,C 的坐标及ABC 的面积;(2)如图2,过点C 作直线//l AB ,已知(),D m n 是l 上的一点,且152ACD S ≤△,求n 的取值范围;(3)如图3,(),M x y 是线段AB 上一点, ①求x ,y 之间的关系;②点N 为点M 关于y 轴的对称点,已知21BCN S =△,求点M 的坐标.22.阅读感悟:有些关于方程组的问题,要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x 、y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组2728x y x y +=⎧⎨+=⎩,则x y -=_______,x y +=_______;(2)某班级组织活动购买小奖品,买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元,则购买6支水笔、6块橡皮、6本记事本共需多少元?(3)对于实数x 、y ,定义新运算:*x y ax by c =++,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3*515=,4*728=,那么1*1=_______.23.在平面直角坐标系xOy 中,把线段AB 先向右平移h 个单位,再向下平移1个单位得到线段CD (点A 对应点C ),其中()(),,,A a b B m n 分别是第三象限与第二象限内的点.(1)若|3|10,2a b h +++==,求C 点的坐标; (2)若1b n =-,连接AD ,过点B 作AD 的垂线l ①判断直线l 与x 轴的位置关系,并说明理由;②已知E 是直线l 上一点,连接DE ,且DE 的最小值为1,若点B ,D 及点(),s t 都是关于x ,y 的二元一次方程(0)px qy k pq +=≠的解(),x y 为坐标的点,试判断()()s m t n -+-是正数、负数还是0?并说明理由.24.在平面直角坐标系xOy 中,点()4,0A -,点()0,3B ,点()3,0C .(1)ABC 的面积为______;(2)已知点()1,2D -,()2,3E --,那么四边形ACDE 的面积为______.(3)奥地利数学家皮克发现了一类快速求解格点多边形的方法,被称为皮克定理:如果用m 表示格点多边形内的格点数,n 表示格点多边形边上的格点数,那么格点多边形的面积S 和m 与n 之间满足一种数量关系.例如刚刚求解的几个多边形面积中,我们可以得到如表中信息:形内格点数m 边界格点数n格点多边形面积SABC611四边形ACDE 8 11 五边形ABCDE208根据上述的例子,猜测皮克公式为S =______(用m ,n 表示),试计算图②中六边形FGHIJK 的面积为______(本大题无需写出解题过程,写出正确答案即可).25.七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.(1)分数5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数. ①问(1)班有多少人得满分?②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?26.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题:若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值.27.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B . (1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.28.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.29.如图,//CD EF ,AE 是CAB ∠的平分线,α∠和β∠的度数满足方程组2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,(1)求α∠和β∠的度数; (2)求证://AB CD . (3)求C ∠的度数.30.我区防汛指挥部在一河道的危险地带两岸各安置一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A 光射线自AM 顺时针旋转至AN 便立即逆时针旋转至AM ,如此循环灯B 光射线自BP 顺时针旋转至BQ 便立即逆时针旋转至BP ,如此循环.两灯交叉照射且不间断巡视.若灯A 转动的速度是a 度/秒,灯B 转动的速度是b 度/秒,且a ,b 满足22(4)(5)0a b a b -++-=.若这一带江水两岸河堤相互平行,即//PQ MN ,且60BAN ∠=︒.根据相关信息,解答下列问题.(1)a =__________,b =__________.(2)若灯B 的光射线先转动24秒,灯A 的光射线才开始转动,在灯B 的光射线到达BQ 之前,灯A 转动几秒,两灯的光射线互相平行?(3)如图2,若两灯同时开始转动照射,在灯A 的光射线到达AN 之前,若两灯射出的光射线交于点C ,过点C 作CD AC ⊥交PQ 于点D ,则在转动的过程中,BAC ∠与BCD ∠间的数量关系是否发生变化?若不变,请求出这两角间的数量关系;若改变,请求出各角的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【详解】解:根据题意设有x 天早晨下雨,这一段时间有y 天,有9天下雨, 即早上下雨或晚上下雨都可称之为当天下雨, ①总天数﹣早晨下雨=早晨晴天; ②总天数﹣晚上下雨=晚上晴天;列方程组7(9)6y x y x -=⎧⎨--=⎩,解得411x y =⎧⎨=⎩,所以一共有11天, 故选B . 【点睛】本题考查二元一次方程组的应用.2.B解析:B 【分析】根据定义新运算列出二元一次方程组即可求出a 和b 的值,再根据定义新运算公式求值即可. 【详解】解:∵1x y ax by *=++,3515*=,4728*=,∴1535128471a b a b =++⎧⎨=++⎩解得:3725a b =-⎧⎨=⎩∴59*=3752591-⨯+⨯+=41 故选B . 【点睛】此题考查的是定义新运算和解二元一次方程组,掌握定义新运算公式和二元一次方程组的解法是解决此题的关键.3.D解析:D 【分析】根据a 与b 互为相反数得到0a b +=,即=-b a ,代入方程组即可求出m 的值. 【详解】解:因为a ,b 互为相反数, 所以0a b +=, 即=-b a ,代入方程组得:364a a m =⎧⎨=⎩,解得:28a m =⎧⎨=⎩,故选:D . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值,也考查了代入消元法解二元一次方程组以及相反数的意义.4.D解析:D 【分析】把甲的结果代入方程组两方程中,乙的结果代入第一个方程中,分别求出a ,b ,c 的值,即可求出所求. 【详解】解:把32x y =⎧⎨=-⎩代入方程组24ax by cx y +=⎧⎨-=-⎩得:322324a b c -⎧⎨+-⎩== , 把22x y =-⎧⎨=⎩代入ax +by =2得:-2a +2b =2,即-a +b =1,联立得:3221a b a b -⎧⎨-+⎩==,解得:45a b ⎧⎨⎩== , 由3c +2=-4,得到c =-2, 则a +b +c =4+5-2=7. 故选:D . 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.C解析:C 【分析】先解出二元一次方程组得1222x a y a =+⎧⎨=-⎩,①当a =1时,方程组的解为30x y =⎧⎨=⎩,则x +y =3=2a +1;②x +y =1+2a +2﹣2a =3,无论a 取何值,x ,y 的值不可能是互为相反数;③3x y +=,,x y 是自然数,解得,x y 有4对解;④2x +y =2(1+2a )+(2﹣2a )=4+2a =8,则a =2. 【详解】解:25241?x y a x y a +=-⎧⎨-=-⎩①②,①﹣②,得y =2﹣2a , 将y =2﹣2a 代入②,得 x =1+2a ,∴方程组的解为1222x ay a =+⎧⎨=-⎩,当a =1时,方程组的解为30x y =⎧⎨=⎩,∴x +y =3=2a +1, ∴①结论正确;∵x +y =1+2a +2﹣2a =30≠,∴无论a 取何值,x ,y 的值不可能是互为相反数, ∴②结论正确;3x y +=,,x y 是自然数0123,,,,3210x x x x y y y y ====⎧⎧⎧⎧∴⎨⎨⎨⎨====⎩⎩⎩⎩共4对 ∴x ,y 的自然数解有4对, ∴③结论不正确;∵2x +y =2(1+2a )+(2﹣2a )=4+2a =8, ∴a =2, ∴④结论正确; 故选:C . 【点睛】本题考查了二元一次方程的解,二元一次方程组的解,解二元一次方程组 ,解题的关键是掌握二元一次方程的解,二元一次方程组的解,解二元一次方程组.6.C解析:C 【分析】由图可知:重新拼成一个长方形BEMN ,长BN =8,宽BE =4,得二元一次方程组,解出可得结论. 【详解】 解:如图所示,由已知得:BN =8,S 长方形BNME =32, ∴BE =32÷8=4,则84x y x y +⎧⎨-⎩== , 解得:2x =12, ∴x =6,∴正方形ABCD 的面积是36, 故选:C . 【点睛】此题主要考查了几何图形和解二元一次方程组,正确得出长方形的长与宽是解题关键.7.A解析:A 【分析】先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.【详解】 解:关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩, 2717m ∴⨯=,1714m ∴=, 291n ∴⨯=,118n ∴=, 关于a ,b 的二元一次方程组是(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩, 61nb ∴=, ∴113b =, 3b ∴=,172(5)1714a b ∴⨯⨯-=, 57a b ∴-=,2a ∴=,∴关于a ,b 的二元一次方程组(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩的解为:23a b =⎧⎨=⎩. 故选:A .【点睛】本题考查了解二元一次方程组,本题的解题关键是先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.8.D解析:D【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:D .【点睛】本题考查列二元一次方程组解决实际问题,是中考的常考题型,正确找到等量关系是关键 9.A解析:A【分析】根据x ,y 互为相反数得到0x y +=,然后与原方程组中的方程联立新方程组,解二元一次方程组,求得x 和y 的值,最后代入求值.【详解】解:由题意可得021x y x y +=⎧⎨+=-⎩①②, ②﹣①,得:y =﹣1,把y =﹣1代入①,得:x ﹣1=0,解得:x =1,把x =1,y =﹣1代入2x +3y =k 中,k =2×1+3×(﹣1)=2﹣3=﹣1,故选:A .