2018-2019学年江苏省盐城市阜宁县八年级(上)期中数学试卷
盐城市阜宁县2018-2019学年八年级上期中数学试卷含答案解析

2018-2019学年江苏省盐城市阜宁县八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的.)1.下列实数是无理数的是( )A.﹣1 B.0 C.πD.2.全等图形是指两个图形( )A.能够重合 B.形状相同 C.大小相同 D.相等3.已知等腰三角形的两边长分别为6cm、3cm,则该等腰三角形的周长是( )A.9cm B.12cm C.12cm或15cm D.15cm4.下列图形中不是轴对称图形的是( )A.有两个内角相等的三角形B.有一个内角是45度的直角三角形C.有一个内角是30度的直角三角形D.有两个角分别是30度和120度的三角形5.下列几组数中不能作为直角三角形三边长度的是( )A.a=7,b=24,c=25 B.a=1.5,b=2,c=2.5C. D.a=15,b=8,c=176.如图,DE是△ABC中AC边的垂直平分线,若BC=8cm,AB=10cm,则△EBC的周长为( )A.16cm B.28cm C.26cm D.18cm7.如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是( )A.3 B.4 C.5 D.68.如图,数轴上有A、B、C、D四点,其中与实数最接近的数所对应的点是( )A.A B.B C.C D.D二、填空题(本大题共10小题,每小题3分,共30分.把答案填在答题卡中对应的横线上).9.81的算术平方根是__________.10.角的对称轴是__________.11.若一直角三角形两直角边长分别为6和8,则斜边长为__________.12.已知地球的半径约为6.4×103km,这个近似数精确度为__________km.13.已知直角三角形三边的平方和是32cm2,则其斜边上的中线长为__________.14.等腰三角形一腰上的高与另一腰所在直线的夹角为40°,该等腰三角形的顶角等于__________.15.在△ABC中,AB=5,BC=12,AC=13,那么AC边上的高=__________.16.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=3,则线段DF的长度为__________.17.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE 折叠,使点B落在AC边上的点B′处,则BE的长为__________.18.如图,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB 为等腰三角形,这样的点P共有__________个.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:(2)求x的值:(x﹣1)2=9.20.已知:如图,∠ACB=∠ADB=90°,AC=AD,E是AB上任意一点.(1)BC与BD相等吗?试说明理由.(2)CE=DE吗?为什么?21.数学实验室:实验材料:硬纸板、剪刀、三角板实验方法:剪裁、拼图、探索实验目的:验证勾股定理,拼图填空.操作:剪裁出若干个全等的直角三角形,三边长分别记为a、b、c,如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②、图③的形状,观察图②、图③可发现,图②中两个小正方形的面积之和__________图③中小正方形的面积,(填“大于”“小于”“等于”)用关系式可表示为__________(2)拼图二:用4张直角三角形纸片拼成如图④的形状,观察图形可以发现,图中共有3个正方形,它们的面积按大小顺序分别记为S大,S中,S小,其关系是__________,用a、b、c可表示为__________.(3)拼图三:用8张直角三角形纸片拼成如图⑤的形状,图中3个正方形的面积按大小顺序分别记为S大,S中,S小,其关系是__________,用a、b、c可表示为__________.22.如图,A、C两乡镇到水渠边l的距离分别为AB=2km,CD=4km,且BD=8km.(1)在水渠边l上要建一个水电站P,使得PA+PC最小,请在图中画出P的位置(保留作图痕迹),不必说明理由.(2)求出PA+PC最小值.23.已知:如图AC=BD,AB=D C.证明:(1)∠A与∠D;(2)OB=OC.24.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻以相同的速度飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?25.中国对南沙群岛及其附近海域拥有无可争辩的主权.2019年10月27日,美国拉森号军舰未经中国政府允许,非法进入中国南沙群岛有关岛礁邻近海域.中国海军盐城舰加大南沙海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,渚碧礁位于O点,盐城舰在点B处发现美国拉森号军舰,自A点出发沿着AO方向匀速驶向渚碧礁所在地O 点,盐城舰立即从B处出发以相同的速度沿某直线去拦截拉森号军舰,结果在点C处截住了拉森号军舰.(1)请用直尺和圆规作出C处的位置;(2)求盐城舰行驶的航程BC的长.26.(1)阅读理解:如图1,等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5,求∠APB 的大小.思路点拨:考虑到PA,PB,PC不在一个三角形中,采用转化与化归的数学思想,可以将△ABP绕顶点A逆时针旋转60°到△ACP′处,此时△ACP′≌△ABP,这样,就可以利用全等三角形知识,结合已知条件,将三条线段的长度转化到一个三角形中,从而求出∠APB 的度数.请你写出完整的解题过程.(2)变式拓展:请你利用第(1)题的解答思想方法,解答下面问题:已知如图2,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,BE=5,CF=4,求EF的大小.2018-2019学年江苏省盐城市阜宁县八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的.)1.下列实数是无理数的是( )A.﹣1 B.0 C.πD.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣1是整数,是有理数,选项错误;B、0是整数,是有理数,选项错误;C、π是无理数,选项错误;D、是分数,是有理数,选项错误.故选C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.全等图形是指两个图形( )A.能够重合 B.形状相同 C.大小相同 D.相等【考点】全等图形.【分析】根据能够完全重合的两个图形叫做全等形可得答案.【解答】解:全等图形是指两个图形能够重合,故选:A.【点评】此题主要考查了全等图形的概念,关键是掌握全等形的概念.3.已知等腰三角形的两边长分别为6cm、3cm,则该等腰三角形的周长是( )A.9cm B.12cm C.12cm或15cm D.15cm【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为3cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6﹣3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故选D.