塑性力学塑性本构关系
塑性力学第三章 塑性本构关系

34
1 s s 1 1 2 s 1 2 s 2 s 2 s
‘ ’ ‘ ’
(3—24)
σ3 = 0 的平面(σ1,σ2 坐标面)与正六角柱屈
服曲面的交线为斜六边形 A B C D E F 。 方程组 (3 ‘ ’ ’ ‘ ’ ‘ ‘ ’ —24)中各式分别代表 A B 、D E 、F A 、C D 、 ’ ‘ ‘ ’ B C 、E F 各边。
3
与(3—18)式相比可知,Tresca 屈服条件和 Mises 屈 服条件在τs 和σs 的关系上有约 15%的差异。 因此,Mises 屈服条件和 Tresca 屈服条件在单向
37
拉压应力状态下完全一致,在纯剪切时二者差异最 大,约为 15%。 (4)对于平面应力状态,σ3 = 0, (3—27)式化 为: 2 2 (3—29) 12 1 2 2 s 在应力空间中, σ3=0 平面 ( σ 1, σ2 坐标面) 与 Mises 屈服曲面的交线为一斜椭圆,它外接于 Tresca 屈服轨 迹的斜六边形。 §3.6 加载曲面和加载准则 (一)加载曲面(后继屈服面) 由单向拉伸试验知道,对理想塑性材料,一旦屈 服以后,其应力保持常值。卸载后再重新加载时其屈 服应力的大小也不改变 (没有强化现象) 。 对于强化材 料,在开始屈服之后,随着塑性变形的发展其应力值 继续增加。卸载后再重新加载至原来开始屈服的应力 时材料并不屈服,要加到原来卸载开始时的应力,材 料才再次屈服。因此对于强化材料,重新加载时的屈 服应力要高于原始加载时的屈服应力,这就是强化现 象。而复杂应力状态与单向拉伸状态是类似的,即: 复杂应力状态下,理想塑性材料在应力空间中的 屈服曲面具有固定的大小和形状,屈服以后经过卸载 并重新加载,仍然保持原来的屈服曲面。 对于强化材料,我们把在应力空间中由屈服条件 规定的曲面叫做初始屈服曲面,记做Σ,若加载至超
弹塑性力学-弹塑性本构关系ppt课件

为非负,即有 0
功,即 0
(应变硬化和理想塑性材料)
(应变软化材料)
工程弹塑性力学·塑性位势理论
(2) 德鲁克塑性公设的表述
德鲁克公设可陈述为:对于处在某一状态下的稳定材 料的质点(试件),借助于一个外部作用在其原有应力状态 之上,缓慢地施加并卸除一组附加压力,在附加应力的施 加和卸除循环内,外部作用所作之功是非负的。
Ñ W
0 ij
ij
0 ij
d ij 0
Ñ 由于弹性应变εije在应力循环
中是可逆的,因而
( ij
0 ij
)
d
e
ij
0
0 ij
于是有:
Ñ WD WDp
( ij
0 ij
)d
p
ij
0
0 ij
工程弹塑性力学·塑性位势理论
(3) 德鲁克塑性公设的重要推论
Ñ WD WDp
( ij
0 ij
)d
势理论。他假设经过应力空间的任何一点M,必有一
塑性位势等势面存在,其数学表达式称为塑性位势函
数,记为:
g I1, J2, J3, H 0
或
g ij , H 0
式中, H 为硬化参数。
塑性应变增量可以用塑性位势函数对应力微分的表达
式来表示,即:
d
p ij
d
g
ij
工程弹塑性力学·塑性位势理论
不小于零,即附加应力的塑性功不出现负值, 则这种材料就是稳定的,这就是德鲁克公设。
工程弹塑性力学·塑性位势理论
在应力循环中,外载所作的 功为:
Ñ W
0 ij
ij
d ij
0
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出
弹塑性力学第5章—塑性本构关系

3 2
sij
−
Cdε
p ij
sij −
Cdε
p ij
−σs = 0
C表征材料强化的大小,来自单向拉伸
5.3 后继屈服条件
1、等向强化模型
单向拉伸实验曲线中三个方向的塑性主应变为
ε1p
= ε p,
ε
p 2
=
ε
p 3
= − 1ε p
2
其中ε p为单向拉伸方向的塑性应变,由此得到等效塑性应变
( ) ( ) ( ) ε p =
4 3
J
′
2
=
2 9
⎡ ⎢⎣
ε1p
−
ε
p 2
2+
ε
p 2
−
ε
p 3
2+
ε
p 3
最大畸变能是材料屈服的原因
J2 = k2
J 2反映了材料的畸变能( U0d
=
J2 2G
)
( ) J2
=
1 2
sij sij
=
1 6
(σ1 − σ2 )2 + (σ2 − σ3 )2 + (σ3 − σ1)2
k 由实验确定,根据简单拉伸实验,在材料屈服时
[ ] J2
=1 6
(σ 0 − 0)2 + 0 + (0 −σ 0 )2
−0.8
屈服条件类似,主要区别是
−1.0
混凝土的抗压强度比抗拉强
−1.2
度高得多。
5.2 常用的屈服条件
5.2.3 混凝土的莫尔-库仑屈服条件
在实验基础上,提出线性化的莫尔-库仑屈服条件,σ
′
0
,
σ
塑性力学第四章(1)-塑性本构关系

