混凝土本构关系模型
混凝土本构模型

混凝土本构关系模型 一、线弹性本构模型1、 线弹性均质的本构模型当混凝土无裂缝时,可以将混凝土看成线弹性均质材料,用广义胡克定律来表达本构关 系:kl ijkl ij C εσ=式中,ijklC 为材料常数,为一四阶张量,一般有81个常数,如果材料为正交异性时,常数可减少至9个,如材料为各向均质时,可用两个常数λ、μ来表达,λ、μ称为Lame 常数。
ijkk ij ij δλεμεσ+=2当j i =,μλσε23+=kkkk ,代入上式()kk ijij ij σμμλλσσε2232/+-=E 、ν、λ、μ之间的关系如下:()ν213-=E K ,()ν+=12EG GK KGE +=39,()G K G K +-=3223ν 在工程计算中采用下列形式⎪⎭⎫ ⎝⎛+-=E EE 33221111σσνσε 同样可写出22ε、33ε的表达式。
()12121112τντγEG+==同样可写出22γ、33γ的表达式。
如上述各式用张量表示可写成:ij kk ij ij EE δσνσνε-+=1,()()ij kk ij ij E E δενννενσ2111-+-+=用矩阵形式表达时,可写成张量描述用矩阵形式表达,可写成:3、正交异性本构模型 矩阵描述分块矩阵描述1.3横观各向同性弹性体本构模型其中[]D 表达式为kl ijkl ij C εσ=1、Cauchy 模型Cauchy 模型建立的各向同性一一对应的应力应变关系为()kl ij ij F εσ=可展开为:+++=jk ik ij ij ij εεαεαδασ210根据Caley-Hamilton 定理有:jkik ij ij ij εεϕεϕδϕσ210++=但Cauchy 模型在)2,1,0(=i i ϕ时,一般不能满足ij kk ij ij δλεμεσ+=2。
因而,Cauchy 模型在不同加载途径下得到的应变能和余能表达式不是唯一的或者不存在,不能满足弹性体能量守恒定律,但在单调比例加载途径下还是适用的。
混凝土cdp本构

混凝土cdp本构混凝土是一种常见的建筑材料,具有良好的强度和耐久性。
在设计和分析混凝土结构时,混凝土的本构模型是非常重要的。
本文将介绍混凝土的本构模型之一——混凝土弹塑性本构模型(Concrete Damaged Plasticity Model,简称CDP)。
一、混凝土弹塑性本构模型的基本原理混凝土弹塑性本构模型是基于弹塑性力学理论开发的一种模型,用于描述混凝土在受力过程中的弹性和塑性行为。
该模型考虑了混凝土的弹性、损伤和塑性三个阶段,并能够准确地模拟混凝土在不同受力状态下的力学行为。
混凝土的弹性本构行为可以通过胡克定律来描述,即应力与应变之间的线性关系。
而混凝土的塑性本构行为则需要引入一些额外的参数来描述,如损伤变量、塑性应变等。
二、混凝土弹塑性本构模型的特点1. 考虑非线性行为:混凝土在受力过程中会出现非线性行为,如应力-应变曲线的非线性、弹塑性转变等。
CDP模型能够准确地描述这些非线性行为。
2. 考虑损伤效应:混凝土在受力过程中会发生损伤,即出现裂缝或破坏。
CDP模型通过引入损伤变量来描述混凝土的损伤过程,并能够准确地模拟混凝土的裂缝扩展和破坏。
3. 考虑三轴应力状态:混凝土在实际工程中往往会受到多向应力的作用,如拉压、剪切等。
CDP模型考虑了三轴应力状态下混凝土的力学行为,能够准确地模拟混凝土在不同应力状态下的响应。
4. 考虑温度效应:混凝土在受力过程中的温度变化也会对其力学性能产生影响。
CDP模型可以考虑温度效应,并通过引入温度参数来描述混凝土的热力学行为。
三、混凝土弹塑性本构模型的应用混凝土弹塑性本构模型在工程实践中应用广泛,特别是在大型混凝土结构的设计和分析中起到了重要的作用。
例如,在水坝工程中,为了准确地评估混凝土坝体的稳定性和安全性,需要使用CDP模型来模拟混凝土在洪水冲击和地震作用下的力学行为。
在桥梁、隧道、建筑物等混凝土结构的设计中,CDP模型也可以用于预测混凝土的变形和破坏,从而指导结构的设计和施工。
混凝土本构关系曲线公式

混凝土本构关系曲线公式
混凝土本构关系曲线公式是描述混凝土材料的力学行为的数学表达式。
本构关系曲线公式用于描述混凝土在受力过程中的应力-应变关系,从而提供了设计工程结构和进行力学分析的基础。