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.下列图形中不是轴对称图形的是( )A.有两个内角相等的三角形B.有一个内角是45度的直角三角形C.有一个内角是30度的直角三角形D.有两个角分别是30度和120度的三角形【考点】轴对称图形.【分析】找到不是等腰三角形的选项即可.【解答】解:A、是等腰三角形,所以是轴对称图形,不符合题意;B、是等腰三角形,所以是轴对称图形,不符合题意;C、不是等腰三角形,所以不是轴对称图形,符合题意;D、是等腰三角形,所以是轴对称图形,不符合题意;故选C.【点评】考查有关轴对称图形的知识;用到的知识点为:三角形里,只有等腰三角形是轴对称图形.5.下列几组数中不能作为直角三角形三边长度的是( )A.a=7,b=24,c=25 B.a=1.5,b=2,c=2.5C. D.a=15,b=8,c=17【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对各个选项进行分析,从而得到答案.【解答】解:A、满足勾股定理:72+242=252,故A选项不符合题意;B、满足勾股定理:1.52+22=2.52,故B选项不符合题意;C、不满足勾股定理,不是勾股数,故C选项符合题意;D、满足勾股定理:152+82=172,故D选项不符合题意.故选:C.【点评】本题考查了用勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.6.如图,DE是△ABC中AC边的垂直平分线,若BC=8cm,AB=10cm,则△EBC的周长为( )A.16cm B.28cm C.26cm D.18cm【考点】线段垂直平分线的性质.【分析】先根据线段垂直平分线的性质得出AE=CE,故CE+BE=AB,再由△EBC的周长=BC+CE+BE=BC+AB即可得出结论.【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴CE+BE=AB=10cm.∵BC=8cm,∴△EBC的周长=BC+CE+BE=BC+AB=8+10=18(cm).故选D.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.7.如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是( )A.3 B.4 C.5 D.6【考点】勾股定理的证明.【分析】先根据勾股定理求出AD的长度,再根据角平分线上的点到角的两边的距离相等的性质解答.【解答】解:过D点作DE⊥BC于E.∵∠A=90°,AB=4,BD=5,∴AD===3,∵BD平分∠ABC,∠A=90°,∴点D到BC的距离=AD=3.故选:A.【点评】本题利用勾股定理和角平分线的性质.8.如图,数轴上有A、B、C、D四点,其中与实数最接近的数所对应的点是( )A.A B.B C.C D.D【考点】实数与数轴.【分析】先求出﹣﹣5的取值范围,进而可得出结论.【解答】解:∵9<10<16,∴3<<4,∴﹣2<﹣5<﹣1,∴点B与实数最接近.故选B.【点评】本题考查的是实数与数轴,熟知实数与数轴上的点是一一对应关系是解答此题的关键.二、填空题(本大题共10小题,每小题3分,共30分.把答案填在答题卡中对应的横线上).9.81的算术平方根是9.【考点】算术平方根.【分析】直接利用算术平方根的定义得出答案.【解答】解:81的算术平方根是:=9.故答案为:9.【点评】此题主要考查了算术平方根的定义,正确把握算术平方根的定义是解题关键.10.角的对称轴是角平分线所在的直线.【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:沿角平分线所在的直线折叠后直线两旁的部分能够完全重合,所以角的对称轴是角平分线所在的直线.【点评】注意:对称轴必须说成直线.11.若一直角三角形两直角边长分别为6和8,则斜边长为10.【考点】勾股定理.【专题】计算题.【分析】已知两直角边求斜边可以根据勾股定理求解.【解答】解:在直角三角形中,斜边的平方等于两条直角边平方和,故斜边长==10,故答案为10.【点评】本题考查了根据勾股定理计算直角三角形的斜边,正确的运用勾股定理是解题的关键.12.已知地球的半径约为6.4×103km,这个近似数精确度为100km.【考点】科学记数法与有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数6.4×103Km精确到百位.故答案为:100.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.已知直角三角形三边的平方和是32cm2,则其斜边上的中线长为2cm.【考点】勾股定理;直角三角形斜边上的中线.【分析】由勾股定理和已知条件得出得出AB2=16cm2,得出AB=4cm,由直角三角形斜边上的中线性质得出CD=AB,即可得出结果.【解答】解:如图所示:∵∠ACB=90°,∴AC2+BC2=AB2,∵直角三角形三边的平方和是32cm2,∴AB2=16cm2,∴AB=4cm,∴斜边AB上的中线长=AB=2cm,故答案为:2cm【点评】本题主要考查了勾股定理、直角三角形斜边上的中线性质;熟练掌握勾股定理,由勾股定理求出斜边长是解决问题的关键.14.等腰三角形一腰上的高与另一腰所在直线的夹角为40°,该等腰三角形的顶角等于50°或130°.【考点】等腰三角形的性质.【分析】首先根据题意画出图形,一种情况等腰三角形为锐角三角形,即可推出顶角的度数为45°.另一种情况等腰三角形为钝角三角形,由题意,即可推出顶角的度数.【解答】解:①如图,等腰三角形为锐角三角形,∵BD⊥AC,∠ABD=40°,∴∠A=50°,即顶角的度数为50°.②如图,等腰三角形为钝角三角形,∵BD⊥AC,∠DBA=40°,∴∠BAD=50°,∴∠BAC=130°.故答案为50°或130°.【点评】本题主要考查了直角三角形的性质、等腰三角形的性质.此题难度适中,解题的关键在于正确的画出图形,结合图形,利用数形结合思想求解.15.在△ABC中,AB=5,BC=12,AC=13,那么AC边上的高=.【考点】勾股定理的逆定理.【分析】先根据勾股定理的逆定理判定△ABC为直角三角形,再利用面积公式求解.【解答】解:∵在△ABC中,AB=5,BC=12,AC=13,即52+122=132,∴△ABC为直角三角形,且∠B=90°,∵直角边为AB,BC,设斜边AC上的高为h,根据三角形的面积公式有:S=×5×12=×13h,解得h=.故答案为.【点评】本题考查了勾股定理的逆定理和直角三角形的面积.隐含了整体的数学思想和正确运算的能力.判定△ABC为直角三角形是解题的关键.16.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=3,则线段DF的长度为3.【考点】全等三角形的判定与性质.【分析】先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△ADC,利用全等三角形对应边相等就可得到结论.