疲劳试验简介

合集下载

重症肌无力疲劳试验标准

重症肌无力疲劳试验标准

重症肌无力疲劳试验标准
重症肌无力(Myasthenia gravis,MG)疲劳试验是一种帮助诊断和评估MG疾病严重程度的常用方法。

下面是一些常见的重症肌无力疲劳试验标准:
1. 末梢肌疲劳试验(Peripheral Muscle Fatigability Test):通过检查患者的末梢肌肌力变化来评估肌无力。

这可以通过要求患者保持重复肌肉运动(如握力测试)或持续进行特定动作(如闭眼眼球运动)来完成。

在MG患者中,肌肉疲劳的程度更快、更显著。

2. 简单疲劳试验(Simple Fatigability Test):这个试验要求患者保持特定的肌肉活动一段时间,例如伸直手臂或举起双腿。

如果在持续活动后肌肉力量明显下降,则可能是MG症状。

3. 跳跃疲劳试验(Tensilon Test):这是一项常用的诊断肌无力的试验。

在试验中,将琼脂球碱(Tensilon)注射患者体内后观察症状变化。

如果肌无力症状显著改善,则可能是MG。

4. 静脉疲劳试验(Intravenous Fatigability Test):在这个试验中,患者经历一系列静脉注射及活动,以检测肌肉疲劳及其恢复情况。

需要注意的是,以上试验仅为常见的评估MG疲劳程度的方法之一,具体的试验方法和标准可能会根据个体情况和医生的判断而略有不同。

因此,在进行任何疲劳试验之前,请务必咨询医生以获得准确的诊断。

疲劳强度试验方法

疲劳强度试验方法

疲劳强度试验方法
疲劳强度试验是一种评估材料或结构在循环加载下的耐久性能的方法。

以下是常见的疲劳强度试验方法:
1. 疲劳弯曲试验:将试样放置在弯曲载荷下,通过循环加载和卸载来评估其弯曲疲劳强度。

2. 疲劳拉伸试验:将试样置于拉伸载荷下,进行循环加载和卸载,评估其拉伸疲劳强度。

3. 疲劳压缩试验:将试样置于压缩载荷下,进行循环加载和卸载,评估其压缩疲劳强度。

4. 疲劳扭转试验:将试样置于扭转载荷下,进行循环加载和卸载,评估其扭转疲劳强度。

5. 疲劳冲击试验:在试样上施加冲击载荷,通过循环冲击来评估其疲劳强度。

6. 疲劳振动试验:将试样置于振动载荷下,进行循环振动来评估其疲劳强度。

在进行疲劳强度试验时,通常会记录载荷循环次数和试样的破坏情况,通过统计和分析数据来评估材料或结构的疲劳寿命和强度。

结构疲劳试验

结构疲劳试验

• 1852-1869年德国人沃勒(A.Wöhler)为研究机车车 辆开始以15次/分的频1 率s对b 车辆部件进行拉钢伸疲劳 试疲劳验试,以验后机又进用行试旋样转以弯7s曲2s 次疲/分劳的试频验率,在他旋的转功弯绩曲是
指绘出成一应些力金与属循存环在周疲次劳极关限系,的并- 曲将s线疲r-持劳,久试极又验限 称结果为
起落架因飞机起落而 反复受载
2.疲劳试验的内容
研究性疲劳试验一般研究以下内容:
1. 应力随荷载重复次数变化情况; 2. 开裂荷载及开裂情况;
鉴定性疲劳试验
3. 裂缝的宽度、长度、间距及其随荷载重复次数的变化;
4. 最大绕度及其变化;
5. 疲劳极限;
6. 疲劳破坏特征。
疲劳破坏特征
破坏时应力低于sb (抗拉强度),甚至 ss(屈服强度) 即使是塑性材料,也呈现脆性断裂 断口通常呈现光滑与粗粒状两个区域
• 2)受压区混凝土破坏。这是一种脆性破坏,此时受拉主 筋处的最大裂缝宽度未达到1.5mm,且挠度小于跨度的 1/50。配筋过多或混凝土强度太低的梁,出现此种标志。
• 3)受拉主筋拉断。这是另一种更为危险的脆性破坏,它 发生于配筋过少或预应力过高的梁
6.疲劳试验的观测
1.疲劳强度
科研性试验是以疲劳极限强度和疲劳极限荷载作为最大的 疲劳承载能力。构件达到疲劳破坏时的荷载上限值和应力 最大值分别为疲劳极限荷载和疲劳极限强度。
为了得到给定疲劳应力比值(值)条件下的疲劳极限强度 和疲劳极限荷载,一般采取的办法是:
根据构件实际承载能力,取定最大应力值s max,作疲劳试验, 求得破坏时荷载作用次数n,从 s与mnax双对数直线关系中 求得控制疲劳次数下的疲劳极限强度,作为标准疲劳极限 强度。它的统计值作为设计验算时疲劳强度取值的基本依 据。