在混凝土力学中,常用的本构关系曲线公式是指数函数模型(也称作Ramberg-Osgood模型),其数学表达式如下:
σ = Eε + σy[(ε/εy)^n]
其中,σ表示混凝土的应力,ε表示混凝土的应变,E是混凝土的弹性模量,σy是混凝土的屈服强度,εy是混凝土的屈服应变,n是指数函数模型中的形状参数。
通过该公式,可以将混凝土在不同应力和应变条件下的力学行为进行模拟和分析。
具体而言,当混凝土受到载荷时,其应力会随着应变的增加而线性增加,直到达到屈服应变为止,之后应力将开始非线性增长。
需要注意的是,混凝土的力学行为受到多种因素的影响,如材料的配比、龄期、温度等。
因此,在实际工程中,根据具体情况和需要,可以选择不同的本构关系曲线公式进行分析和设计。
混凝土本构关系曲线公式提供了描述混凝土力学行为的数学模型。
通过该公式,我们可以对混凝土在受力过程中的应力-应变关系进行分析,为工程结构设计和力学分析提供基础。
abaquscdp本构原理

abaquscdp本构原理
ABAQUS的CDP(Concrete Damaged Plasticity)模型是一种混凝土本
构关系模型,用于描述混凝土的非弹性行为。
该模型通过将各向同性下损伤弹性与拉伸和压缩塑性相结合的方式来描述混凝土的非弹性行为,适用于模拟混凝土在任意荷载作用下的受力情况。
CDP模型考虑了由于拉、压塑性
应变导致的弹性刚度的退化以及循环荷载作用下刚度的恢复,具有较好的收敛性。
CDP模型采用混凝土在单轴受力状态下的应力和非弹性应变,这里的非弹
性应变是根据混凝土的单轴应力-应变关系(混凝土本构关系)换算出来的。
混凝土本构关系有3种:GB《混凝土结构设计规范》欧洲规范、Kent-Park 模型。
CDP模型中,混凝土材料的弹性模量E c 可通过结构试验进行实测,也可以查表,也可以根据下式进行计算:E c = 10^5 × + ( / f cu , k)。
其中,fcu,k为混凝土的峰值抗压强度。
此外,CDP模型本构曲线末尾段的选取,对滞回曲线下降段的影响较大。
为了验证所编子程序的合理性与正确性,可以选用具体的有限元模型进行验证。
以上内容仅供参考,如需更多信息,建议查阅ABAQUS软件相关书籍或咨询软件专家。
混凝土本构关系总结

作业1:总结典型的混凝土本构模型类型,并就每种类型给出有代表性的几个模型按照力学理论基础的不同,已有的本构模型大致分为以下几种类型:以弹性理论为基础的线弹性和非线性弹性本构模型;以经典塑性理论为基础的弹全塑性和弹塑性硬化本构模型;用内时理论描述的混凝土本构模型等。
1、 混凝土单轴受力应力—应变关系1.1 混凝土单向受压应力—应变关系 1、 saenz 等人的表达式saenz 等人(1964年)所提出的应力—应变关系为0230000=1(2)(21)()()S E E E εσεεεαααεεε++---+图1 混凝土单轴受压应力--应变关系2、 Hognestad 的表达式Hognestad 建议的模型,其应力—应变曲线的上升段为二次抛物线,下降段为斜直线,如图2所示,表达式为2000=[2()]εεσσεε- 0εε≤ 000=[1-0.15()]cu εεσσεε-- 0cu εεε≤≤图2 Hognestand 建议的应力--应变关系3、 GB50010—2002建议公式我国《混凝土结构设计规范》所推荐的混凝土轴心受压应力—应变关系为01εε≤(上升段)3000[(32)(2)()]aa a εεσααασεε=+-+- 01εε>(下降段) 00200/(-+c εεσσεεαεε=1)式中,a α表示应力—应变曲线的上升段参数;c α为下降段参数。
4、 CEB —FIP 建议公式CEB —FIP 模式规范建议的单轴受压应力—应变关系为20000(/)(/)1(2)(/)k k εεεεσσεε-=+-式中,k 为系数,00(1.1)(/)C k E εσ=,C E 为混凝土纵向弹性模量。
2、混凝土非线性弹性本构模型1、 混凝土非线性弹性全量型本构模型当材料刚度矩阵[]D 用材料弹性模量E 和泊松比ν表达,则为全量E-ν型;如果材料的刚度矩阵[]D 用材料模量K 和剪变模量G 表达,则为全量K —G 型。
混凝土损伤本构模型

混凝土损伤本构模型引言混凝土是一种常见的建筑材料,其在结构工程中的应用广泛。