塑性本构关系
加载与卸载关系 全量型本构关系 增量本构关系
加载与卸载关系
理想弹塑性材料的加卸载准则
r r ∂f =0 d σ ⋅ n = d σ ij ∂ σ ij
r r ∂f ∂f d σ ⋅ n = d σ ij <0 ∂ σ ij
加载 卸载
r dσ
r n
dσ
r
f (σ ij ) = 0
o
1 εx = σx − µ σ y +σz E 1 εy = σ y − µ (σ z + σ x ) E 1 εz = σz − µ σx +σ y E
[
(
)]
体积应变: 体积应变:
θ = εx +ε y +εz
[ [
(
] )]
体积应力: 体积应力:
Θ =σx +σ y +σz
µε = µσ
形变理论( 理论) 形变理论( Hencky — Iliushin 理论)
体积变化是弹性的,且与平均应力成正比。 1. 体积变化是弹性的,且与平均应力成正比。
E σm = εm (1 − 2 µ )
应变偏量与应力偏量成比例。 2. 应变偏量与应力偏量成比例。
弹性阶段: 弹性阶段: 塑性阶段: 塑性阶段:
∂ϕ ⋅ d σ ij = 0 ⇒ 中性变载 ∂ σ ij
r r dσ ⋅ n > 0 r r dσ ⋅ n < 0
加卸载准则
r r dσ ⋅ n = 0
中性变载: 中性变载:当应力增量沿加载 面切线方向变化, 面切线方向变化, 而加载面并不扩大 时,不产生新的塑 性变形。 性变形。
弹塑性力学-弹塑性本构关系

与塑性应变向量之间所成的夹角不应 该大于90°
稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
ij
0 ij
(b) 不满足稳定 材料的屈服面
/2
2 塑性应变增量向量与屈服面法向平行
d 必p 与加载面的外法线
重合,否则总可以找到A0 使A0A·dεp≥0不成立(如右 图)。
的真实功与ij0起点无关;
Ñ d ipj ij ij 0
(2)附加应力功不符合功的 定义,并非真实功
i0j ij i0jdij0
-
应力循环中外载所作真实功 与附加应力功
(3)非真实物理功不能引用热力学定律;
(4)德鲁克公设的适用条件:
①ij0在塑性势面与屈服面
之内时,德鲁克公设成立;
d
p ij
d
ij
由应力空间中的屈服与应变空间中屈服面的转换关系,可得:
结合
-
D
ij
ij
dipj Ddipj
d
p ij
d
ij
可得:
d d
3.1.4 塑性位势理论与流动法则
与弹性位势理论相类似,Mises于1928年提出塑性
位势理论。他假设经过应力空间的任何一点M,必有
一塑性位势等势面存在,其数学表达式称为塑性位势
残余应力增量与塑性 应变增量存在关系:
dipj Ddipj
式中,D为弹性矩阵。 根据依留申公设,在 完成上述应变循环中, 外部功不为负,即
Ñ WI ijdij 0 i0j
只有在弹性应变时,上述WI=0。
根据Druker塑性公设
当 i0 jij时 (iji0 j)dijp 0
弹塑性力学塑性本构关系

0
14
1.理想塑性材料的增量本构关系 2.硬化材料的增量塑性本构关系 3.全量塑性本构关系
15
2. 硬化材料的增量塑性本构关系
d
p ij
d
f
ij
f g 相关联流动
塑性应变大小 塑性应变方向
对于强化材料
f
ij
d ij
0
d ij 在
f
ij
方向上的投影,反映了塑性应变增量的大小。
可假设:
d
1 h
H121
Cp ijkl
1
9K 2
G
H11H 22
H
2 22
对称
H11H 33
H 22H33
H
2 33
H11H12 H 22H12 H 33 H12
H122
H11H 23
H 22H 23
H 33 H12
H12H 23
H
2 23
H11H 31 H 22H31
H
33
H
31
H12H31
H12
H
0
如果hd以 d累积pf塑2ij d性d32应ijd变ijpdkfddijpkdp作32p0为d内2变hd量f ij
f
fij ij
ij
p ij
d
k k p k d2 p f f
p ij
d
d
p ij
d
f k
k
p
d
d p
f
p
ij
0
3 ij ij
2 f f
3 ij ij
h f
Cijkl
1 H
H
ij
H
kl
H
弹塑性力学-弹塑性本构关系ppt课件