疲劳试验

疲劳试验
第七节 结构疲劳试验
• 疲劳:结构物或构件在重复荷载作用下达 到破坏时的应力比其静力强度要低的多。 结构疲劳试验的目的就是要了解在重复荷 载作用下结构的性能和其变化规律。 • 为什么对结构构件 —— 特别是钢筋混凝土 构件的疲劳性能的研究比较重视?
一、疲劳试验项目
结构疲劳试验按试验目的的不同可分为研究性疲 劳试验和检验性疲劳试验两类。 研究性疲劳试验一般包括以下内容:开裂荷载和 开裂情况;裂缝的宽度、长度、间距及其随荷载 重复次数的变化;最大挠度及其变化;疲劳极限; 疲劳破坏特征。 检验性疲劳试验一般包括以下内容:抗裂性能; 开裂荷载、裂缝宽度及开展情况;最大挠度的变 化情况。
(2)疲劳试验的应变测量 动态或静动态应变仪测量。 裂缝测量:裂缝的开始出现和微裂缝的宽度很重要。 目前利用光学仪器或应变传感器电测。
(3)疲劳试验的挠度测量
(4)疲劳试验的安装 疲劳试验需要连续进行时间很长,振动荷载很大,试件安装及试验过程中需 要充分注意安全措施。 (1)试件安装时,严格对中,保证平稳,尽可能不用分配梁,如需多点加载 可用多个脉冲千斤顶。要在砂浆找平层的强度足够时才能做试验。 (2)试验过程中,要经常巡视,发现隐患,立刻排除。 (3)注意安全防护,设置支架等保护措施。
二、疲劳试验荷载
(一)疲劳试验荷载取值: 疲劳试验的上限荷载Qmax是根据构件在最大标准 荷载最不利组合下产生的弯矩计算而得,荷载下限 根据疲劳试验设备的要求而定。
(二)疲劳试验荷载速度 荷载频率不应使构件和荷载架发生共振,同时 应使构件在试验时与实际工作时的受力状态一致, 为此荷载频率与构件固有频率应满足一定条件:
【思 考 题】
1.列举几个建筑工程中需要考虑振动问题的方面? 2.结构动载试验主要包括哪三类情况? 3.测振系统由哪几部分组成?画出仪器组成框图, 并说明各部分的作用?什么是压电效应? 4.动载试验中产生动荷载的方法有哪几种? 5.何为结构的动力反应与动力特性?它们有何区别? 6.结构动力特性试验测定方法有哪三种?简述共振 法的测定原理? 7.光线示波器的工作原理?

疲劳试验

疲劳试验

第一步 采用升降法测定条件疲劳极限, 第二步 用成组法测定σ一N曲线有限寿命段上各 点的数据, 第三步 绘制σ一N曲线。 二、不同应力状态下的疲劳极限 根据大量的实验结果,弯曲与拉压、扭转疲劳 极限之间的关系: 钢:σ-1p=0.85σ-1,铸铁σ-1p=0.65σ-1 铜及轻合金:τ-1=0.55σ-1,铸铁τ-1=0.8σ-1 σ-1>σ-1p>τ-1
2、特点
(1)断裂应力<σb,甚至<σs;
(2)出现脆性断裂;
(3)对材料的缺陷十分敏感;
(4)疲劳破坏能清楚显示裂纹的萌生和扩展, 断裂。
三、疲劳曲线和疲劳极限
(一)疲劳曲线
1、对称循环疲劳曲线 (σ~N曲线)
P96-图5-3
(1)有水平段的疲劳 曲线(钢) (2)无水平段的疲劳 曲线(有色金属,不锈钢等)
若为韧性材料max023公式法上两图中的曲线可用数学公式表示可以很方便利用02和r求得第二节疲劳抗力指标及其测定二不同应力状态下的疲劳极限根据大量的实验结果弯曲与拉压扭转疲劳极限之间的关系
第四章 疲劳试验
引言
材料构件在变动应力和应变的长期作用下, 由于累积损伤而引起的断裂的现象——疲劳。 疲劳属低应力循环延时断裂。 不产生明显的塑性变形,呈现突然的脆断。 ∴疲劳断裂是一种非常危险的断裂。 ∴工程中研究疲劳的规律、机理、力学性能指 标、影响因素等,就具有重要的意义。
(2)σmax~σm 图 y轴上的边界点为σ-1和 -σ-1,x轴则同前图。 σmax=σb ,利用不同的 应力比r来作图。若为韧性 材料σmax=σ0.2 (3)公式法 上两图中的曲线可用数学 公式表示 可以很方便利用 σb ,σ-1, σ0.2和r,求得σr。
第二节 疲劳抗力指标及其测定 一、疲劳极限的测定