【解答】证明:∵AD⊥BC,∴∠ADC=∠FDB=90°,∵∠ABC=45°,∴∠BAD=45°,∴AD=BD,∵BE⊥AC,∴∠AEF=90°,∴∠DAC+∠AFE=90°,∵∠FDB=90°,∴∠FBD+∠BFD=90°,又∵∠BFD=∠AFE,∴∠FBD=∠DAC,在△BDF和△ADC中,,∴△BDF≌△ADC,∴DF=CD,∵CD=3,∴DF=3.故答案为:3.【点评】此题主要考查了全等三角形的判定和性质定理,关键是找出能使三角形全等的条件,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.17.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为.【考点】翻折变换(折叠问题).【分析】利用勾股定理求出BC=4,设BE=x,则CE=4﹣x,在Rt△B'EC中,利用勾股定理解出x的值即可.【解答】解:BC==4,由折叠的性质得:BE=BE′,AB=AB′,设BE=x,则B′E=x,CE=4﹣x,B′C=AC﹣AB′=AC﹣AB=2,在Rt△B′EC中,B′E2+B′C2=EC2,即x2+22=(4﹣x)2,解得:x=.故答案为:.【点评】本题考查了翻折变换的知识,解答本题的关键是掌握翻折变换的性质及勾股定理的表达式.18.如图,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB 为等腰三角形,这样的点P共有6个.【考点】等腰三角形的判定.【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可.【解答】解:如图,①AB的垂直平分线交AC一点P1(PA=PB),交直线BC于点P2;②以A为圆心,AB为半径画圆,交AC有二点P3,P4,交BC有一点P2,(此时AB=AP);③以B为圆心,BA为半径画圆,交BC有二点P5,P2,交AC有一点P6(此时BP=BA).故符合条件的点有6个.故答案为:6.【点评】本题考查了等腰三角形的判定;构造等腰三角形时本着截取相同的线段就能作出等腰三角形来,思考要全面,做到不重不漏.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:(2)求x的值:(x﹣1)2=9.【考点】实数的运算;平方根.【专题】计算题.【分析】(1)先根据零指数幂和进行开方运算得到原式=﹣2﹣1+2,然后进行加减运算;(2)根据平方根的定义得到x﹣1=±3,然后解两个一次方程即可.【解答】解:(1)原式=﹣2﹣1+2=﹣1;(2)x﹣1=±3,所以x=4或﹣2.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.20.已知:如图,∠ACB=∠ADB=90°,AC=AD,E是AB上任意一点.(1)BC与BD相等吗?试说明理由.(2)CE=DE吗?为什么?【考点】全等三角形的判定与性质.【分析】(1)根据HL推出Rt△ACB≌Rt△ADB,根据全等三角形的性质推出即可;(2)根据全等得出∠CAB=∠DAB,根据全等三角形的判定推出△ACE≌△ADE,根据全等三角形的性质得出即可.【解答】解:(1)BC=BD,理由是:∵∠ACB=∠ADB=90°,在Rt△ACB和Rt△ADB中AC=AD,AB=AB,∴Rt△ACB≌Rt△ADB(HL),∴BC=BD;(2)CE=DE,理由是:∵Rt△ACB≌Rt△ADB,∴∠CAB=∠DAB,在△ACE和△ADE中,,∴△ACE≌△ADE(SA S),∴CE=DE.【点评】本题考查了全等三角形的性质和判定的应用,能正确运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.21.数学实验室:实验材料:硬纸板、剪刀、三角板实验方法:剪裁、拼图、探索实验目的:验证勾股定理,拼图填空.操作:剪裁出若干个全等的直角三角形,三边长分别记为a、b、c,如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②、图③的形状,观察图②、图③可发现,图②中两个小正方形的面积之和等于图③中小正方形的面积,(填“大于”“小于”“等于”)用关系式可表示为a2+b2=c2(2)拼图二:用4张直角三角形纸片拼成如图④的形状,观察图形可以发现,图中共有3个正方形,它们的面积按大小顺序分别记为S大,S中,S小,其关系是S大=S中+S小,用a、b、c可表示为a2+b2=c2.(3)拼图三:用8张直角三角形纸片拼成如图⑤的形状,图中3个正方形的面积按大小顺序分别记为S大,S中,S小,其关系是S大+S小=2S中,用a、b、c可表示为a2+b2=c2.【考点】勾股定理的证明.【分析】(1)根据图②和③中两个大正方形的边长相等,则面积相等,而图②中两个小正方形的面积的和以及图③中的正方形面积都是大正方形的面积减去四个直角三角形的面积,据此即可判断;(2)根据图④中三个正方形可以分成直角三角形的面积的和,以及确定重合部分即可求解;(3)根据图⑤中三个正方形可以分成直角三角形的面积的和,以及确定重合部分即可求解.【解答】解:(1)图②中两个小正方形的面积之和等于图③中小正方形的面积,用关系式可表示为a2+b2=c2.故答案是:等于,a2+b2=c2;(2)S大=S中+S小,a2+b2=c2;(3)S大﹣S中=S中﹣S小或S大+S小=2S中,a2+b2=c2.【点评】本题考查了证明勾股定理,勾股定理的证明一般考查图形面积的关系,锻炼了同学们的数形结合的思想方法.22.如图,A、C两乡镇到水渠边l的距离分别为AB=2km,CD=4km,且BD=8km.(1)在水渠边l上要建一个水电站P,使得PA+PC最小,请在图中画出P的位置(保留作图痕迹),不必说明理由.(2)求出PA+PC最小值.【考点】轴对称-最短路线问题;作图—应用与设计作图.【分析】(1)作点A关于直线l的对称点A′,连接A′C交l于点P,则P点即为所求点;(2)过A′作A′E⊥CD,交CD的延长线于E,再根据勾股定理即可得出A′C的长.【解答】解:(1)如图;(2)由作图可得最短路程为A′C的距离,过A′作A′E⊥CD,交CD的延长线于E,则DE=A′B=AB=2km,A′E=BD=8km,CE=2+4=6km,根据勾股定理可得,A′C==10km.即PA+PC最小值为10km.【点评】本题考查的是轴对称﹣最短路线问题,熟知两点之间线段最短是解答此题的关键.23.已知:如图AC=BD,AB=DC.证明:(1)∠A与∠D;(2)OB=OC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)连接BC,根据SSS推出△BCD≌△CBA,根据全等三角形的性质得出即可;(2)根据全等三角形的性质得出∠ACB=∠DBC,根据等角对等边得出即可.【解答】证明:(1)连结BC,在△BCD和△CBA中,,∴△BCD≌△CBA(SSS),∴∠A=∠D;(2)∵△BCD≌△CBA,∴∠ACB=∠DBC,∴OB=OD.【点评】此题主要考查了全等三角形的判定和性质定理,等腰三角形的性质的应用,关键是找出能使三角形全等的条件,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.24.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻以相同的速度飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?【考点】勾股定理的应用.【分析】根据题意画出图形,利用勾股定理建立方程,求出x的值即可.