【点睛】本题考查解二元一次方程组,掌握消元法(加减消元法和代入消元法)解二元一次方程组的步骤是解题关键.10.C解析:C【分析】将方程组的解代入方程组可得关于a 、b 的二元一次方程组321325a b a b -=⎧⎨+=⎩,再求解方程组即可求解.【详解】解:∵32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解, ∴321325a b a b -=⎧⎨+=⎩①②, ①+②得,a =1,将a =1代入①得,b =1,∴a 2008+2b 2008=1+2=3,故选:C .【点睛】本题考查了二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.二、填空题11.7件.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y解析:7件.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品.则有x 2-y 2=48,即(x 十y )(x-y )=48.∵x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,又∵x+y >x-y ,48=24×2=12×4=8×6,∴242x y x y +⎧⎨-⎩==或124x y x y +⎧⎨-⎩==或86x y x y +⎧⎨-⎩==. 解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A 买了13件商品,b 买了4件.同时符合x-y=7的也只有一种,可知B 买了8件,a 买了1件.∴C 买了7件,c 买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.12.±3【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把21x y =⎧⎨=⎩代入方程组得:2821m n n m +=⎧⎨-=⎩①②, ①×2-②得:5m =15,解得:m =3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.13.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合解析:61 3【解析】由题意得:227{3393a ba b++=-+-=,解得:a=13,b=133,则13※b=13a+b²+13=116913619993++=,故答案为61 3.点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值. 14.【分析】先将方程组的解代入方程组得到c1−a1=2,c2−a2=2,再将所求方程组用加减消元法求解即可.【详解】解:∵方程组的解是,∴,∴c1−a1=2,c2−a2=2,∴可化为,①解析:2 xy=⎧⎨=⎩【分析】先将方程组的解代入方程组得到c1−a1=2,c2−a2=2,再将所求方程组用加减消元法求解即可.【详解】解:∵方程组1122a x y c a x y c +=⎧⎨+=⎩的解是12x y =⎧⎨=⎩, ∴112222a c a c +=⎧⎨+=⎩, ∴c 1−a 1=2,c 2−a 2=2,∴111222a x y c a a x y c a +=-⎧⎨+=-⎩可化为1222a x y a x y +=⎧⎨+=⎩①②, ①−②,得(a 1−a 2)x =0,∴x =0,将x =0代入①中,得y =2,∴方程组的解为02x y =⎧⎨=⎩, 故答案为02x y =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的解,会用加减消元法解方程组,并能灵活将方程组变形是解题的关键.15.0【分析】把x 、y 的值代入mx+ny =6,得出关于m 、n 的方程组,再求出方程组的解,最后求出m+n 即可得到答案.【详解】∵x =4,y =1和x =2,y =﹣1都是方程mx+ny =6的解,∴解析:0【分析】把x 、y 的值代入mx +ny =6,得出关于m 、n 的方程组,再求出方程组的解,最后求出m +n 即可得到答案.【详解】∵x =4,y =1和x =2,y =﹣1都是方程mx +ny =6的解,∴4626m n m n +=⎧⎨-=⎩①② ①+②,得6m =12解得:m =2,把m =2代入①,得8+n =6,解得:n =﹣2,∴m +n =2+(﹣2)=0,故答案为:0.【点睛】本题考查了二元一次方程及二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.16.±4【分析】根据题意,结合乘方和绝对值的性质,得二元一次方程组并求解,即可得到a 和b ;再根据平方根的性质计算,即可得到答案.【详解】∵∴∴①②,得∴∴∴的平方根为±4故解析:±4【分析】根据题意,结合乘方和绝对值的性质,得二元一次方程组并求解,即可得到a 和b ;再根据平方根的性质计算,即可得到答案.【详解】∵()24320a b a b -+-+= ∴()240320a b a b ⎧-=⎪⎨-+=⎪⎩∴40320a b a b -=⎧⎨-+=⎩①② ①-②,得2a =∴48b a ==∴16ab =∴ab 的平方根为±4故答案为:±4.【点睛】本题考查了乘方、绝对值、二元一次方程组、平方根的知识;解题的关键是熟练掌握乘方、绝对值、二元一次方程组、平方根的性质,从而完成求解.17.9【分析】先设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,列出方程组,求出原二等奖比三等奖平均分多的分数,最后根据调整后二等奖平均分降低3分,三等奖平均分降低解析:9【分析】先设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,列出方程组,求出原二等奖比三等奖平均分多的分数,最后根据调整后二等奖平均分降低3分,三等奖平均分降低1分,列出代数式,即可求出答案.【详解】解:设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,得:510351051532512x y z x y z x y ++=-+-+-⎧⎨=+⎩()()()①② 由①得:x+y -2z =24 ③将②代入③得:y +2+y -2z =24解得:y-z =11,则调整后二等奖比三等奖平均分数多=(y -3)-(z -1)=(y-z )-2=11-2=9(分). 故答案为:9.【点睛】此题主要考查了三元一次方程组的应用,关键是读懂题意,找到等量关系,列出方程组. 18.【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)解析:11x y =-⎧⎨=⎩ 【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0, 因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩,解得:11xy=-⎧⎨=⎩.故答案为:11xy=-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.19.±4【分析】将方程组的解代入方程组中求出a、b的值,然后代入代数式中求解即可.【详解】解:将代入方程组,得:,解得:,∴=6×3﹣2=16,∴的平方根是±4,故答案为:±4.【点睛解析:±4【分析】将方程组的解代入方程组中求出a、b的值,然后代入代数式中求解即可.【详解】解:将21xy=⎧⎨=⎩代入方程组215x aybx y-=⎧⎨+=⎩,得:41215ab-=⎧⎨+=⎩,解得:32ab=⎧⎨=⎩,∴6a b-=6×3﹣2=16,∴6a b-的平方根是±4,故答案为:±4.【点睛】本题考查二元一次方程组的解、代数式求值、平方根,理解方程组的解,正确求出a、b值和平方根是解答的关键.20.【分析】把x与y的值代入方程组求出m与n的值,即可确定出所求.【详解】解:把代入方程组得:,解得:,∵1的立方根为1,∴的立方根是1故答案为:1【点睛】此题考查了二元一次方解析:1【分析】把x 与y 的值代入方程组求出m 与n 的值,即可确定出所求.【详解】解:把21x y =⎧⎨=⎩代入方程组得: 2821m n n m +=⎧⎨-=⎩, 解得:32m n =⎧⎨=⎩, 34981m n ∴-=-=∵1的立方根为1,∴34m n -的立方根是1故答案为:1【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.三、解答题21.(1)()0,8A ,()6,0B ,()0,2C -,30ABC S =;(2)n 的取值范围为40n -≤≤;(3)①4324x y +=;②()3,4M【分析】(1)根据()28212a b -+-=a 、b 、c 的值,由此求解即可;(2)分当D 点在直线l 上位于y 轴左侧时和当D 点在直线l 上位于y 轴右侧时讨论求解即可得到答案;(3)①由由AOB AON BOM S S S =+得,1118668222x y ⨯+⨯=⨯⨯,由此求解即可;②易得(),N x y -,连接ON ,由NBC CON OBC BON S S S S =++△△△△得,111226621222x y ⨯⨯+⨯⨯+⨯⨯=,化简得,315x y +=,然后联立4324315x y x y +=⎧⎨+=⎩求解即可. 【详解】解:(1)∵()28212a b -+-=∴()282122=0a b c -+-++, ∴80a -=,2120b -=,20c +=, ∴8a =,6b =,2c =-,∴()0,8A ,()6,0B ,()0,2C -, ∴AC =10,OB =6,∴1302ABC S AC OB ==; (2)当D 点在直线l 上位于y 轴左侧时,由题意得,()()111510222ACD S AC m m =⨯⨯-=⨯⨯-≤△, 解得,32m ≥-, 当32m =-时,3,02D ⎛⎫- ⎪⎝⎭, 结合图形可知,当32m ≥-时,0n ≤; 同理可得,当D 点在直线l 上位于y 轴右侧时,32m ≤, 当32m =时,3,2D n ⎛⎫ ⎪⎝⎭, 12//,D D AB22,ACD BCD S S ∴=()()13113156262222222n n ⎛⎫⨯+⨯--⨯⨯-⨯⨯--= ⎪⎝⎭, 解得,4n =-,结合图形可知,当32m ≤时,4n ≥-,∴n 的取值范围为40n -≤≤; (3)①由AOB AOM BOM S S S =+得,1118668222x y ⨯+⨯=⨯⨯, 化简得,4324x y +=;②易得(),N x y -,连接ON ,由NBC CON OBC BON S S S S =++△△△△得,111226621222x y ⨯⨯+⨯⨯+⨯⨯=, 化简得,315x y +=,联立方程组4324315x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩, ∴()3,4M【点睛】本题主要考查了绝对值和算术平方根的非负性,三角形面积,解二元一次方程组,坐标与图形,截图的关键在于能够熟练掌握相关是进行求解.22.(1)1-;5;(2)购买6支水笔、6块橡皮、6本记事本共需48元;(3)11-.【分析】(1)利用①−②可得x -y 的值,利用()13+①②可得出x +y 的值; (2)设铅笔的单价为m 元,橡皮的单价为n 元,记事本的单价为p 元,根据“买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元”,即可得出关于m ,n ,p 的三元一次方程组,由2×①-②可得m n p ++的值,再乘5即可求得结果;(3)根据新运算的定义可得出关于a ,b ,c 的三元一次方程组,由3×①−2×②可得出a b c ++的值,从而可求得结果.