然而,由于外界环境、荷载作用以及材料本身的缺陷等因素,混凝土结构往往会发生各种损伤。
为了预测和分析混凝土结构的性能,研究人员发展了各种混凝土损伤本构模型。
混凝土损伤本构模型是一种描述混凝土损伤与载荷响应之间关系的数学模型。
通过建立损伤本构模型,可以有效地预测混凝土结构在不同荷载下的应力应变行为,并评估结构的安全性和耐久性。
混凝土损伤机理混凝土的损伤可以表现为裂缝的形成和扩展。
主要的损伤机理包括:拉伸损伤、压缩损伤、剪切损伤和弯曲损伤等。
这些损伤机理导致混凝土的强度和刚度下降,影响结构的整体性能。
混凝土的拉伸损伤是由于应力超过其拉伸强度导致的。
拉伸损伤可分为初始裂缝的形成和裂缝扩展两个阶段。
初始裂缝形成阶段主要受到混凝土的弯曲和压力影响,而裂缝扩展阶段则受到拉伸应力集中作用。
混凝土的压缩损伤是由于应力超过其压缩强度导致的。
压缩损伤通常以体积收缩和裂缝的形式出现。
混凝土的剪切损伤是由于应力超过其剪切强度导致的。
剪切损伤主要通过剪切裂缝的形成和扩展来表现。
混凝土的弯曲损伤是由于应力超过其弯曲强度导致的。
弯曲损伤通常以裂缝的形式出现。
混凝土损伤本构模型的分类根据混凝土损伤本构模型的解析方法,可将其分为经验模型和力学模型两大类。
经验模型是基于实验数据和经验法则建立的模型,是一种常用的损伤本构模型。
经验模型通常通过试验数据拟合得到,具有一定的简化和适用范围,可用于预测混凝土在一定加载条件下的损伤演化。
力学模型是基于物理力学原理建立的模型,具有更高的准确性和适用性。
力学模型通常采用连续介质力学和断裂力学理论,考虑不同损伤机制的相互作用,能够对混凝土结构在复杂荷载下的损伤行为做出较为准确的预测。
混凝土损伤本构模型的建立方法混凝土损伤本构模型的建立方法主要包括试验法、数值模拟和解析法。
试验法是通过对混凝土试件进行拉伸、压缩、剪切、弯曲等不同加载试验,获得试验数据,然后利用数据拟合方法建立本构模型。
混凝土的本构关系

以主应力和主应变表示
则为:
式中切线弹性模量 和 ,泊松比 随应力状态和数值的变 化按下述方法确定。
§7.1.4 混凝土的本构关系
2、混凝土非线弹性本构模型____Darwin-Pecknold 本构模型
材料在双轴受压
应变为:
• 等效单轴应力-应变关系
§7.1.4 混凝土的本构关系
2、混凝土非线弹性本构模型____Darwin-Pecknold 本构模型
2、混凝土非线弹性本构模型____Ottosen本构模型
定义一非线性指标 ,表示当前应力状态
至混凝土
破坏(包络面)的距离,也即塑性变形发展的程度。假定
保持不变,压应力 增大至 时混凝土破坏,则
混凝土的多轴应力应变关系采用Sargin的单轴受压方程,即
§7.1.4 混凝土的本构关系
2、混凝土非线弹性本构模型____Ottosen本构模型
式中参数以多轴应力状态的相应值代替:
代入得一元二次方程,解之得到割线模量:
§7.1.4 混凝土的本构关系
2、混凝土非线弹性本构模型____Ottosen本构模型
混凝土的泊松比很难从试验中精确测定。Ottosen本构模型取割 线泊松比 随 的变化如图,计算式为:
式中可取:
§7.1.4 混凝土的本构关系
2、混凝土非线弹性本构模型____Ottosen本构模型
单轴受压应力-应变
多轴应力-应变
Ottosen本构模型
泊松比
§7.1.4 混凝土的本构关系
2、混凝土非线弹性本构模型____Ottosen本构模型 非线性指标
• 根据非线性指标 的定义, 值计算要通过破坏包络
面先求 ,在一般情况下需要经过多次迭代方能求出;
混凝土本构模型

混凝土本构模型混凝土是一种常用的结构材料,具有很强的抗压强度和耐久性。
为了有效地分析和设计混凝土结构,人们提出了混凝土本构模型,用于描述混凝土材料的力学性能。
本文将介绍混凝土本构模型的基本概念、常用模型以及模型选择的几个关键因素。
1. 混凝土本构模型的基本概念混凝土的本构模型是一种数学模型,用于描述混凝土在力学加载下的应力-应变关系。
它基于实验数据和理论分析,通过一组公式或曲线来模拟混凝土的弹性和塑性行为。
常见的本构模型包括弹性模型、线性本构模型、非线性本构模型等。
2. 常用的2.1 弹性模型弹性模型是最简单的混凝土本构模型之一,它假设混凝土在加载过程中具有线性弹性行为。
根据胡克定律,混凝土的应力和应变之间存在着线性关系。