【解答】解:画图解决,通过建模把距离转化为线段的长度.由题意得:AB=20,DC=30,BC=50,设EC为x肘尺,BE为(50﹣x)肘尺,在Rt△ABE和Rt△DEC中,AE2=AB2+BE2=202+(50﹣x)2,DE2=DC2+EC2=302+x2,又∵AE=DE,∴x2+302=(50﹣x)2+202,x=20,答:这条鱼出现的地方离比较高的棕榈树的树根20肘尺.另解:设:这条鱼出现的地方离比较高的棕榈树的树根肘尺,则这条鱼出现的地方离比较低的棕榈树的树根(50﹣x)肘尺.得方程:x2+302=(50﹣x)2+202,可解得:x=20;答:这条鱼出现的地方离比较高的棕榈树的树根20肘尺.【点评】本题考查勾股定理的正确运用;善于挖掘题目的隐含信息是解决本题的关键.25.中国对南沙群岛及其附近海域拥有无可争辩的主权.2019年10月27日,美国拉森号军舰未经中国政府允许,非法进入中国南沙群岛有关岛礁邻近海域.中国海军盐城舰加大南沙海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,渚碧礁位于O点,盐城舰在点B处发现美国拉森号军舰,自A点出发沿着AO方向匀速驶向渚碧礁所在地O 点,盐城舰立即从B处出发以相同的速度沿某直线去拦截拉森号军舰,结果在点C处截住了拉森号军舰.(1)请用直尺和圆规作出C处的位置;(2)求盐城舰行驶的航程BC的长.【考点】勾股定理的应用.【分析】(1)连接AB,作AB的垂直平分线交AO于点C,进而得出答案;(2)利用勾股定理,在Rt△OBC中,152+(45﹣x)2=x2,进而得出答案.【解答】解:(1)作AB的垂直平分线与OA相交于点C;(2)设BC=AC=x,OC为(45﹣x),在Rt△OBC中,152+(45﹣x)2=x2,解得:x=25,答:盐城舰行驶的航程BC的长25海里.【点评】此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.26.(1)阅读理解:如图1,等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5,求∠APB 的大小.思路点拨:考虑到PA,PB,PC不在一个三角形中,采用转化与化归的数学思想,可以将△ABP绕顶点A逆时针旋转60°到△ACP′处,此时△ACP′≌△ABP,这样,就可以利用全等三角形知识,结合已知条件,将三条线段的长度转化到一个三角形中,从而求出∠APB 的度数.请你写出完整的解题过程.(2)变式拓展:请你利用第(1)题的解答思想方法,解答下面问题:已知如图2,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,BE=5,CF=4,求EF的大小.【考点】全等三角形的判定与性质;等边三角形的判定与性质;勾股定理的逆定理;旋转的性质.【分析】(1)根据等边三角形的性质得出AB=AC,∠BAC=60°,根据旋转得出△ACP′≌△ABP,求出PA=P′A=3,PB=P′C=4,∠BAP=∠CAP′,求出∠P′AP=∠BAC=60°,推出△PAP′是等边三角形,求出PP′=P′A=3,根据勾股定理的逆定理求出∠PP′C=90°,即可得出答案;(2)根据旋转得出△ACE′≌△ABE,根据全等得出AE=AE′,BE=CE′,∠E′AC=′BAE,求出∠FAE′=∠EAF,根据全等三角形的判定推出△AEF≌△AE′F,推出FE=FE′,根据勾股定理求出E′F即可.【解答】解:(1)∵三角形ABC是等边三角形,∴AB=AC,∠BAC=60°,如图1,将△ABP绕顶点A逆时针旋转60°到△ACP′处,则△ACP′≌△ABP,∴PA=P′A=3,PB=P′C=4,∠BAP=∠CAP′,∴∠P′AP=∠PAC+∠CAP′=∠PAC+∠BAP=∠BAC=60°,∴△PAP′是等边三角形,∴PP′=P′A=3,在△PP′C中,PP'2+P′C2=9+15=25=PC2,∴△PP′C是直角三角形,∴∠PP′C=90°,∴∠APB=∠AP′C=60°+90°=150°;(2)将△ABE绕顶点A逆时针旋转90°到△ACE′处,则△ACE′≌△ABE,∴AE=AE′,BE=CE′,∠E′AC=′BAE,∵∠BAC=90°,∠EAF=45°,∴∠BAE+∠CAF=45°,∠FAE′=∠E′AC+∠FAC=∠BAE+∠FAC=45°=∠EAF,在△AEF和△AE′F中,,∴△AEF≌△AE′F,∴FE=FE′,∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∴∠E′CA=∠B=45°,∴∠E′CF=45°+45°=90°,在Rt△E′FC中,E′C2+FC2=E′F2,∴EF2=BE2+CF2=52+42=41,∴EF=.【点评】本题考查了旋转的性质,全等三角形的性质和判定,勾股定理和勾股定理的逆定理的应用,能综合运用性质进行推理是解此题的关键,证明过程类似.。
2018-2019(含答案)八年级(上)期中数学试卷

2018-2019(含答案)八年级(上)期中数学试卷.................................................................................................................................................................2018.10.22一、选择题(每题3分,共18分)1.下列各式中互为有理化因式的是()A.a+b和a−bB.−x−1和x−1C.5−2和−5+2D.x a+y b和x a+y b2.下列各式中,在实数范围内不能分解因式的是()A.x2+4x+4B.x2−4x−4C.x2+x+1D.x2−x−13.已知a=7−5,b=5−3,c=3−7,则a、b、c三个数的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>a>b4.已知一个两位数等于它个位上的数的平方,并且十位上的数字比个位上的数字小3,则这个两位数为()A.25B.25或36C.36D.−25或−365.关于x的方程(a−6)x2−8x+6=0有实数根,则整数a的最大值是()A.6B.7C.8D.96.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是()A.y=50−2x(0<x<50)B.y=50−2x(0<x<25)(50−2x)(0<x<50)C.y=12(50−x)(0<x<25)D.y=12二、填空题:(每题2分,共24分)7.如果(x+2)2=−x−2,则x的取值范围是________.8.已知20n是整数,则满足条件的最小正整数n为________.9.已知m=n−1−1−n+3,则m n+1=________.a−1是同类二次根式,则a=________,b=________.10.若最简根式4a−1和3b+511.关于x的一元二次方程(a−1)x2+x+(a2−1)=0的一个根是0,则a的值是________.12.已知(x2+y2)2+2(x2+y2)=15,则x2+y2=________.13.如果关于x的方程(a−1)x2−2x−1=0有两个不相等的实数根,那么a的取值范围是________.14.在实数范围内因式分解:2x2−8xy+5y2=________.15.某件商品原价100元,经过两次降价后,售价为64元,设平均每次降价的百分率为x,依题意可列方程________.16.