【详解】(1)2728x y x y +=⎧⎨+=⎩①②由①−②可得:x -y =-1,由()13⨯+①②可得x +y =5 故答案为:1-;5.(2)设水笔的单价为m 元,橡皮的单价为n 元,记事本的单价为p 元,依题意,得:203235395362m n p m n p ++=⎧⎨++=⎩①②, 由2⨯-①②可得8m n p ++=,6666848m n p ∴++=⨯=.故购买6支水笔、6块橡皮、6本记事本共需48元.(3)依题意得:35154728a b c a b c ++=⎧⎨++=⎩①②由3×①−2×②可得:11a b c ++=-即1*111=-故答案为:11-.【点睛】本题考查了二元一次方程组的应用及三元一次方程组的应用,解题的关键是:(1)运用“整体思想”求出x -y ,x +y 的值;(2)(3)找出等量关系,正确列出三元一次方程组. 23.(1)(-1,-2);(2)①结论:直线l ⊥x 轴.证明见解析;②结论:(s -m )+(t -n )=0.证明见解析【分析】(1)利用非负数的性质求出a ,b 的值,可得结论.(2)①求出A ,D 的纵坐标,证明AD ∥x 轴,可得结论.②判断出D (m +1,n -1),利用待定系数法,构建方程组解决问题即可.【详解】解:(1)|3|0a +,又|3|0a +10,3a ∴=-,1b =-,(3,1)A ∴--,点A 先向右平移2个单位,再向下平移1个单位得到点C ,(1,2)C ∴--.(2)①结论:直线l x ⊥轴.理由:1b n =-,(,1)A a n ∴-,(,)B m n ,向右平移h 个单位,再向下平移1个单位得到点D ,(,1)D m h n ∴+-,A ,D 的纵坐标相同,//AD x ∴轴,直线l AD ⊥,∴直线l x ⊥轴.②结论:()()0s m t n -+-=.理由:E 是直线l 上一点,连接DE ,且DE 的最小值为1,(1,1)D m n ∴+-,点B ,D 及点(,)s t 都是关于x ,y 的二元一次方程(0)px qy k pq +=≠的解(,)x y 为坐标的点,∴()()11p m q n k pm qn k ps qt k ++-=⎧⎪+=⎨⎪+=⎩①②③, ①-②得到0p q -=,p q ∴=,③-②得到,()()0p s m q t n -+-=,0pq ≠,0p q ∴=≠,()()0s m t n ∴-+-=.【点睛】本题考查坐标与图形变化-平移,非负数的性质,待定系数法等知识,解题的关键是熟练掌握平移变换的性质,学会利用参数解决问题,属于中考常考题型.24.(1)10.5;(2)12.5;(3)10.5,12.5,23;12n m +-;30 【分析】(1)画出图形,根据三角形的面积公式求解;(2)画出图形,利用割补法求解;(3)设S =am +bn +c ,其中a ,b ,c 为常数,根据表中数据列方程组求出a ,b ,c ,然后根据公式即可求出六边形FGHIJK 的面积.【详解】(1)如图1,ABC 的底为7,高为3,所以面积为0.57310.5⨯⨯=,故答案为:10.5;(2)如图2,0.523320.5310.52236 1.5212.5S =⨯⨯+⨯+⨯⨯+⨯⨯=+++=,故答案为:12.5;(3)由(1)、(2)可填表格如下:形内格点数m 边界格点数n 格点多边形面积SABC 四边形ACDE 五边形ABCDE 设S = am +61110.581112.520823a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩, 解得1121a b c =⎧⎪⎪=⎨⎪=-⎪⎩, ∴皮克公式为12n S m =+-, ∵六边形FGHIJK 中,m =27,n =8,∴六边形FGHIJK 的面积为82712S =+-=30. 【点睛】本题考查了坐标与图形的性质,三角形的面积,三元一次方程组的应用等知识,解题的关键是理解题意,灵活运用所学知识解决问题.25.(1)15;(2)①七年级(1)班有24人得满分;②七年级(2)班的总分高.【分析】(1)分别对连正确的数量进行分析,即可得到答案;(2)①设七年(1)班满分人数有x 人,则未满分的有2x 人,然后列出方程,解方程即可得到答案;②根据题意,先求出两个班各分数段的人数,然后求出各班的总分,即可进行比较.【详解】解:(1)根据题意,连对0个得分为0分;连对一个得分为5分;连对两个得分为10分;连对四个得分为20分;不存在连对三个的情况,则得15分是不可能的;故答案为:15.(2)①根据题意,设七年(1)班满分人数有x 人,则未满分的有2x 人,则4402x x ++=, 解得:24x =,∴(1)班有24人得满分;②根据题意,(1)班中除0分外,最低得分人数与其他未满分人数相等,∴(1)班得5分和10分的人数相等, 人数为:1(40424)62--=(人); ∴(1)班得总分为:40656102420570⨯+⨯+⨯+⨯=(分);由题意,(2)班存在得5分、得10分、得20分,三种情况,设得5分的有y 人,得10分的有z 人,满分20分的有(2)y z +人,∴(2)40y z y z +++=,∴3240y z +=,∴七(2)班得总分为:51020(2)453015(32)1540600y z y z y z y z +++=+=+=⨯=(分);∵570600<,∴七(2)班的总分高.【点睛】本题考查了二元一次方程的应用,一元一次方程的应用,解题的关键是熟练掌握题意,正确掌握题目的等量关系,列出方程进行解题.26.(1)12x y =⎧⎨=⎩;(2)41m n =-⎧⎨=-⎩;(3)a =3,b =2. 【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解;(3)把am 和bn 当成一个整体利用已知条件可求出am 和bn ,再把bn 代入2m-bn=-2中求出m 的值,然后把m 的值代入3m+n=5可求出n 的值,继而可求出a 、b 的值.【详解】解:(1)两个方程相加得66x =,∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩; 故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩,由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩; (3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a =3,b =2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.27.(1)(6,0)A ,(0,1)B ,(4,1)C ;(2)见解析.【分析】(1)令26x y +=中的0y = ,求出相应的x 的值,即可得到A 的坐标,将方程40x y -=和方程26x y +=联立成方程组,解方程组即可得到C 的坐标,进而可得到B 的坐标; (2)分别利用梯形的面积公式表示出四边形MNAC 的面积与四边形MNOB 的面积,然后根据t 的范围,分情况讨论即可.【详解】(1)令0y =,则206x +⨯=,解得6x =,(6,0)A ∴.4026x y x y -=⎧⎨+=⎩ 解得41x y =⎧⎨=⎩(4,1)C ∴.//BC x 轴,∴点B 的纵坐标与点C 的纵坐标相同,(0,1)B ∴ ;(2)(6,0)A ,(0,1)B ,(4,1)C ,6,4OA BC ∴==.。
人教版七年级数学下册《二元一次方程组》专项练习题-附含答案

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案知识点1-1 二元一次方程(组)1)二元一次方程:含有两个未知数 且 所含未知数的次数项的次数都是1的方程。
注:所有未知数项的次数必须是1 例: 不是 2x -3xy =2 不是 2)将几个相同未知数的一次方程联合起来 就组成了二元一次方程组。
注:①在方程组中 相同未知数必须代表同一未知量。
②二元一次方程组不一定都是二元一次方程组合而成 方程个数也不一定是两个。
例: 是 3)判断二元一次方程组的方法:①方程组中是否一共有两个未知数;②含未知数的项的次数是否都是1;③是否含有多个方程组成.例1.(2021·湖南·衡阳市华新实验中学七年级月考)下列方程中 ①;②;③;④ 是二元一次方程的有( ) A .1个 B .2个C .3个D .4个【答案】A【分析】根据二元一次方程的定义:含有两个未知数 并且含有未知数的项的次数都是1的整式方程叫做二元一次方程 即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程 此项正确; ②化简后为 不符合定义 此项错误; ③含有三个未知数不符合定义 此项错误;④不符合定义 此项错误;所以只有①是二元一次方程 故选:A .【点睛】本题考二元一次方程 解题的关键是熟练运用二元一次方程的定义 本题属于基础题型.变式1.(2022·山东济南·八年级期末)下列方程中 为二元一次方程的是( ) A .2x +3=0 B .3x -y =2zC .x 2=3D .2x -y =5【答案】D【分析】根据二元一次方程的定义 从二元一次方程的未知数的个数和次数方面辨别. 【详解】解:A .是一元一次方程 故本选项不合题意; B .含有三个未知数 不是二元一次方程 故本选项不合题意;C .只含有一个未知数 且未知数的最高次数是2 不是二元一次方程 故本选项不合题意;D .符合二元一次方程的定义 故本选项符合题意.故选:D .20x y-=3235x y x y -=⎧⎨+=⎩6x y +=()16x y +=31x y z +=+7mn m +=6x y +=()16x y +=6xy x +=31x y z +=+7mn m +=【点睛】此题考查了二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数都是1 像这样的整式方程叫做二元一次方程.例2.(2021·湖南·衡阳市华新实验中学七年级月考)已知是关于 的二元一次方程 则______. 【答案】4【分析】根据二元一次方程的定义 可得方程组 解得m 、n 的值 代入代数式即可.【详解】解:由题意得 解得: ∴ 4 故填:4. 【点睛】本题考查二元一次方程的定义 属于基础题型. 变式2.(2021·天津一中七年级期中)若是关于 的二元一次方程 则( )A .B .C .D .【答案】D【分析】二元一次方程满足的条件:含有2个未知数 未知数的项的次数是1的整式方程. 【详解】解:是关于的二元一次方程解得: .故选:D . 【点睛】此题主要考查了二元一次方程的定义 关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.例3.(2021·河南淇县·七年级期中)下列方程组中 是二元一次方程组的是( )A .B .C .D .【答案】C【分析】根据二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.【详解】解:A. 第二个方程中的是二次的 故本选项错误;B.方程组中含有3个未知数 故本选项错误;C. 符合二元一次方程组的定义 故本选项正确;D. 第二个方程中的xy 是二次的 故本选项错误.