在小应变范围内,弹性模型能够较好地描述混凝土的力学性能,但它无法考虑材料的非线性行为。
2.2 线性本构模型线性本构模型相比于弹性模型更为复杂,它考虑了混凝土的非线性行为。
其中最为常用的是双曲线模型和抛物线模型。
双曲线模型通过将应力-应变曲线分为上升段和下降段,分别使用线性和非线性公式描述,能够较好地模拟混凝土在受压和受拉状态下的应力-应变关系。
抛物线模型则是通过二次方程来拟合混凝土的应力-应变曲线,在一定程度上考虑了混凝土的非线性特性。
2.3 非线性本构模型非线性本构模型较为复杂,但能够更准确地描述混凝土在大变形情况下的力学性能。
常见的非线性本构模型包括双参数本构模型、Drucker-Prager本构模型、Mohr-Coulomb本构模型等。
这些模型能够考虑混凝土在各向异性和多轴加载条件下的非线性行为,适用于复杂的结构分析和设计。
3. 模型选择的关键因素选择适合的混凝土本构模型是结构分析和设计的关键一步,需要考虑以下因素:3.1 加载条件不同的加载条件会对混凝土的力学性能产生不同的影响,例如受压、受拉、剪切等。
在选择本构模型时,需要根据具体的加载条件确定模型的参数和表达形式。
3.2 大应变效应部分混凝土结构在强震等极端加载条件下可能发生较大应变,此时需要考虑混凝土的非线性行为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、混凝土本构关系模型
1.混凝土单轴受压应力-应变关系 (1)Saenz 等人的表达式
Saenz 等人(1964年)所提出的应力-应变关系为:
])()()(
/[30
200εεεεεεεσd c b a E +++= (2)Hognestad 的表达式
Hognestad 建议模型,其上升段为二次抛物线,下降段为斜直线。
所提出的应力-应变关系为:
cu
cu εεεσσεεσσεεεεεεεε≤≤-=≤-=--000
02,)](
15.01[,])(2[0
(3)我国《混凝土结构设计规范》(GB50010-2010)中的混凝土受压应力-应变曲线,其表达式为:
1,)1(1
,)1(2>+-=≤+-=
x x x x
y x x n nx
y c n α
r
c x ,εε=
,r c f y ,σ=
,r c r c c r c c f E E n ,,,-=εε c α是混凝土单轴受压时的应力应变曲线在下降段的参数值,r c f ,是混凝土单轴抗压的
强度代表值,r c ,ε是与单轴抗压强度r c f ,相对应的混凝土峰值压应变。
2.混凝土单轴受拉应力-应变关系
清华大学过镇海等根据实验结果得出混凝土轴心受拉应力-应变曲线:
1
],)1(/[)/(1
,])(2.0)(2.1[7
.16≥+-⨯=≤-=t
t
t
t
t
t
t t t t εεεεεεεεεεεεασεεσσσ
3.混凝土线弹性应力-应变关系
张量表达式,对于未开裂混凝土,其线弹性应力应变关系可用不同材料常数表达,其中用材料弹性模量E 和泊松比v 表达的应力应变关系为:
ij
kk E ij E ij ij
kk E ij E
ij δσσεδεεσν
ν
νννν-=+=+-++1)21)(1(1
用材料体积模量K 和剪变模量G 表达的应力应变关系为:
ij
K ij G
ij ij kk ij ij kk
s K Ge δεδεσσ9212+=
+= 4.混凝土非线弹性全量型本构模型
5.混凝土非线弹性增量型本构模型
各向同性增量本构模型: (1)在式
2
220])()2(1[])(1[000
0εεεεεεεσ
+-+-==S
E E E d d E
中,假定泊松比ν为不随应力状态变化的常数,而用随应力状态变化的变切线模量t E 取代弹性常数E ,并采用应力和和应变增量,则可得含一个可变模量Et 的各向同性模型,增量应力应变模型关系为:
ij
kk E ij E ij d d d t t
δεεσνννν)21)(1(1-+++= (2)在式
ν
εεσσνK K Ge e E
s kk kk m ij ij ij ====+=
31
21 中,如用随应力状态变化的变切线体积模量Kt 和切线剪变模量Gt 取代K 和G,并采用偏应力和偏应变增量,则可得含两个可变模量Kt 和Gt 的各向同性模型,采用偏应力和偏应变增量,则可得以下应力应变关系:
kk
t m ij t ij d K d de G ds εσ==2 双轴正交各向异性增量本构模型:
混凝土在开裂,尤其是接近破坏时,不再表现出各向同性性质,而呈现出明显的各向异性性质。
因此,用各向异性描述混凝土开裂后的性能更为合理。
混凝土双轴受压时,由于泊松效应及混凝土内部裂缝受到约束,其强度和刚度均可提高。
该模式假定,混凝土为正交各向异性材料,且各级荷载增量內应力-应变呈线弹性关系,其关系式为:
⎪⎭⎪⎬⎫
⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧12212122112121321)1(000011γεεννννννσσσd d d G E E E E d d d
6.混凝土弹塑性本构模型
弹塑性增量理论需要对屈服准则、流动法则和硬化法则作出假定。
设屈服条件用下式表示:
0),(=K f ij σ 材料进入塑形阶段后的应变增量由弹性应变增量和塑形应变增量组成,即:
{}{}{}p
e d d d εεε+= 采用与屈服条件相关联的流动法则确定,即
{}{}
σλ
ε∂∂=f d p
增量理论的弹塑性本构矩阵一般表达式为
{}[]{}{}{}{}{}εσσσσσd f D f A D f f D D d T T ⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡∂∂∂∂+∂∂∂∂-=]][[][][]][][[ 混凝土弹塑性全量理论基本假设
(1)假设体积的改变是弹性的,且与平均应力成正比,而塑形变形时体积不可压缩,即
0,213=-=
=
p
m m m
e m E
K
εσνσε
(2)假设应变增量ij e 和应力偏量ij s 相似且同轴。
即
ij ij s e η=
(3)单一曲线假设:对于同一种材料,无论应力状态如何,其等效应力与等效应变之间有确定的关系,即
i i i E εεσ)(= 弹塑性应力应变关系采用下式: 弹性阶段 G
s e ij ij 2=
塑性阶段 '
2G
s e ij ij =
二、钢筋本构关系模型
1.单向加载下钢筋的应力-应变关系模型
硬钢钢筋的应力应变曲线可以分为三段:弹性段、软化段、后续段,根据试验资料得到的应力应变关系式为:εεεσσεεεεεσεσσ)()
(a b b a b a a
b a
a b b ----+=。
2.反复加载下钢筋的应力-应变关系模型
(1)加藤模型
该模型对软化段曲线取局部坐标εσ-,原点为加载或反向加载的起点,软化段试验曲线的方程为:
s s x y a x ax y εεεσ/,/),1/(==-+= 初始斜率与割线斜率之比为:
∑∆=-==
=
-=i
i
res res E B E E a a x dx dy
s E B
εε),10lg(,|61
(2)Kent-Park 模型
该模型采用Ramberg-Osgood 应力应变曲线的一般表达式r ch
ch ch )(σσσσεε+=
r=1时,为反映弹性材料的直线;r=∞时,为理想弹塑性材料的二折线;∞<<r 1时为逐渐过渡的曲线。
经变换后可得:])(1[1-+=r ch E σσσε,取决于此前应力循环产生的塑性变形,经验计算公式
为:
]241.01071
.0)10001ln(774.0[
1000+--+=ip
e
f ip y ch εεσ 三、钢筋与混凝土的粘结-滑移本构模型
(1)锚固粘结强度计算模型
这种计算模型用于确定钢筋的锚固长度、搭接长度和保护层厚度,所用的试验资料为拔出试验或梁式试验结果。
给出了适合于我国月牙纹钢筋的微滑移粘结强度、劈裂粘结强度、极限粘结强度及残余粘结强度计算公式,
t
r t sv a u t a cr a t s f f d c l d f d c l d d l f 98.0)20/7.06.1)(/9.082.0()/7.06.1)(/9.082.0()
5(99.0=+++=++===τρτττ
(2)反复荷载下粘结-滑移本构模型
清华大学腾智明等提出的计算模型上升段为曲线,下降段为双直线,其数学模型为:
re
re s s mm N s s s s s k s s s s >=≤<--=≤=,/5.1),(,)(2003max 0
4.00
max τττττ。