d
p
|
cos
0
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向
与塑性应变向量之间所成的夹角不应 该大于90°
稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
ij
0 ij
(b) 不满足稳定 材料的屈服面
/2
工程弹塑性力学·塑性位势理论
2 塑性应变增量向量与屈服面法向平行
d 必p 与加载面的外法线
p
ij
0
0 ij
WD
(ij
adij
0 ij
)d
p
ij
0
1 a 1 2
当
0 ij
时,略去无穷小量
ij
( ij
0 ij
)d
p ij
0
当
0 ij
ij时,
d
ij
d
p ij
0
屈服面的外凸性
塑性应变增量方向 与加载曲面正交
工程弹塑性力学·塑性位势理论
1 屈服曲面的外凸性
( ij
0 ij
)dijp
|
A0 A||
不小于零,即附加应力的塑性功不出现负值, 则这种材料就是稳定的,这就是德鲁克公设。
工程弹塑性力学·塑性位势理论
在应力循环中,外载所作的 功为:
Ñ W
0 ij
ij
d ij
0
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出
弹塑性力学本构关系
1
工程弹塑性力学·塑性位势理论
(1) 稳定材料与非稳定材料
塑性力学--第四章 塑性本构关系

向都保持不变.
• 但是物体内的内力是不能事先确定的, 那么如何判断加载过 程是简单加载? Il’yushin指出, 在符合下列三个条件时, 可以 证明物体内所有各点是处于简单加载过程:
(1) 荷载(包括体力)按比例增长.如有位移边界条件应为零.
(2) 材料是不可压缩的.
(3)应力强度和应变强度之间幂指数关系,
3i 2 i
(3)应力强度是应变强度的函数 i i , 即按单一曲线假
定的硬化条件.
综上所述, 全量型塑性本构方程为
ii
1 2
E
ii
eij
3i 2 i
Sij
i i
注意的是上式只是描述了加载过程中的弹塑性变形规律. 加
载的标志是应力强度 i 成单调增长. i 下降时为卸载过
程, 它时服从增量Hooke定律.
y
些基本未知量的基本方程有
x
Su : ui
平衡方程 ij, j Fi 0
几何方程
ij
1 2
ui. j u j,i
本构方程
ii
1 2
E
ii
eij
3i 2 i
Sij
i i
其中
i
3 2
Sij Sij
i
2 3
eij eij
这就是对于全量 理论的塑性力学
边界条件 S : ijl j pi , Su : ui ui
(1)全量理论, 又称为形变理论, 它认为在塑性状态下仍有应力 和应变全量之间的关系. 有Hencky(亨奇)理论和Il’yushin (伊柳 辛)理论.
(2)增量理论, 又称为流动理论, 它认为在塑性状态下是塑性应 变增量和应力及应力增量之间有关系.有Levy-Mises(莱维-米泽 斯)理论和Prandtl-Reuss(普朗特-罗伊斯)理论.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章塑性本构关系
全量和增量理论
•全量理论(形变理论):在塑性状态下仍有应力和应变之间的关系。
Il’yushin(伊柳辛)理论。
•增量理论(流动理论):在塑性状态下是塑性应变增量和应力及应力增量之间的关系。
Levy-Mises理论和Prandtl-Reuss理论。
3-5 全量理论的适用范围
简单加载定律
变形:小变形
加载:简单加载
适用范围:
物体内每一点应力的各个应力分量,在加载过程中成比例增长
简单加载:
()0ij ij
t σασ=0ij
σ
非零的参考应力状态
()t α随着加载单调增长
加载时物体内应力和应变特点:
应力和应变的主方向都保持不变
应力和应变的主分量成比例增长
应力Lode参数和应力Lode角保持常数
应力点的轨迹在应力空间是直线
小变形前提下,判断简单加载的条件:
荷载按比例增长(包括体力);零位移边界
材料不可压缩
应力强度和应变强度幂函数关系
m i i
A σε
=实际应用:
满足荷载比例增长和零位移边界条件
3-6 卸载定律
卸载:按照单一曲线假设,应力强度减小
•外载荷减小,应力水平降低
•塑性变形发展,应力重分布,局部应力强度降低
简单卸载定律:
•各点的应力分量按比例减少
•不发生新的塑性变形
¾以卸载时的荷载改变量为假想荷载,按弹性计算得
到应力和应变的改变量
¾卸载前的应力和应变减去卸载过程中的改变量
塑性本构关系的基本要素
•初始屈服条件
–判断弹性或者塑性区
•后继屈服条件
–描述材料硬化特性,内变量演化
•流动法则
–应变增量和应力以及应力增量之间的关系,包括方向和分配关系
Saint-Venant(1870):
应变增量和应力张量主轴重合
•继承这个方向关系
•提出分配关系
()
0ij ij d d S d ελλ=≥应变增量分量和应力偏量分量成比例
Levy-Mises 流动法则(M. Levy,1871 & Von Mises,1913)
适用范围:刚塑性材料
3-7 流动法则--Levy-Mises & Prandtl-Reuss。