故选C .3211203n m x y -+-=x y n m +=31211n m -=⎧⎨+=⎩31211n m -=⎧⎨+=⎩40n m =⎧⎨=⎩n m +=20193(2020)(4)2021m n m x n y---++=x y 2020m =±4n =±2020m =-4n =-2020m =4n =2020m =-4n =()()20193202042021m n m x n y ---++=x y ∴2019120200m m ⎧-=⎨-≠⎩3140n n ⎧-=⎨+≠⎩2020m =-4n =2214x y x +=⎧⎨=⎩1236x y y z ⎧-=⎪⎨⎪-=⎩225x y x y +=-⎧⎨-=⎩213xy y y +=⎧⎨=-⎩2x【点睛】:根据组成二元一次方程组的两个方程应共含有两个未知数 且未知数的项最高次数都应是一次的整式方程 判断各选项即可.变式3.(2021·上海市建平中学西校期末)下列方程组 是二元一次方程组的是( ).A .B .C .D . 【答案】B【详解】A 选项:在中最高次数为2 故为二元二次方程组 不合题意;B 选项:为二元一次方程组 符合题意;C 选项:在中 共有3个未知数 为三元一次方程组 不合题意;D 选项:在中最高次数为2 故为二元二次方程组 不合题意.故选B . 【点睛】本题考查了二元一次方程的概念 掌握二元一次方程的概念(含有两个未知数 并且含有未知数的项的次数都是1的方程叫做二元一次方程)是解题关键.例4.(2021·日照市新营中学七年级期中)若方程组是二元一次方程组 则a 的值为________. 【答案】-3【分析】根据二元一次方程组的定义得到|a |-2=1且a -3≠0 然后解方程与不等式即可得到满足条件的a 的值.【详解】解:∵方程组是二元一次方程组 ∴|a |-2=1且a -3≠0 ∴a =-3 故答案为:-3. 【点睛】本题考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起 就组成了一个二元一次方程组.变式4.(2021·全国·七年级课时练习)若是关于 的二元一次方程组 则__ __ __. 【答案】 3或2【分析】二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1 据此列式即可求解. 【详解】解:是关于 的二元一次方程组 或0 解得:或2 答案:3或2223xy x y =⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x-+=⎧⎨=⎩223xy x y=⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x -+=⎧⎨=⎩()20390a x ya x -⎧+=⎪⎨-+=⎪⎩23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y =a b =c =2-3-23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y 30c ∴+=21a -=31b +=3a =2b =-3c =-2-【点睛】本题主要考查了二元一次方程组的定义 利用它的定义即可求出代数式的解.知识点1-2 二元一次方程(组)的解1)二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值(有序数对) 例:x+y=10 (1 9) (2 8) (3 7)等。
七年级初一数学下学期 二元一次方程组测试题及答案(共五套)

七年级初一数学下学期 二元一次方程组测试题及答案(共五套)一、选择题1.方程组5213310x y x y +=⎧⎨-=⎩的解是( )A .31x y =⎧⎨=-⎩B .13x y =-⎧⎨=⎩C .31x y =-⎧⎨=-⎩D .13x y =-⎧⎨=-⎩2.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a cax by a c -+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .52x y =⎧⎨=⎩D .51x y =⎧⎨=⎩3.如果3m 2n n m 3x 4y 120---+=是关于,x y 的二元一次方程,那么,m n 的值分别为( )A .m=2, n=3B .m=2, n=1C .m=-1, n=2D .m=3, n=44.已知方程组32453x y ax y -=⎧⎨+=⎩的解x 与y 互为相反数,则a 等于( )A .3B .﹣3C .﹣15D .155.下列判断中,正确的是( ) A .方程x y =不是二元一次方程 B .任何一个二元一次方程都只有一个解C .方程25x y -=有无数个解,任何一对x 、y 都是该方程的解D .21x y =⎧⎨=-⎩既是方程24x y -=的解也是方程231x y +=的解6.某次数学竞赛共出了25题,评分标准如下:答对一题加4分,答错一题扣1分,不答记0分,已知小杰不答的题比答错的题多2道,总分是74分,则他答对了( ) A .16题B .17题C .18题D .19题7.某木工厂有22人,一个工人每天可加工3张桌子或10只椅子,1张桌子与4只椅子配套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x 个工人加工桌子,y 个工人加工椅子,则列出正确的二元一次方程组为( ) A .2212100x y x y +=⎧⎨-=⎩B .226100x y x y +=⎧⎨-=⎩C .2224100x y x y +=⎧⎨-=⎩D .2212200x y x y +=⎧⎨-=⎩8.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天9.已知且x +y =3,则z 的值为( ) A .9B .-3C .12D .不确定10.甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一个解为11x y =⎧⎨=-⎩,乙把ax -by =7看成ax -by =1,求得一个解为12x y =⎧⎨=⎩,则a ,b 的值分别为( )A .25a b =⎧⎨=⎩B .52a b =⎧⎨=⎩C .35a b =⎧⎨=⎩D .53a b =⎧⎨=⎩11.巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km .一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km ,设小汽车和货车的速度分别为xkm /h ,ykm /h ,则下列方程组正确的是( )A .()()45126456x y x y ⎧+=⎪⎨-=⎪⎩B .()312646x y x y ⎧+=⎪⎨⎪-=⎩C .()()31264456x y x y ⎧+=⎪⎨⎪-=⎩D .()()31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩12.两位同学在解方程组时,甲同学由278ax by xcx y +=⎧⎨-=⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把C写错了解得22x y =-⎧⎨=⎩,那么a 、b 、c 的正确的值应为A .452a b c ===-,,B .451a b c ===-,,C .450a b c =-=-=,,D .452a b c =-=-=,,二、填空题13.“八月十五月儿圆,中秋月饼香又甜”,每中秋,皓月当空,阖家团聚,品饼赏月,谈天说地,尽享天伦之乐.今年中秋节前夕某商场结合当地情况,决定启动一笔专项资金用于月饼进货,经过一段时间,该商场已购进的京式、广式、苏式月饼总价之比为2:3:4,根据市场需求,将把余下的资金继续购进这三种月饼,经测算需将余下资金的13购买京式月饼,则京式月饼的总价将达到这三种月饼总价的415.为了使广式月饼总价与苏式月饼的总价达到9:13,则该商场还需购买的广式月饼总价与苏式月饼的总价之比是_____.14.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满.15.解放碑某商场地下停车场有5个出入口,每天早晨7点开始对外停车且此时车位空置率为80%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,7小时车库恰好停满:如果开放3个进口和2个出口,4小时车库恰好停满.2019年清明节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨7点开始经过_______小时车库恰好停满. 16.为了适合不同人群的需求,某公司对每日坚果混合装进行改革.甲种每袋装有10克核桃仁,10克巴旦木仁,10克黑加仑;乙种每袋装有20克核桃仁,5克巴旦木仁,5克黑加仑.甲乙两种袋装干果每袋成本价分别为袋中核桃仁、巴旦木仁、黑加仑的成本价之和.已知核桃仁每克成本价0.04元,甲每袋坚果的售价为5.2元,利润率为30%,乙种坚果每袋利润率为20%,若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装坚果的数最之比是____.17.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A 、B 两种文学书籍若干本,用去6138元,已知A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.18.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.19.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.20.解三元一次方程组时,先消去z ,得二元一次方程组,再消去y ,得一元一次方程2x =3,解得x =,从而得y =_____,z =____. 21.若3x -5y -z =8,请用含x ,y 的代数式表示z ,则z =________.22.已知关于x 、y 的方程组343x y ax y a +=-⎧-=⎨⎩,其中31a -≤≤,有以下结论:①当2a =-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号)23.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6. (1)计算:F (241)=_________,F (635)=___________ ;(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:()()F s k F t =,当F (s )+F (t )=18时,则k 的最大值是___. 24.若是满足二元一次方程的非负整数,则的值为___________.三、解答题25.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.26.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题: 若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值.27.阅读材料:对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()F n .例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以(123)6F =.