拉伸疲劳试验

拉伸疲劳试验

拉伸疲劳试验的原理、方法和应用一、什么是拉伸疲劳试验拉伸疲劳试验是一种材料力学试验,用于测定材料或结构件在交变拉伸载荷作用下的疲劳性能。

疲劳是指材料或结构件在应力远低于材料的屈服强度或断裂强度的若干个循环下发生的突然断裂现象。

疲劳是导致许多机械零部件失效的主要原因之一,因此,了解和评估材料的疲劳性能对于保证机械设备的安全和可靠运行具有重要意义。

拉伸疲劳试验通常分为高周疲劳试验和低周疲劳试验两种。

高周疲劳试验是指在较高的循环频率(一般为10~1000 Hz)下进行的拉伸疲劳试验,主要用于测定材料的高周疲劳强度和有限寿命疲劳强度。

低周疲劳试验是指在较低的循环频率(一般为0.01~10 Hz)下进行的拉伸疲劳试验,主要用于测定材料的低周疲劳强度和塑性应变能力。

二、拉伸疲劳试验的原理拉伸疲劳试验的基本原理是在规定的循环应力或应变条件下,对试样进行反复加载,直到试样发生断裂或达到预定的循环次数为止。

在试验过程中,记录并分析试样的应力-应变曲线、应力-循环次数曲线、应变-循环次数曲线等数据,以得到材料的疲劳特性值。

拉伸疲劳试验中常用的参数有以下几个:应力比(R):指最小应力与最大应力之比,即R=σmin/σmax。

应力比反映了循环载荷的对称性,当R=0时,表示循环载荷为完全正向(拉-拉);当R=-1时,表示循环载荷为完全反向(拉-压);当R介于0和-1之间时,表示循环载荷为交变(拉-压)。