已知点P(a, b)在第三象限,则直线y=(a+b)x经过第________象限,y随x的增大而________.17.反比例函数y=kx的图象经过点P(a, b),且a、b是一元二次方程x2−5x+4=0的两根,k的值是________,点P的坐标为________.18.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=________.三、简答题(每题4分,共28分)19.计算:12−(3+1)2+434÷513.20.计算:xy2−1x8x3y+1y18xy3(x>0, y>0)21.解方程:(x+5)2−2(x+5)=8.22.解方程:2x2−5x+1=0(用配方法)23.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?24.已知y=y1−y2,y1与x成反比例,y2与(x−2)成正比例,并且当x=3时,y=5,当x=1时,y=−1;求y与x之间的函数关系式.25.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长________千米;(2)小强下坡的速度为________千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是________分钟.四、综合题:(每题6分,共30分)26.已知关于x的方程x2−(2k+1)x+4k−2=0(1)求证:不论k取什么实数值,这个方程总有实数根;(2)若等腰△ABC的一边长为a=4,另两边的长b、c恰好是这个方程的两个根,求△ABC 的周长.27.如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m.设AD的长为xm,DC的长为ym.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.28.如图,在△ABC中,∠C=90∘,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某点时刻,使得△PCQ的面积等于△ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由.29.如图,正方形OAPB、ADFE的顶点A、D、B在坐标轴上,点E在AP上,点P、F在函数y=k的图x象上,已知正方形OAPB的面积为9.(1)求k的值和直线OP的解析式;(2)求正方形ADFE的边长.30.如图,在四边形ABCD中,AB=BC=1,∠ABC=90∘,且AB // CD,将一把三角尺的直角顶点P放在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,探究:(1)如图,当点Q在边CD上时,线段PQ与BP有怎样的数量关系?并证明你的猜想.(2)当点Q在线段DC延长线上时,在备用图中画出符合要求的示意图,并判断(1)中的结论是否仍成立?(3)点P在线段AC上运动时,△PCQ是否可能为等腰三角形?若可能,求此时AP的值;若不可能,请说明理由.答案1. 【答案】B【解析】根据有理化因式的定义进行解答即可.【解答】解:A、∵⋅=(a+b)(a−b),∴两根式不互为有理化因式,故本选项错误;B、∵(−x−1)⋅x−1=1−x,∴两根式互为有理化因式,故本选项正确;C、∵(5−2)•(−5+2)=210−7,∴两根式不互为有理化因式,故本选项错误;D、∵(x a+y b)•(x a+y b)=(x a+y b)2,∴两根式不互为有理化因式,故本选项错误.故选B.2. 【答案】C【解析】先令二次三项式为0,若有实数根则能因式分解,否则不能.【解答】解:A、x2+4x+4=0有实数根,故本选项能在实数范围内因式分解;B、x2−4x−4=0有实数根,故本选项能在实数范围内因式分解;C、x2+x+1=0没有实数根,故本选项不能在实数范围内因式分解;D、x2−x−1=0有实数根,故本选项能在实数范围内因式分解;故选C.3. 【答案】B【解析】首先求出a,b,c的倒数,进而比较它们的大小,进而得出a、b、c三个数的大小关系.【解答】解:∵a=7−5,b=5−3,c=3−7,∴1 a =7−5=7+52,1 b =5−3=5+32,1 c =3−7=3+72,∵7>3,∴1 a >1b,∵3>5,∴1 a <1c,∴1 c >1a>1b,∴b>a>c.故选:B.4. 【答案】B【解析】设十位上的数字为x,则个位上的数字为(x+3),根据该两位数等于它个位上的数的平方,即可得出关于x的一元二次方程,解之即可得出x的值,进而即可得出该两位数.【解答】解:设十位上的数字为x,则个位上的数字为(x+3),根据题意得:10x+x+3=(x+3)2,整理得:x2−5x+6=0,解得:x=2或x=3,∴x+3=5或x+3=6,∴这个两位数为25或36.故选B.5. 【答案】C【解析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a−6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.【解答】解:当a−6=0,即a=6时,方程是−8x+6=0,解得x=68=34;当a−6≠0,即a≠6时,△=(−8)2−4(a−6)×6=208−24a≥0,解上式,得a≤263≈8.6,取最大整数,即a=8.故选C.6. 【答案】D【解析】根据等腰三角形的腰长=(周长-底边长)×12,及底边长x>0,腰长>0得到.【解答】解:依题意有y=12(50−x).∵x>0,50−x>0,且x<2y,即x<2×12(50−x),得到0<x<25.故选D7. 【答案】x≤−2【解析】根据二次根式的性质,可得答案.【解答】解:由(x+2)2=(−x−2)2=−x−2,得x+2≤0,解得x≤−2,故答案为:x≤−2.8. 【答案】5【解析】因为20n是整数,且20n=4×5n=25n,则5n是完全平方数,满足条件的最小正整数n为5.【解答】解:∵20n=4×5n=25n,且20n是整数;∴25n是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为:5.9. 【答案】9【解析】根据二次根式中的被开方数必须是非负数列出不等式,求出n的值,得到m的值,代入代数式根据乘方法则计算即可.【解答】解:由题意得,n−1≥0,1−n≥0,解得,n=1,∴m=3,则m n+1=9,故答案为:9.10. 【答案】3,2【解析】根据最简二次根式与同类二次根式的定义列方程组求解.【解答】解:由题意,得a−1=24a−1=3b+5,解得a=3 b=2,故答案为:3,2.11. 【答案】−1【解析】根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a −1≠0.【解答】解:∵关于x 的一元二次方程(a −1)x 2+x +(a 2−1)=0的一个根是0, ∴x =0满足该方程,且a −1≠0.∴a 2−1=0,且a ≠1.解得a =−1.故答案是:−1.12. 【答案】3【解析】首先设x 2+y 2=z ,然后将原方程转化为关于z 的一元二次方程,解该方程即可解决问题.【解答】解:设x 2+y 2=z ,(z ≥0)则原方程变为:z 2+2z −15=0,解得:z =3或−5(舍去).故答案为:3.13. 