(1)计算:(134)F ;(2)若s ,t 都是“相异数”,其中10025s x =+,360t y =+(19x ≤≤,19y ≤≤,x ,y 都是正整数),当()()20F s F t +=时,求st的值.28.[阅读材料]善于思考的小明在解方程组253(1)4115(2)x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法:解:将方程(2)变形:4105x y y ++=, 即()2255(3)x y y ++=,把方程(1)代入(3)得:235y ⨯+=, 所以1y =-,将1y =-代入(1)得4x =,所以原方程组的解为41x y =⎧⎨=-⎩.[解决问题](1)模仿小明的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩,(2)已知x ,y 满足方程组2222321250425x xy y x xy y ⎧-+=⎨++=⎩,求224x y +的值. 29.平面直角坐标系中,A (a ,0),B (0,b ),a ,b 满足2(25)220a b a b ++++-=,将线段AB 平移得到CD ,A ,B 的对应点分别为C ,D ,其中点C 在y 轴负半轴上.(1)求A ,B 两点的坐标;(2)如图1,连AD 交BC 于点E ,若点E 在y 轴正半轴上,求BE OEOC-的值; (3)如图2,点F ,G 分别在CD ,BD 的延长线上,连结FG ,∠BAC 的角平分线与∠DFG 的角平分线交于点H ,求∠G 与∠H 之间的数量关系.30.用如图1所示的,A B 两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A 纸板70张,B 型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A 型纸板较为充足,B 型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B 型纸板用完)(3)经测量发现B 型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽高分别为2,,2a a a ),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,可以各做多少个(假设没有边角消耗,没有余料)?31.我国古代的“河图”是由33⨯的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图1,根据给出的“河图”的部分点图,可以得到:1515P ++=⎧⎨++=⎩●●●●●●●●●●●●●●●●●●●●●●●●如图2,已知33⨯框图中每一行、每一列以及每一条对角线上的三个数的和均为3,求x y ,的值并在图3中填出剩余的数字.32.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由;(3)求C ∠的度数。
七年级数学二元一次方程组50道

七年级数学二元一次方程组50道1. 小明去买水果,苹果一斤 5 元,香蕉一斤 3 元,他买了 10 斤水果一共花了40 元,问他买了几斤苹果几斤香蕉?2. 小红和小绿一起做数学题,小红每小时能做 10 道,小绿每小时能做 8 道,两人一起做了 6 小时,一共做了 100 道题,请问小红和小绿分别做了几小时?3. 动物园里有猴子和大象,猴子有 4 条腿,大象有 4 条腿,猴子和大象一共有20 只,腿一共有 64 条,问猴子和大象各有几只?4. 小刚去买文具,铅笔一支 2 元,橡皮一块 1 元,他买了 15 件文具一共花了25 元,问他买了几支铅笔几块橡皮?5. 操场上跑步的男生和女生,男生每分钟跑 200 米,女生每分钟跑 150 米,5 分钟一共跑了 1750 米,问男生和女生各有多少人在跑?6. 学校组织捐书活动,一班每人捐 2 本,二班每人捐 3 本,两个班一共捐了100 本书,一共有 40 人捐书,问一班和二班分别有多少人捐书?7. 周末小明和爸爸去钓鱼,小明每小时钓 3 条,爸爸每小时钓 5 条,4 小时一共钓了 32 条鱼,问小明和爸爸分别钓了几小时?8. 水果店卖西瓜和哈密瓜,西瓜一个 10 元,哈密瓜一个 15 元,一天卖了 12 个瓜一共收入 160 元,问卖了几个西瓜几个哈密瓜?9. 图书馆里有故事书和科技书,故事书一本 8 元,科技书一本 12 元,买了 10 本书一共花了 100 元,问买了几本故事书几本科技书?10. 小李和小王一起组装玩具,小李每小时组装 6 个,小王每小时组装 4 个,两人一起工作 8 小时,一共组装了 80 个玩具,问小李和小王分别工作了几小时?11. 商店里有大书包和小书包,大书包每个 30 元,小书包每个 20 元,买了 8 个书包一共花了 220 元,问买了几个大书包几个小书包?12. 植树节同学们去种树,男生每人种 3 棵,女生每人种 2 棵,一共种了 50 棵树,有 20 个同学参加,问男生和女生各有多少人?13. 妈妈买苹果和梨,苹果一斤 4 元,梨一斤 3 元,买了 12 斤水果一共花了42 元,问买了几斤苹果几斤梨?14. 养殖场里有鸡和鸭,鸡有 2 条腿,鸭有 2 条腿,鸡和鸭一共有 30 只,腿一共有 70 条,问鸡和鸭各有几只?15. 小花和小兰一起做手工,小花每小时做 5 个,小兰每小时做 3 个,两人一起做了 7 小时,一共做了 41 个手工,问小花和小兰分别做了几小时?16. 超市卖牛奶和酸奶,牛奶一盒 5 元,酸奶一盒 4 元,一天卖了 15 盒一共收入 68 元,问卖了几盒牛奶几盒酸奶?17. 学校组织春游,坐大巴车每人 10 元,坐小巴车每人 8 元,一共 40 人坐车一共花了 360 元,问坐大巴车和小巴车的分别有多少人?18. 文具店卖钢笔和圆珠笔,钢笔一支 8 元,圆珠笔一支 2 元,买了 10 支笔一共花了 40 元,问买了几支钢笔几支圆珠笔?19. 哥哥和弟弟一起打扫房间,哥哥每小时打扫 10 平方米,弟弟每小时打扫 6 平方米,两人一起打扫 5 小时,一共打扫了 70 平方米,问哥哥和弟弟分别打扫了几小时?20. 花园里有玫瑰花和百合花,玫瑰花一朵 5 元,百合花一朵 3 元,买了 10 朵花一共花了 44 元,问买了几朵玫瑰花几朵百合花?21. 爸爸买酒和饮料,酒一瓶 20 元,饮料一瓶 5 元,买了 8 瓶一共花了 110 元,问买了几瓶酒几瓶饮料?22. 操场上跳绳的男生和女生,男生每分钟跳 120 个,女生每分钟跳 100 个,3 分钟一共跳了 660 个,问男生和女生各有多少人在跳?23. 书店卖小说和传记,小说一本 15 元,传记一本 10 元,买了 8 本书一共花了 120 元,问买了几本小说几本传记?24. 小明和小红一起做蛋糕,小明每小时做 4 个,小红每小时做 2 个,两人一起做了 6 小时,一共做了 24 个蛋糕,问小明和小红分别做了几小时?25. 水果店里有橙子和草莓,橙子一斤 6 元,草莓一斤 8 元,买了 8 斤水果一共花了 56 元,问买了几斤橙子几斤草莓?26. 工厂里有甲、乙两种零件,甲零件每个 5 元,乙零件每个 3 元,一共买了20 个零件花了 80 元,问买了几个甲零件几个乙零件?27. 周末小刚和妈妈去买菜,青菜一斤 2 元,萝卜一斤 1 元,买了 15 斤菜一共花了 25 元,问买了几斤青菜几斤萝卜?28. 动物园里有长颈鹿和熊猫,长颈鹿有 4 条腿,熊猫有 4 条腿,长颈鹿和熊猫一共有 15 只,腿一共有 56 条,问长颈鹿和熊猫各有几只?29. 小李和小王一起做值日,小李每分钟擦 3 块玻璃,小王每分钟擦 2 块玻璃,两人一起擦了 8 分钟,一共擦了 40 块玻璃,问小李和小王分别擦了几分钟?30. 商店里有篮球和足球,篮球一个 80 元,足球一个 50 元,买了 6 个球一共花了 460 元,问买了几个篮球几个足球?31. 学校组织植树活动,一班每人种 2 棵,二班每人种 3 棵,两个班一共种了80 棵树,一共有 30 人参加,问一班和二班分别有多少人参加?32. 妈妈买衣服和裤子,衣服一件 100 元,裤子一条 50 元,买了 5 件一共花了 400 元,问买了几件衣服几条裤子?33. 养殖场里有兔子和鸡,兔子有 4 条腿,鸡有 2 条腿,兔子和鸡一共有 25 只,腿一共有 80 条,问兔子和鸡各有几只?34. 小花和小兰一起画画,小花每小时画 6 幅,小兰每小时画 4 幅,两人一起画了 5 小时,一共画了 50 幅画,问小花和小兰分别画了几小时?35. 超市卖洗发水和沐浴露,洗发水一瓶 30 元,沐浴露一瓶 20 元,一天卖了10 瓶一共收入 260 元,问卖了几瓶洗发水几瓶沐浴露?36. 学校组织运动会,跑步项目每人得 3 分,跳远项目每人得 2 分,小明一共得了 20 分,参加了 8 个项目,问小明参加了几个跑步项目几个跳远项目?37. 文具店卖笔记本和作业本,笔记本一本 5 元,作业本一本 2 元,买了 12 本一共花了 46 元,问买了几本笔记本几本作业本?38. 哥哥和弟弟一起玩游戏,哥哥每局赢 4 分,弟弟每局赢 2 分,两人一共玩了 10 局,哥哥一共赢了 30 分,问哥哥和弟弟分别玩了几局?39. 花园里有月季花和牡丹花,月季花一朵 3 元,牡丹花一朵 5 元,买了 10 朵花一共花了 42 元,问买了几朵月季花几朵牡丹花?40. 爸爸买香烟和打火机,香烟一包 20 元,打火机一个 2 元,买了 8 件一共花了 100 元,问买了几包香烟几个打火机?41. 操场上踢足球的男生和女生,男生每人进 2 个球,女生每人进 1 个球,一共进了 25 个球,有 15 人踢球,问男生和女生各有多少人?42. 书店卖字典和杂志,字典一本 25 元,杂志一本 10 元,买了 8 本一共花了185 元,问买了几本字典几本杂志?43. 小明和小红一起做数学作业,小明每小时做 8 道题,小红每小时做 6 道题,两人一起做了 4 小时,一共做了 56 道题,问小明和小红分别做了几小时?44. 水果店里有芒果和荔枝,芒果一斤 8 元,荔枝一斤 10 元,买了 7 斤水果一共花了 66 元,问买了几斤芒果几斤荔枝?45. 工厂里有甲、乙两种机器,甲机器每小时生产 5 个零件,乙机器每小时生产3 个零件,两种机器一起工作 6 小时,一共生产了 48 个零件,问甲、乙机器分别工作了几小时?46. 周末小李和小王去钓鱼,小李每小时钓 4 条,小王每小时钓 3 条,5 小时一共钓了 35 条鱼,问小李和小王分别钓了几小时?47. 商店里有帽子和围巾,帽子一顶 15 元,围巾一条 10 元,买了 6 件一共花了 90 元,问买了几顶帽子几条围巾?48. 动物园里有狮子和老虎,狮子有 4 条腿,老虎有 4 条腿,狮子和老虎一共有 18 只,腿一共有 72 条,问狮子和老虎各有几只?49. 小花和小兰一起折纸鹤,小花每小时折 7 只,小兰每小时折 5 只,两人一起折了 6 小时,一共折了 72 只纸鹤,问小花和小兰分别折了几小时?50. 超市卖面包和蛋糕,面包一个 5 元,蛋糕一个 8 元,一天卖了 12 个一共收入 86 元,问卖了几个面包几个蛋糕?。
完整版七年级数学二元一次方程组经典练习题及答案

完整版七年级数学二元一次方程组经典练习题及答案
一、 填空题
1、 二元一次方程4x-3y=12, 当x=0, 1, 2, 3时, y=
2、 在x+3y=3中, 若用x 表示y, 则y= ,用y 表示x, 则x=
3、已知方程(k ²-1)x ²+(k+1)x+(k-7)y=k+2, 当 k= 时, 方程为一元一次方程; 当 k= 时, 方程为二元一次方程。
5、 方程2x+y=5的正整数解是 .