应力幅(Δσ):指最大应力与最小应力之差的一半,即Δσ=(σmax-σmin)/2。

应力幅反映了循环载荷的大小,一般认为,应力幅越大,材料越容易发生疲劳。

平均应力(σm):指最大应力与最小应力之和的一半,即σm=(σmax+σmin)/2。

平均应力反映了循环载荷的偏心程度,一般认为,平均应力越大,材料越容易发生疲劳。

应变比(εr):指最小应变与最大应变之比,即εr=εmin/εmax。

应变比与应力比类似,也反映了循环载荷的对称性。

金属材料疲劳试验变幅疲劳试验

金属材料疲劳试验变幅疲劳试验

金属材料疲劳试验变幅疲劳试验
金属材料的疲劳试验是通过施加循环载荷使材料发生疲劳损伤的一种试验方法,用于评估材料在循环加载下的持久性能和寿命。

变幅疲劳试验是金属材料疲劳试验的一种方式,其特点是在试验过程中施加的载荷变幅是不断变化的。

通常,变幅疲劳试验是在一系列载荷幅值的范围内进行的,以得到材料在不同载荷幅值下的疲劳性能。

变幅疲劳试验可以帮助研究者了解金属材料在实际使用中可能会遇到的不同载荷幅值下的疲劳寿命。

通过对材料在不同载荷幅值下的疲劳性能进行评估,可以为材料设计、结构优化和使用寿命评估提供有价值的参考。

在变幅疲劳试验中,需要确定试验的载荷幅值范围、加载频率和试验样本尺寸等参数,以及确定试验的结束标准,如达到一定的应力循环次数或材料断裂等。

通过变幅疲劳试验,可以获取金属材料在不同载荷幅值下的疲劳曲线和疲劳寿命数据,从而分析材料的疲劳性能和寿命特性。

这对于材料的设计和使用具有重要的指导意义。

零部件疲劳试验

零部件疲劳试验

断裂力学试验
基于断裂力学原理,通过 控制裂纹扩展速率或测量 临界应力强度因子来评估 零部件的疲劳性能。
02
零部件疲劳试验方法
应力疲劳试验
总结词
通过在试样上施加交变应力来模拟实际工作状态,以检测试样在交变应力作用下 的疲劳性能。
详细描述
应力疲劳试验是在试样上施加交变应力,使试样在一定周期内反复承受拉伸和压 缩,以模拟实际工作状态。该试验方法适用于各种材料和零部件,如金属、塑料 、橡胶等,是评估材料和零部件疲劳性能的重要手段。
使用和维护建议
根据试验结果和失效分析,提出合 理的使用和维护建议,降低使用过 程中对零部件的损伤和失效风险。
06
零部件疲劳试验的应用与 发展趋势
应用领域
汽车工业
零部件疲劳试验在汽车工业中应用广泛,主要用 于测试发动机、传动系统、悬挂系统等关键部件 的疲劳性能,以确保车辆的安全性和可靠性。
轨道交通
03
零部件疲劳试验设备与材 料
试验设备
疲劳试验机
用于施加循环载荷,模 拟零部件在实际使用中
的受力情况。
数据采集系统
用于实时监测和记录试 验过程中的应变、位移
等数据。
环境箱
用于模拟不同温度、湿度等 环境条件,以评估零部件在
不同环境下的疲劳性能。
振动台
用于模拟实际使用中的 振动情况,加速疲劳裂
纹的萌生和扩展。
应力分析
分析试验过程中零部件所承受的应力分布和变化情况,评估应力 对疲劳寿命的影响。
损伤累积
评估零部件在循环载荷下的损伤累积情况,分析损伤累积与疲劳 失效的关系。
失效分析
失效模式
分析试验中观察到的失效模式,如裂纹、断裂、磨损等,了解失效 的具体表现形式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

疲劳试验(fatigue test)利用金属试样或模拟机件在各种环境下,经受交变载荷循环作用而测定其疲劳性能判据,并研究其断裂过程的试验,即为金属疲劳试验。

1829年德国人阿尔贝特(J.Albert)为解决矿山卷扬机服役过程中钢索经常发生突然断裂,首先以10次/分的频率进行疲劳试验。

1852~1869年德国人沃勒(A.W hler)为研究机车车辆,开始以15次/分的频率对车辆部件进行拉伸疲劳试验,以后又用试样以72次/分的频率在旋转弯曲疲劳试验机进行旋转弯曲疲劳试验,他的功绩是指出一些金属存在疲劳极限,并将疲劳试验结果绘成应力与循环周次关系的S-N曲线(图1),又称为W hler曲线。

1849年英国人古德曼 (J.Goodman)首先考虑了平均应力不为零时非对称载荷下的疲劳问题,并提出耐久图,为金属制件的寿命估算和安全可靠服役奠定理论基础。

1946年德国人魏布尔 (W.Weibull)对
大量疲劳试验数据进行统计分析研究,提出对数疲劳寿命一般符合正态分布(高斯分布),阐明疲劳测试技术中应采用数理统计。

60年代初,从断裂力学观点分析金属疲劳问题,进一步扩大了疲劳研究内容。

近年来,由于电液伺服闭环控制疲劳试验机的出现以及近代无损检验技术、现代化仪器仪表等新技术的采用,促进了金属疲劳测试技术的发展。

今后应着重各种不同条件(特别是接近服役条件)下金属及其制件的疲劳测试技术的研究。

试验种类和判据
金属疲劳试验种类很多,通常可分为高周疲劳、低周疲劳、热疲劳、冲击疲劳、腐蚀疲劳、接触疲劳、声致疲劳、真空疲劳、高温疲劳、常温疲劳、低温疲劳、旋转弯曲疲劳、平面弯曲疲劳、轴向加载疲劳、扭转疲劳、复合应力疲劳等。