【答案】a >12且a ≠1【解析】根据方程有两个不相等的实数根利用根的判别式结合二次项系数非零即可得出关于a 的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x 的方程(a −1)x 2− 2x −1=0有两个不相等的实数根,∴ a −1≠0△=(− 2)2+4(a −1)>0, 解得:a >12且a ≠1.故答案为:a >12且a ≠1.14. 【答案】( 2x −2 2y + 3y )( 2x −2 2y − 3y )【解析】首先把5y 2变为8y 2−3y 2,然后把前三项组合提公因式2,再利用完全平方分解,然后再次利用平方差分解因式即可.【解答】解:原式=2x 2−8xy +8y 2−3y 2,=2(x −2y )2−3y 2,=[ 2(x −2y )+ 3y ][ 2(x −2y )− 3y ],=( 2x −2 2y + 3y )( 2x −2 2y − 3y ),故答案为:( 2x −2 2y + 3y )( 2x −2 2y − 3y ).15. 【答案】100(1−x )2=64【解析】设平均每次降价的百分率为x ,根据某件商品原价100元,经过两次降价后,售价为64元,可列方程求解.【解答】解:设平均每次降价的百分率为x ,100(1−x )2=64.故答案为:100(1−x )2=64.16. 【答案】二、四,减小【解析】先根据第三象限点的坐标特征得到a <0,b <0,然后根据正比例函数与系数的关系判断直线y =(a +b )x 经过的象限.【解答】解:因为点P (a , b )在第三象限,所以a <0,b <0,可得a+b<0,所以直线y=(a+b)x经过第二、四象限,y随x的增大而减小;故答案为:二、四;减小17. 【答案】4,(1, 4)或(4, 1)的图象经过点P(a, b),把点P的坐标代入解析式,得到关【解析】先根据反比例函数y=kx于a、b、k的等式ab=k;又因为a、b是一元二次方程x2−5x+4=0的两根,得到a+b=5,ab=4,根据以上关系式求出a、b的值即可.得,ab=k,【解答】解:把点P(a, b)代入y=kx因为a、b是一元二次方程x2−5x+4=0的两根,根据根与系数的关系得:a+b=5,ab=4,解得a=1,b=4或a=4,b=1,所以k=4,点P的坐标是(1, 4)或(4, 1).故答案为4,(1, 4)或(4, 1).18. 【答案】6【解析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4的系数k,由此即可求出S1+S2.x上的点,分别经过A、B两点向x轴、y轴作垂线段,【解答】解:∵点A、B是双曲线y=4x则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4−1×2=6.故答案为6.19. 【答案】解:原式=23−(3+23+1)+23×343=23−(4+23)+5=−【解析】根据二次根式的运算性质即可求出答案.【解答】解:原式=2−(3+2+1)+2×343=23−(4+23)+5=−20. 【答案】解:原式=2xy−22xy+32xy2xy.=322【解析】根据二次根式性质与化简,可得同类二次根式,根据合并同类二次根式,可得答案.【解答】解:原式=2xy−22xy+32xy2=322xy.21. 【答案】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.【解析】将x+5看做整体因式分解法求解可得.【解答】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.22. 【答案】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.【解析】将常数项移到右边后把二次项系数化为1,再两边配上一次项系数一半的平方求解可得.【解答】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.23. 【答案】修建的道路宽为1米.【解析】设路宽为x,则道路面积为30x+20x−x2,所以所需耕地面积551=20×30−(30x+20x−x2),解方程即可.【解答】解:设修建的路宽为x米.则列方程为20×30−(30x+20x−x2)=551,解得x1=49(舍去),x2=1.24. 【答案】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.【解析】根据题意设出反比例函数与正比例函数的解析式,代入y=y1−y2,再把当x=3时,y=5,当x=1时,y=−1代入关于y的关系式,求出未知数的值,即可求出y与x之间的函数关系式.【解答】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.25. 【答案】2; 0.5; 14【解析】(1)根据题意和函数图象可以得到下坡路的长度;; (2)根据函数图象中的数据可以求的小强下坡的速度;; (3)根据题意可以求得小强上坡的速度,进而求得小强返回时需要的时间.【解答】解:(1)由题意和图象可得,小强去学校时下坡路为:3−1=2(千米),; (2)小强下坡的速度为:2÷(10−6)=0.5千米/分钟,; (3)小强上坡时的速度为:1÷6=16千米/分钟,故小强回家骑车走这段路的时间是:21+10.5=14(分钟),26. 【答案】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.【解析】(1)根据方程的系数结合根的判别式即可得出△=(2k−3)2≥0,由此可得出:不论k取什么实数值,这个方程总有实数根;; (2)当a为底时,由根的判别式△=(2k−3)2= 0可求出k值,再根据根与系数的关系可得出b+c=4,由b+c=a可知此种情况不符合题意;当a为腰时,将x=4代入原方程求出k值,再根据根与系数的关系可得出b+c=6,套用三角形的周长公式即可求出结论.【解答】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.27. 【答案】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.【解析】(1)根据面积为60m2,可得出y与x之间的函数关系式;; (2)由(1)的关系式,结合x、y都是正整数,可得出x的可能值,再由三边材料总长不超过26m,DC的长<12,可得出x、y的值,继而得出可行的方案.【解答】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.28. 【答案】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.【解析】(1)设x秒钟后,可使△PCQ的面积为8平方厘米,用x表示出△PCQ的边长,根据面积是8可列方程求解.; (2)假设y秒时,△PCQ的面积等于△ABC的面积的一半,列出方程看看解的情况,可知是否有解.【解答】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.29. 【答案】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.