6、 若(4x-3)²+|2y+1|=0, 则x+2= 。
二、选择题
1、方程 2x −3y =5,xy =3,x +3y =3,3x −y +2z =0,x 2+y =6中是二元一次方程的有( )个。
A 、 1 B 、 2 C 、 3 D 、 4
2、方程2x+y=9在正整数范围内的解有( )
A 、 1个
B 、2个
C 、3个
D 、4个
3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )
A 、 10x+2y=4
B 、 4x-y=7
C 、 20x-4y=3
D 、 15x-3y=6
4、若是 5x²yᵐ与 4xⁿ⁺ᵐ⁺¹y²ⁿ⁻²同类项,则m ²-n| 的值为 ( )
A 、 1
B 、 -1
C 、 -3
D 、以上答案都不对 7、方程组 {x +y =a xy =b 的一个解为 {x =2y =3
,那么这个方程组的另一个解是 。
8、 若 x =12
时, 关于x 、y 的二元一次方程组 {ax −2y =1
x −by =2的解互为倒数, 则 a-2b= 。
七年级数学下册二元一次方程组练习题

七年级数学下册二元一次方程组练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.请写出一个以21x y =⎧⎨=-⎩为解的二元一次方程:______ . 2.下列式子各表示什么意义?(1)(x +y )2:________;(2)5x =12y ﹣15:__________;(3)12(x +23x )=24:________. 3.已知12x y =⎧⎨=⎩是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 _____. 4.若关于,x y 的方程组2x ny m x my n --=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则|2|m n -=_______. 5.如果关于x 的方程()42022a x -=有解,那么实数a 的取值范围是__.6.把方程2340x y --=改写成用含x 的式子表示y ,则y =_______.二、单选题7.若关于x ,y 的方程215m n x y +--=是二元一次方程,则m n +的值为( )A .1B .1-C .3D .3-8.下列说法中,正确的是( )A .392x y xy -=⎧⎨=⎩是二元一次方程组 B .31x y =⎧⎨=-⎩是方程组4233x y x y -=⎧⎨+=⎩的解C .方程36x y +=的解是31x y =⎧⎨=⎩ D .方程23x y -=的解必是方程组2331x y x y -=⎧⎨+=⎩的解 9.若21x y =⎧⎨=-⎩是下列某二元一次方程组的解,则这个方程组为( ) A .351x y x y +=⎧⎨+=⎩ B .251x y x y -=⎧⎨+=⎩C .231x y x y =⎧⎨=+⎩D .325x y y x =-⎧⎨+=⎩ 10.若12x y =⎧⎨=-⎩是方程3x +ay =5的解,则a 的值是( ) A .1 B .﹣1 C .4 D .﹣411.下列可以是二元一次方程x +3y =2的解的是( )A .42x y =-⎧⎨=⎩B .27x y =⎧⎨=⎩C .11x y =⎧⎨=-⎩D .03x y =⎧⎨=⎩12.已知关于x ,y 的方程组2464x y a x y a +=-⎧⎨-=⎩,给出下列结论:①62x y =⎧⎨=-⎩是原方程组的一个解;①当a =-2时,x ,y 的值互为相反数;①当a =1时,方程组的解也是方程x +y =4-a 的解;①x ,y 间的数量关系是22153x y +=.其中正确的是( ) A .①①① B .①①① C .①①① D .①①①①13.如果13xa +2y 3与-3x 3y 2b -a 是同类项,那么a ,b 的值分别是( ) A .1,2 B .0,2 C .2,1 D .1,1三、解答题14.蒙城黄花梨名扬全国,今年篱笆梨园喜获丰收,个体商贩张杰准备租车把一批梨子运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满梨子一次可运货17吨;用3辆甲型车和4辆乙型车装满梨了一次可运货24吨,现有30吨梨子,计划同时租用甲型车m 辆,乙型车n 辆,一次运完,且恰好每辆车都装满梨子,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满梨子一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?(3)若1辆甲型车需租金180元/次,1辆乙型车需租金150元/次,请选出费用最少的租车方案,并求出最少租车费.15.已知()2120a b ++-=,求()()20202019a b a b --++的值.参考答案:1.1x y +=(答案不唯一)【分析】根据二元一次方程定义:ax by c +=,令,,a b c 为常数,把21x y =⎧⎨=-⎩代入,解出c 即可. 【详解】①本题答案不唯一,只要写出的二元一次方程的解为21x y =⎧⎨=-⎩即可 ①令1a =,1b =,得x y c +=①把21x y =⎧⎨=-⎩代入方程x y c += 解出1c =①1x y +=故答案是:1x y +=.【点睛】本题考查解二元一次方程的逆过程、不定方程的定义,灵活掌握二元一次方程定义是解题的关键. 2. x ,y 的和的平方 x 的5倍比y 的一半小15 x 与它的23的和的一半等于24【分析】根据题意以及题中的式子直接写出代数式和方程所表示什么意义即可.【详解】解:(1)(x +y )2表示x ,y 的和的平方;(2)5x =12y ﹣15表示x 的5倍比y 的一半小15;(3)12(x +23x )=24表示x 与它的23的和的一半等于24.故答案为:x ,y 的和的平方;x 的5倍比y 的一半小15;x 与它的23的和的一半等于24.【点睛】本题主要考查代数式的定义和方程的定义,属于基础题,熟练掌握代数式的定义和方程的定义是解决本题的关键.3.1 【分析】把12x y =⎧⎨=⎩代入ax +by =3可得23a b +=,而2a +4b ﹣5225a b ,再整体代入求值即可.【详解】解:把12x y =⎧⎨=⎩代入ax +by =3可得: 23a b +=,∴ 2a +4b ﹣5225a b2351.故答案为:1【点睛】本题考查的是二元一次方程的解,利用整体代入法求解代数式的值,掌握“方程的解的含义及整体代入的方法”是解本题的关键.4.1【分析】将方程组的解代入原方程组,然后利用加减消元法解方程组,然后代入代数式求解.【详解】解:将21x y =⎧⎨=⎩代入方程组2x ny m x my n --=⎧⎨+=⎩可得:42n m m n --=⎧⎨+=⎩ 解得:31m n =-⎧⎨=-⎩①()|2|3211m n -=--⨯-=故答案为:1.【点睛】本题考查方程组的解及解二元一次方程组,掌握解方程的计算步骤和法则正确计算是解题关键. 5.4a ≠【分析】根据一元一次方程有意义的条件得40a -≠,进行计算即可得.【详解】解:①(a −4)x =2022有解①40a -≠故答案为:4a ≠.【点睛】本题考查了一元一次方程有意义的条件,解题的关键是掌握一元一次方程有意义的条件. 6.243x - 【分析】将方程中含x 的项和常数项移到等号右边即可求解.【详解】解:2340x y --=,变形可得324y x =-, ①243x y -= 故答案为:243x -. 【点睛】本题主要考查二元一次方程的变形,解决本题的关键熟练掌握二元一次方程的变形方法. 7.A【分析】根据二元一次方程的定义列出关于m ,n 的等式,求出m 和n 的值,即可求出m n +的值.【详解】解:①关于x ,y 的方程215m n x y +--=是二元一次方程,①21,11,m n +=⎧⎨-=⎩解得:1,2m n =-⎧⎨=⎩. ①121m n +=-+=.故选:A .【点睛】本题考查了二元一次方程的定义,熟练掌握该知识点是解题关键.8.B【分析】根据二元一次方程组的定义、二元一次方程组的解的定义、二元一次方程的解的定义逐一分析判断即可.【详解】A 、方程组是二元二次方程组,不是二元一次方程组,故本选项不符合题意;B 、31x y =⎧⎨=-⎩是方程组4233x y x y -=⎧⎨+=⎩的解,故本选项符合题意; C 、方程36x y +=的一组解是31x y =⎧⎨=⎩,还有很多组解,如:02x y =⎧⎨=⎩也方程36x y +=的解,故本选项不符合D 、方程23x y -=有无数组解,但不一定都是方程组2331x y x y -=⎧⎨+=⎩的解,故本选项不符合题意; 故选:B .【点睛】本题考查了二元一次方程组的定义、二元一次方程组的解的定义、二元一次方程的解的定义等知识点,能理解知识点的内容是解题的关键.9.B【分析】运用代入排除法进行选择或分别解每一个方程组求解.【详解】A .x =2,y =﹣1不是方程x +3y =5的解,故该选项错误;B .x =2,y =﹣1适合方程组中的每一个方程,故该选项正确.C .x =2,y =﹣1不是方程组中每一个方程的解,故该选项错误;D .x =2,y =﹣1不是方程组中每一个方程的解,故该选项错误.故选B .【点睛】本题考查了方程组的解的定义,即适合方程组的每一个方程的解是方程组的解.10.B【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数a 的一元一次方程,从而可以求出a 的值.【详解】把=12x y ⎧⎨=-⎩代入方程35x ay +=得: 325a -= ,①1a =-,故选:B .【点睛】此题考查的知识点是二元一次方程组的解,解题关键是把方程的解代入原方程,使原方程转化为以a 为未知数的方程,一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.11.A【分析】分别把每个选项的数值代入x +3y ,计算即可得答案.【详解】A.当x =-4,y =2时,x +3y =2,故该选项符合题意,B.当x =2,y =7时,x +3y =23,故该选项不符合题意,C.当x =1,y =-1时,x +3y =-2,故该选项不符合题意,D.当x=0,y=3时,x+3y=9,故该选项不符合题意,故选:A.【点睛】本题考查的是二元一次方程的解,掌握方程的解的含义是解题的关键.12.A【分析】①将x=6,y=-2代入检验即可做出判断;①将a=-2代入方程组求出方程组的解即可做出判断;①将a=1代入方程组求出方程组的解,代入方程中检验即可;①消去a得到关于x与y的方程,即可做出判断.【详解】①将x=5,y=-1代入方程组得:12866(2)4aa-=-⎧⎨--=⎩,解得:a=2,本选项正确;①将a=-2代入方程组得:246(2)4(2)x yx y+=--⎧⎨-=⨯-⎩,解得:44xy=-⎧⎨=⎩,则x与y互为相反数,本选项正确;①将a=1代入方程组得:246141x yx y+=-⎧⎨-=⨯⎩,解得:7212xy⎧=⎪⎪⎨⎪=-⎪⎩,将7212xy⎧=⎪⎪⎨⎪=-⎪⎩代入方程x+y=4-1得:3=3,是方程x+y=3的解,本选项正确;①2464x y ax y a+=-⎧⎨-=⎩①②,由①得:a=6-2x-4y,代入①得:x-y=4(6-2x-4y),整理得:35188x y+=,本选项错误,则正确的选项为①①①.故选:A.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.13.A【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a ,b 的值.【详解】解:根据题意得:a +2=3,3=2b -a ,解得:a =1,b =2,故选:A .【点睛】本题考查同类项的定义,所含字母相同,相同字母的指数相同,理解定义是关键.14.(1)4,3;(2)共有2种租车方案,方案一:3辆甲型车,6辆乙型车;方案二:6辆甲型车,2辆乙型车;(3)当租6辆甲型车,2辆乙型车时费用最少,最少费用为1380元.【分析】(1)设1辆甲型车装满梨子一次可运货x 吨,1辆乙型车装满梨子一次可运货y 吨,根据题意可得到关于x ,y 的二元一次方程组,解出答案即可;(2)根据一次可运货物的重量=每辆车的承载量⨯租车数量,即可得出关于m ,n 的二元一次方程,再结合m ,n 均为正整数,即可得出租车方案;(3)根据租车总费用=每辆车的租金⨯租车数量,分别求出上一问中两种方案的费用,比较后即可得出答案.【详解】解:(1)设1辆甲型车装满梨子一次可运货x 吨,1辆乙型车装满梨子一次可运货y 吨,依题意,得:23173424x y x y +=⎧⎨+=⎩, 解得:43x y =⎧⎨=⎩, 答:1辆甲型车装满梨子一次可运货4吨,1辆乙型车装满梨子一次可运货3吨;故答案为:4,3.(2)依题意,得:4330m n +=, ∴4103n m =-, m 、n 均为正整数,∴当3m =时,6n =;当6m =时,2n =;∴共有2种租车方案,方案一:3辆甲型车,6辆乙型车;方案二:6辆甲型车,2辆乙型车.(3)方案一:当3m =时,6n =,租车费用:180315061440⨯+⨯=(元);方案二:当6m =时,2n =,租车费用:180615021380⨯+⨯=(元),14401380>,∴方案二省钱,∴当租6辆甲型车,2辆乙型车时费用最少,最少费用为1380元.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,找准等量关系列出方程及方程组是解题的关键.15.2【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可求解.【详解】解:①()2120a b ++-=,①a +1=0,b ﹣2=0,解得a =﹣1,b =2,①(﹣a ﹣b )2020+(a +b )2019=(1﹣2)2020+(﹣1+2)2019=1+1=2.【点睛】本题考查了非负数的性质①几个非负数的和为0时,这几个非负数都为0,掌握非负数的性质是解题的关键.。
人教版七年级数学下册第八章《二元一次方程组》单元检测卷 (附答案)

型号
A
B
单个盒子容量(升)
2
3
单价(元)
5
6
三、解答题(共60分)
2.若 ,则ab=()
A.-10B.-40C.10D.40
【答案】A
【解析】
【分析】联立已知两方程求出a与b的值,即可求出ab的值.