应根据金属制件的服役(工作)条件来选择适宜的疲劳试验方法,测试条件要尽量接近服役条件。

进行金属疲劳试验的目的在于测定金属的疲劳强度(抗力),由于试验条件不同,表征金属疲劳强度的判据(指标)也不一样。

高周疲劳:高周疲劳时,金属疲劳强度判据是疲劳极限 (或条件疲劳极限)即金属经受“无限”多次(或规定周次)应力循环而不断裂的最大应力,以σr表示,其中γ为应力比,即循环
中最小与最大应力之比。

在对称循环应力下γ=-1,疲劳极限表示为σ。

工程金属材料的疲
-1
成正比,比值约为0.5,对疲劳试验时选取第一个循环应力具有参考价值。

劳极限与抗拉强度σ
b
金属疲劳试验时,应力随时间一般呈正弦波形变化(图2),但有时也采用三角形、矩形等应力波形。

金属疲劳试验时最广泛采用的是旋转弯曲疲劳试验和轴向加载疲劳试验。

循环应力类型见图2。

金属在疲劳极限下实际所通过的最大循环次数称为试验基数。

钢铁及钛合金等,基数一般为107;对于有色金属、特殊钢及在高温、腐蚀等试验条件下,基数一般为108。

一些金属存在疲劳极限,对应地在S-N曲线上出现水平部分。

一些金属不存在疲劳极限,其S-N曲线无水平部分;随循环周次增加,金属所能承受的应力不断减小,因此将对应于规定周次的应力称为条件疲劳极限。

金属疲劳极限一般根据10个以上相同试样的疲劳试验结果所绘制的S-N曲线求得,或用升降法求得。

金属疲劳强度是一种对金属外在缺陷、内在缺陷、显微组织和环境条件非常敏感的性能,通过疲劳试验所测定的试验数据一般都很分散,即S-N曲线通常都是一个带,由此求出的疲劳极限乃是一组试样的统计平均值。

不对称循环应力疲劳:在不对称循环应力下,一般采用在规定耐久期下表示极限循环应力σ与平均应力σm的耐久图(图3),表示疲劳试验结果。

低周疲劳:对于高应力大应变下的低周疲劳(周次一般为102~105),通常是进行恒应变控制低周疲劳试验。

应首先将试验结果绘成低周疲劳寿命曲线(图4),然后从相关直线的截距和斜率求得下列表征金属低周疲劳性能的判据:疲劳强度系数σ媕、疲劳塑性系数ε媕、疲
劳强度指数b、疲劳塑性指数c。

循环应变硬化指数n’、循环强度系数k’等判据可从循环应力-应变曲线求得。

影响疲劳试验的因素:金属疲劳试验结果受很多因素影响,如试验条件(试样的尺寸、形状和表面状态,试验机类型,载荷特征,频率、温度及介质等)、冶金因素(晶粒度、显微组织、冶金缺陷等)、操作技术(试样安装情况、加载同心度等)。

为了保证金属疲劳试验结果的可靠性和可比性,必须设法避免上述各种因素的影响,严格控制疲劳测试相关条件的一致性。

此外,残余应力也是影响疲劳强度的一个重要因素,一般是残余压应力有利,残余拉应力有害。

为了减小残余应力对疲劳试验结果的影响,样坯应经适当热处理外,疲劳试样的机械切削加工应采用多段、分级、逐步减小加工量的方法,精加工时以横磨削、纵抛光为宜。

疲劳断口:金属疲劳裂纹通常在表面层应力集中处(滑移带、夹杂、析出微粒、划痕、缺口、冶金缺陷等)萌生、而后扩展至断裂。

金属疲劳断裂表面的外观形貌称之为疲劳断口。

一般分为三区:即疲劳源(萌生疲劳裂纹的核心策源地);疲劳裂纹扩展区(扩展过程中留下呈同心弧线的贝壳状形貌,光亮平滑,颗粒细有时呈瓷状);终断区(剩余截面不足以支承峰值应力因过载荷而静断,呈暗灰色纤维状或晶粒状)。

在电子显微镜或光学显微镜高倍放大下,在金属疲劳扩展区可显示出垂直裂纹扩展方向而大致平行的疲劳条痕,每根条痕标志每一循环终了疲劳裂纹的位置,因此条痕间距可作为局部疲劳裂纹扩展率的度量。

欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求。

相关文档
最新文档