【解析】(1)利用正方形的性质得到P点坐标为(3, 3),再把P点坐标代入y=kx即可得到k的值;然后利用待定系数法求直线OP的解析式;; (2)设正方形ADFE的边长为a,利用正方形的性质易表示F点的坐标为(a+3, a),然后把F(a+3, a)代入y=9x,再解关于a的一元二次方程即可得到正方形ADFE的边长.【解答】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.30. 【答案】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.【解析】(1)可通过构建全等三角形来证PB=PQ,过点P作PF⊥BC于点F,PE⊥CD于点E,由于△PEC是等腰直角三角形,因此PE=EC,可得出四边形PECF是正方形,由此可得出PE=PF,根据同角的余角相等可得出∠FPB=∠QPE,这两个三角形中又有一组直角,因此构成了全等三角形判定条件中ASA的条件.根据全等三角形即可得出PB=PQ;; (2)根据题意画出图形,同(1)过点P作PF⊥BC于点F,PE⊥CD于点E可得出四边形PFCE是正方形,故PE=PF.由ASA定理得出△BPF≅△QPE,根据全等三角形的性质即可得出结论;; (3)延长BP交DC于G,可得出等腰△PCQ中,PC=QC,故可得出∠1=∠2,由直角三角形的性质得出∠5=∠3,在正方形ABCD中根据平行线的性质即可得出结论.【解答】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.。
2018-2019(含答案)八年级(上)期中数学试卷 (12)

2018-2019(含答案)八年级(上)期中数学试卷 (12).................................................................................................................................................................2018.10.22一、选择题(本大题共14小题,每小题3分,共42分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A. B. C. D.2.等腰三角形一腰上的高与另一腰的夹角为30∘,则顶角的度数为()A.60∘B.120∘C.60∘或150∘D.60∘或120∘3.将一副直角三角板如图放置,使含30∘角的三角板的直角边和含45∘角的三角板的一条直角边在同一条直线上,则∠1的度数为()A.75∘B.65∘C.45∘D.30∘4.已知三角形的两边长是2cm,3cm,则该三角形的周长l的取值范围是()A.1<l<5B.1<l<6C.5<l<9D.6<l<105.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;AB长为半径作弧,两弧交于点C.若点C的坐标为再分别以点A、B为圆心,以大于12(m−1, 2n),则m与n的关系为()A.m+2n=1B.m−2n=1C.2n−m=1D.n−2m=16.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44∘,则∠P的度数为()A.44∘B.66∘C.88∘D.92∘7.如图,在△ABC中,AB=AC,∠A=40∘,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70∘B.80∘C.40∘D.30∘8.如图,AB // CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.29.一个多边形的外角和是内角和的2,这个多边形的边数为()5A.5B.6C.7D.810.如图,在△ABC中,∠A=40∘,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=()A.110∘B.100∘C.90∘D.80∘11.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.412.如图所示,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F,则∠DFC的度数为()A.60∘B.45∘C.40∘D.30∘13.如图的七边形ABCDEFG中,AB、DE的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220∘,则∠BOD的度数为何?()A.40B.45C.50D.6014.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF // AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(本大题共5小题,每小题3分,共15分)15.如图,直线a // b,∠1=50∘,∠2=30∘,则∠3=________.16.点P(1, 2)关于直线x=−1对称的点的坐标是________.17.如图,△ACB≅△A1CB1,∠BCB1=40∘,则∠ACA1的度数为________度.18.如图是标准跷跷板的示意图.横板AB的中点过支撑点O,且绕点O只能上下转动.如果∠OCA=90∘,∠CAO=25∘,则小孩玩耍时,跷跷板可以转动的最大角度为________.19.在平面直角坐标系中,点A(2, 0),B(0, 4),作△BOC,使△BOC与△ABO全等,则点C 坐标为________.(点C不与点A重合)三、解答题(本大题共7小题,共63分)20.如图,E、A、C三点共线,AB // CD,∠B=∠E,AC=CD,求证:BC=ED.21.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60∘,∠BCE=40∘,求∠ADB的度数.22.如图,在平面直角坐标系中,A(−3, 2),B(−4, −3),C(−1, −1).如图,在平面直角坐标系中,A(−3, 2),B(−4, −3),C(−1, −1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点△A1,B1,C1的坐标(直接写答案):A1________;B1________;C1________;(3)△A1B1C1的面积为________;(4)在y轴上画出点P,使PB+PC最小.23.如图,在Rt△ABC中,在斜边AB和直角边AC上分别取一点D,E,使DE=DA,延长DE交BC的延长线于点F.△DFB是等腰三角形吗?请说明你的理由.24.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90∘,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≅△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.25.如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)求证:AE // BC;(2)如图(2),将(1)中的动点D运动到边BA的延长线上,仍作等边△EDC,请问是否仍有AE // BC?证明你的猜想.26.