【详解】解:联立得:
解得
∴ab=-10.
故选A.
3.若-2amb4与5an+2b2m+n可以合并成一项,则mn的值是( )
A.0B. C.1D.2
【答案】C
【解析】
【分析】根据-2amb4与5an+2b2m+n可以合并成一项,可得同类项,根据同类项的定义,可得m、n的值,根据乘方,可得答案.
18.阅读下列材料:
问题:某饭店工作人员第一次买了13只鸡、5只鸭、9只鹅共用了925元.第二次买了2只鸡、4只鸭、3只鹅共用了320元,试问第三次买了鸡、鸭、鹅各一只共需多少元?(假定三次购买鸡、鸭、鹅的单价不变)
解:设鸡、鸭、鹅的单价分别为x,y,z元.依题意,得
,
上述方程组可变形为 ,
设x+y+z=a,2x+z=b,上述方程组可化 : ,
13.解方程组:
(1)
(2)
14.已知 是关于x,y的二元一次方程3x=y+a的解,求a(a-1)的值.
15.已知关于x,y 方程组 与 有相同的解,求a,b的值.
第8章 二元一次方程组【过关测试】(解析版)七年级数学下册单元复习(人教版)

第8章二元一次方程组过关测试(时间:90分钟,分值:100分)一、选择题(共12小题,满分36分,每小题3分)1.(3分)下列各式中,是关于x ,y 的二元一次方程的是()A .23x y -=B .30x xy +-=C .2x y +D .21y x-=【答案】A .【解析】解:A 、是关于x ,y 的二元一次方程,故此选项正确;B 、不是关于x ,y 的二元一次方程,故此选项错误;C 、不是关于x ,y 的二元一次方程,故此选项错误;D 、不是关于x ,y 的二元一次方程,故此选项错误;故选:A .2.(3分)若方程||2(3)31a a x y -++=是关于x ,y 的二元一次方程,则a 的值为()A .3-B .2±C .3±D .3【答案】D .【解析】解:∵方程(a +3)x +3y |a |-2=1是关于x ,y 的二元一次方程,∴a +3≠0,|a |-2=1,解得a =3.故选:D .3.(3分)若23x y =-⎧⎨=⎩是方程25x ay +=的一个解,则a 的值是()A .1-B .1C .3-D .3【答案】D .【解析】解:将23x y =-⎧⎨=⎩代入方程2x +ay =5,得-4+3a =5,解得a =3.故选:D .4.(3分)方程237x y -=,用含y 的代数式表示x 为()A .1(72)3y x =-B .1(27)3y x =-C .1(73)2x y =-D .1(73)2x y =+【答案】D .【解析】解:∵2x -3y =7,∴2x =7+3y .∴732yx +=.∴用含y 的代数式表示x 为732yx +=.故选:D .5.(3分)在下列方程组:①531x y y x +=⎧⎨-=⎩,②231x y y x +=⎧⎨-=⎩,③123xy x y =⎧⎨+=⎩,④1111x y x y ⎧+=⎪⎨⎪+=⎩,⑤11x y =⎧⎨=⎩中,是二元一次方程组的是()A .①②③B .①②④C .①②⑤D .①②③⑤【答案】C .【解析】解:方程组531x y y x +=⎧⎨-=⎩,231x y y x +=⎧⎨-=⎩,11x y =⎧⎨=⎩中符合二元一次方程组的定义,符合题意.方程组123xy x y =⎧⎨+=⎩属于二元二次方程组,不符合题意.方程组1111x y x y ⎧+=⎪⎨⎪+=⎩中的第一个方程不是整式方程,不符合题意.故选:C .6.(3分)在下列各组数中,是方程组23823x y x y -=-⎧⎨+=⎩的解的是()A .24x y =⎧⎨=⎩B .31x y =-⎧⎨=⎩C .11x y =⎧⎨=⎩D .12x y =-⎧⎨=⎩【答案】D .【解析】解:23823x y x y -=-⎧⎨+=⎩①②,②×2,得2x +4y =6③,③-①得,7y =14,解得y =2,将y =2代入②得,x =-1,∴方程组的解为12x y =-⎧⎨=⎩,故选:D .7.(3分)已知关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩,则关于m ,n 的方程组1112225(3)3(2)5(3)3(2)a m b n c a m b n c ++-=⎧⎨++-=⎩的解是()A .25m n =⎧⎨=⎩B .23m n =-⎧⎨=⎩C .52m n =⎧⎨=⎩D .32m n =⎧⎨=-⎩【答案】B .【解析】解:∵方程组1112225(3)3(2)5(3)3(2)a m b n c a m b n c ++-=⎧⎨++-=⎩可变形为1112225(3)3(2)5(3)3(2)a m b n c a m b n c ⨯++⨯-=⎧⎨⨯++⨯-=⎩,又∵关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩,∴5(3)53(2)3m n +=⎧⎨-=⎩.解这个方程组得23m n =-⎧⎨=⎩.故选:B .8.(3分)已知二元一次方程组2521x y x y -=⎧⎨-=⎩,则x y -的值为()A .2-B .2C .6-D .6【答案】B .【解析】解:2521x y x y -=⎧⎨-=⎩①②,①+②,得3x -3y =6,两边都除以3得:x -y =2,故选:B .9.(3分)如果含有两个未知数的方程有一组解是整数,我们称这个方程有整数解.请你观察下面的四个方程:①8223x y +=;②3710x y +=;③(43)(3)2x y -+=;④1112022x y +=.其中有整数解的方程是()A .①②B .②③C .②③④D .①②③【答案】C .【解析】解:①8x +2y =23,∵x ,y 的系数为偶数,又因为它们是整数,所以乘积一定也为偶数,所以之和绝对不是奇数;②3x +7y =10,∵当x =1时,y =1,正好符合要求,所以它正确;③(4x-3)(y+3)=2,当x=1时,y=-1,符合要求,所以它有整数解;④1112022 x y+=.∵当x=4044时,y=4044,方程有解,符合要求.∴②③④这3个方程有整数解.故选:C.10.(3分)小丽去文具店买钢笔和笔记本.钢笔每支5元,笔记本每本4元.小丽带了20元钱,能买几支钢笔、几本笔记本?设买x支钢笔,y本笔记本,则下列选项正确的是() A.4520x y+=B.5420x y+C.5420x y+>D.5420x y+【答案】B.【解析】解:设买x支钢笔,y本笔记本,则5x+4y≤20,故选:B.11.(3分)一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有()A.5个B.6个C.7个D.8个【答案】D.【解析】解:设原来的两位数为10a+b,根据题意得:10910a b b a++=+,解得:1b a=+,因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,都是个位数字比十位数字大1的两位数.故选:D.12.(3分)如图,七个相同的小长方形组成一个大长方形ABCD,若21CD=,则长方形ABCD 的周长为()A.100B.102C.104D.106【答案】B.【解析】解:设小长方形的长为x ,宽为y .由图可知:5221y xx y =⎧⎨+=⎩解得.156x y =⎧⎨=⎩,所以长方形ABCD 的长为55630y =⨯=,宽为21,∴长方形ABCD 的周长为2(3021)102⨯+=,故选:B .二、填空题(共10小题,满分30分,每小题3分)13.(3分)若232135m n x y ---=是二元一次方程,则m =,n =.【答案】2;1.【解析】解:∵232135m n x y ---=是二元一次方程,∴231m -=,211n -=,解得:2m =,1n =,故答案为:2;114.(3分)若x ay b =⎧⎨=⎩是方程210x y +=的解,求634a b +-的值是.【答案】26.【解析】解:∵x ay b=⎧⎨=⎩是方程210x y +=的解,∴210a b +=,∴634a b +-3(2)4a b =+-3104=⨯-26=.故答案为:26.15.(3分)已知23x y +=,用x 含的代数式表示y 为.【答案】23y x =-+.【解析】解:方程23x y +=,解得:23y x =-+.故答案为:23y x =-+.16.(3分)方程组||(1)5(5)3a y a x yb xy --=⎧⎨+-=⎩是关于x ,y 的二元一次方程组,则b a 的值是.【答案】1-.【解析】解:由题意得:||1a =,50b -=,10a -≠,解得:1a =-,5b =,则原式5(1)1=-=-.故答案为:1-.17.(3分)若方程3x y +=,1x y -=和20x my +=有公共解,则m 的取值为.【答案】1-.【解析】解:据题意得3120x y x y x my +=⎧⎪-=⎨⎪+=⎩,解得211x y m =⎧⎪=⎨⎪=-⎩,∴m 的取值为1-.故答案为:1-.18.(3分)已知关于x 、y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则关于x 、y 的方程组111222253253a x b y c a x b y c +=⎧⎨+=⎩的解是.【答案】335x y =⎧⎪⎨=⎪⎩.【解析】解:∵关于x 、y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,∴关于x 、y 的方程组111222253253a x b y c a x b y c +=⎧⎨+=⎩中223513x y =⨯⎧⎨=⨯⎩,解得335x y =⎧⎪⎨=⎪⎩.故答案为:335x y =⎧⎪⎨=⎪⎩.19.(3分)解二元一次方程组23225x y x y +=⎧⎨-=⎩①②时,小华用加减消元法消去未知数x ,按照他的思路,用①-②得到的方程是.【答案】43y =-.【解析】解:解二元一次方程组23225x y x y +=⎧⎨-=⎩①②时,小华用加减消元法消去未知数x ,按照他的思路,用①-②得到的方程是:43y =-,故答案为:43y =-.20.(3分)某果园计划种植梨树和苹果树共1000株,实际上梨树种植量比计划增长10%,而苹果树种植量比计划减少5%.若设实际种植梨树x 株,苹果树y 株,列二元一次方程为.【答案】1000110%15%x y+=+-.【解析】解:设实际种植梨树x 株,苹果树y 株,列二元一次方程为:1000110%15%x y+=+-.故答案为:1000110%15%x y+=+-.21.(3分)《九章算术》中有一题,大意是:甲乙二人,不知其钱包里各有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己三分之二的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?设甲持钱数为x ,乙持钱数为y ,则可列二元一次方程组为.【答案】15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩.【解析】解:∵若乙把自己一半的钱给甲,则甲的钱数为50,∴1502x y +=;又∵若甲把自己三分之二的钱给乙,则乙的钱数也为50,∴2503x y +=.∴根据题意,可列二元一次方程组为15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩.故答案为:15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩.22.(3分)某企业组织员工去观看电影《我和我的祖国》,电影院根据座位排数的差异确定票价,共有30元,45元,60元三种票价的电影票,小武用405元共购买了10张电影票,则票价为30元的电影票的数量比票价为60元的电影票的数量多张.【答案】3.【解析】解:设购买票价为30元的电影票x 张,购买票价为60元的电影票y 张,则购买票价为45元的电影票(10)x y --张,依题意得:306045(10)405x y x y ++--=,化简得:3x y -=,∴购买票价为30元的电影票的数量比购买票价为60元的电影票的数量多3张.故答案为:3.三、解答题(共5小题,满分34分)23.(6分)解方程组528x y x y +=⎧⎨+=⎩.【答案】见解析.【解析】解:5(1)28(2)x y x y +=⎧⎨+=⎩由(2)-(1)得:3x =,把它代入(1)得:2y =,∴方程组的解为32x y =⎧⎨=⎩.24.(6分)已知方程组|2|23(3)1(1)2m x m y m x --⎧--=⎨+=-⎩是二元一次方程组,求m 的值.【答案】见解析.【解析】解:依题意,得|2|21m --=,且30m -≠、10m +≠,解得5m =.故m 的值是5.25.(6分)若11x y =⎧⎨=-⎩和35x y =⎧⎨=⎩都是关于x ,y 的二元一次方程20ax by ++=的解,试求a 与b 的值,并判断48x y =⎧⎨=⎩不是这个方程的解.【答案】见解析.【解析】解:把11x y =⎧⎨=-⎩和35x y =⎧⎨=⎩代入方程得:203520a b a b -+=⎧⎨++=⎩①②,①5⨯+②得:8120a +=,解得:32 a=-,把32a=-代入①得:3202b--+=,解得:12 b=,∴方程为3120 22x y-++=,把48xy=⎧⎨=⎩代入方程得:左边31482642022=-⨯+⨯+=-++=,右边0=,∵左边=右边,∴48xy=⎧⎨=⎩是这个方程的解.26.(6分)大型客车每辆能坐54人,中型客车每辆能坐36人,现有378人,问需要大、中型客车各几辆才能使每个人上车都有座位,且每辆车正好坐满?【答案】见解析.【解析】解:设需要大型客车x辆,中型客车y辆,由题意得:5436378x y+=,则3221x y+=,当1x=时,9y=;当2x=时,152y=(不合题意);当3x=时,6y=;当4x=时,92y=(不合题意);当5x=时,3y=;当6x=时,32y=(不合题意);当7x=时,0y=;答:一共有4种符合题意的答案.27.(10分)为发展校园足球运动,我市四校决定联合购买一批足球运动装备.经市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球多60元,5套队服与8个足球的费用相等,经洽谈,甲商场优惠方案是每购买10套队服,送1个足球;乙商场优惠方案是购买队服超过80套,则购买足球打8折.(1)求每套队服和每个足球的价格各是多少?(2)若这四所学校联合购买100套队服和(10)a a>个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用.(3)在(2)的条件下,若70a=,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?请说明理由.【答案】见解析.【解析】解:(1)设每个足球的价格是x元,每套队服的价格为y元,由题意得:60 58y xy x=+⎧⎨=⎩,解得:100160 xy=⎧⎨=⎩,答:每套队服的价格各是160元,每个足球的价格是100元.(2)到甲商场购买装备所花的费用为:100160100(10)(10015000)a a⨯+-=+(元),到乙商场购买装备所花的费用为:1001601000.8(8016000)a a⨯+⨯=+(元);(3)到乙商场购买比较合算,理由如下:当70a=时,到甲商场购买装备所花的费用是:10015000100701500022000a+=⨯+=(元),到乙商场购买装备所花的费用是:801600080701600021600a+=⨯+=(元),∵2200021600>,∴到乙商场购买比较合算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学二元一次方程测试题 制卷人:顾建
一、填空题:(每小题3分,共21分)
1、用加减消元法解方程组,由①×2 ②得 。
2.写出一个解为⎩⎨⎧-==1
2y x 的二元一次方程为_____________.
3、已知m -3n =2m +n -15=1,则m = ,n = 。
4.有一个两位数,个位数字与十位数字的和为5,则符合这个条件的两位数共有
_________个.
5、若∣x -2y +1∣+∣x +y -5∣=0,则x = ,y = 。
6、大数和小数的差为12,这两个数的和为60,则大数是 ,小数是 。
7、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组。
二、选择题(本题共有8个小题,每小题3分,共24分)
8、一个二元一次方程的解集,是指这个方程的( )
A 一个解
B 两个解
C 三个解
D 所有解组成的集合
9.关于二元一次方程3x +2y=5的解,下列说法正确的是( )
A.任何一对有理数都是它的解
B.只有一个解
C.只有两个解
D.有无数个解
10、已知是方程组的解,则、间的关系是( )
A 、
B 、
C 、
D 、
11.若⎩
⎨⎧==12y x 是方程组⎩⎨⎧=+=-81my nx ny mx 的解,则m,n 的值分别为( ) A.m=2,n=1 B.m=2,n=3 C.m=1,n=8 D.m=-2,n=3
12、一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排,则这间会议室共有座位排数是( )
A 14
B 13
C 12
D 155
13.如果│x +y +5│+(x +3y -1)2
=0,则x -y 的值为( )
A.11
B.-11
C.-5
D.5
14、若二元一次方程,,有公共解,则的取值为( ) A 、3 B 、-3 C 、-4 D 、4
15、从1999年11月1日起,全国储蓄存款征收利息税,税率为利息的20%,即储蓄利息的20%由各银行储蓄点代扣代收。
某人在1999年12月存入人民币若干元,年利率为2.25%,一年到期后将缴纳利息税72元,则他存入的人民币为( )
A 1600元
B 16000元
C 360元
D 3600元
三、解答题:(每小题5分,共20分)
16解方程组:.⎩⎨⎧=-=+6)3(242y x 17.解方程组:⎩⎨⎧=+=-17
32623y x y x 18. 解方程组:⎪⎩⎪⎨⎧=-=+343
1332n m n m 19.已知2x +3y -1=y -x -8=x +6,求x -y 的值.
四、解答题: (20题,21题每小题5分,22题,23题,24题每小题6分,25题7分 ,共35分)
20.某课外小组的学生准备分组外出活动,若每组7人,则余下3人,若每组8人,则少5人,求课外小组的学生数和分的组数各是多少?
21.用铁皮做罐头盒,每张铁皮可做盒身16个,或做盒底43个,一个盒身和两个盒底配成一套罐头盒,现有150张铁皮,用多少张做盒底,多少张做盒身,可以正好做成整套罐头盒?
22甲乙二人在东西方向的公路上行走,甲在乙的西边300米,若甲乙二人同时向东走,30分钟后甲正好追上乙;若甲乙二人同时相向而行,2分钟后相遇.问甲乙二人的速度各是多少?
23、某城市出租车收费标准为:起步价(3千米)6元;3千米后每千米1.20元。
翁老师一次乘了8千米,花去12元;第二次乘了11千米,花去15.60元。
请你编制适当的问题,列出相应的二元一次方程组,写出求解过程。
(7分
购买苹果数 不超过30千克 30千克以上但不超过50千克 50千克以上
每千克价格 3元 2.5元 2元
苹果70千克,
(1)乙班比甲班少付出多少元?
(2)甲班第一次、第二次分别购买多少千克?(8分)
25.一家商店进行装修,若请甲乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元,问:
(1)甲乙两组工作一天,商店应各付多少钱?
(2)已知甲乙两组单独完成分别需要12天和24天,单独请哪组,商店所付的费用较少?
(3)若装修完后,商店营业,每天可赢利200元,你认为如何安排施工有利于商店经营,为什么?。