已知,△ABC是等腰直角三角形,BC=AB,A点在x轴负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(−3, 0),点B的坐标是(0, 1),求点C的坐标;(2)如图2,过点C作CD⊥y轴于D,求证OA=CD+OD;(3)如图3,若x轴恰好平分∠BAC,BC与x轴交于点E,过点C作CF⊥x轴于F,问CF与AE有怎样的数量关系?并说明理由.答案1. 【答案】B【解析】结合轴对称图形的概念进行求解即可.【解答】解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意.故选B.2. 【答案】D【解析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60∘;当高在三角形外部时(如图2),顶角是120∘.故选D.3. 【答案】A【解析】先根据同旁内角互补,两直线平行得出AC // DF,再根据两直线平行内错角相等得出∠2=∠A=45∘,然后根据三角形内角与外角的关系可得∠1的度数.【解答】解:∵∠ACB=∠DFE=90∘,∴∠ACB+∠DFE=180∘,∴AC // DF,∴∠2=∠A=45∘,∴∠1=∠2+∠D=45∘+30∘=75∘.故选A.4. 【答案】D【解析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.即可求解.【解答】解:第三边的取值范围是大于1而小于5.又∵另外两边之和是5,∴周长的取值范围是大于6而小于10.故选D.5. 【答案】BAB长为半径作弧,两弧交于点【解析】根据OA=OB;再分别以点A、B为圆心,以大于12C,得出C点在∠BOA的角平分线上,进而得出C点横纵坐标相等,进而得出答案.AB长为半径作弧,两弧交于点C,【解答】解:∵OA=OB;分别以点A、B为圆心,以大于12∴C点在∠BOA的角平分线上,∴C点到横纵坐标轴距离相等,进而得出,m−1=2n,即m−2n=1.故选:B.6. 【答案】D【解析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≅△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=44∘,根据三角形内角和定理计算即可.【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,AM=BK∠A=∠B,AK=BN∴△AMK≅△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44∘,∴∠P=180∘−∠A−∠B=92∘,故选:D.7. 【答案】D【解析】由等腰△ABC中,AB=AC,∠A=40∘,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【解答】解:∵等腰△ABC中,AB=AC,∠A=40∘,=70∘,∴∠ABC=∠C=180∘−∠A2∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40∘,∴∠CBE=∠ABC−∠ABE=30∘.故选:D.8. 【答案】C【解析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB // CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选C.9. 【答案】C【解析】根据多边形的外角和为360∘及题意,求出这个多边形的内角和,即可确定出多边形的边数.【解答】解:∵一个多边形的外角和是内角和的25,且外角和为360∘,∴这个多边形的内角和为900∘,即(n−2)⋅180∘=900∘,解得:n=7,则这个多边形的边数是7,故选C.10. 【答案】A【解析】由D点是∠ABC和∠ACB角平分线的交点可推出∠DBC+∠DCB=70∘,再利用三角形内角和定理即可求出∠BDC的度数.【解答】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180∘−40∘=140∘,∴∠DBC+∠DCB=70∘,∴∠BDC=180∘−70∘=110∘,故选A.11. 【答案】C【解析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=12BC⋅EF=12×5×2=5,故选C.12. 【答案】A【解析】因为△ABC为等边三角形,所以∠BAC=∠ABC=∠BCA=60∘,AB=BC=AC,根据SAS易证△ABD≅△CAE,则∠BAD=∠ACE,再根据三角形内角和定理求得∠DFC的度数.【解答】解:∵△ABC为等边三角形∴∠BAC=∠ABC=∠BCA=60∘∴AB=BC=AC在△ABD和△CAE中BD=AE,∠ABD=∠CAE,AB=AC∴△ABD≅△CAE∴∠BAD=∠ACE又∵∠BAD+∠DAC=∠BAC=60∘∴∠ACE+∠DAC=60∘∵∠ACE+∠DAC+∠AFC=180∘∴∠AFC=120∘∵∠AFC+∠DFC=180∘∴∠DFC=60∘.故选A.13. 【答案】A【解析】延长BC交OD与点M,根据多边形的外角和为360∘可得出∠OBC+∠MCD+∠CDM=140∘,再根据四边形的内角和为360∘即可得出结论.【解答】解:延长BC交OD与点M,如图所示.∵多边形的外角和为360∘,∴∠OBC+∠MCD+∠CDM=360∘−220∘=140∘.∵四边形的内角和为360∘,∴∠BOD+∠OBC+180∘+∠MCD+∠CDM=360∘,∴∠BOD=40∘.故选A.14. 【答案】A【解析】根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≅△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF // AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,∠C=∠CBFCD=BD,∠EDC=∠BDF∴△CDE≅△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.15. 【答案】20∘【解析】首先由平行线的性质可求得∠4的度数,然后再根据三角形的外角的性质即可求得∠3的度数.【解答】解:如图:∵a // b,∴∠4=∠1=50∘.由三角形的外角的性质可知:∠4=∠2+∠3,∴∠3=∠4−∠2=50∘−30∘=20∘.故答案为:20∘.16. 【答案】(−3, 2)【解析】点P(1, 2)与关于直线x=−1对称的点纵坐标不变,两点到x=−1的距离相等,据此可得其横坐标.【解答】解:点P(1, 2)关于直线x=−1对称的点的坐标是(−3, 2).故答案为:(−3, 2).17. 【答案】40【解析】直接利用全等三角形性质得出∠B1CA1=∠BAC,进而得出答案.【解答】解:∵△ACB≅△A1CB1,∴∠B1CA1=∠BAC,∴∠B1CA1−∠BCA1=∠BAC−∠BCA1,∴∠BCB1=∠ACA1=40∘,故答案为:40.18. 【答案】50∘【解析】已知如图所示:欲求∠A′OA的度数,根据三角形的外角等于与它不相邻的两个内角和,可知∠A′OA=∠OAC+∠OB′C,又OA=OB′,根据等边对等角,可知∠OAC=∠OB′C=25∘.【解答】解:∵OA=OB′,∠OCA=90∘,∴∠OAC=∠OB′C=25∘,∴∠A′OA=∠OAC+∠OB′C=2∠OAC=50∘.答案为50∘.19. 【答案】(2, 4)或(−2, 0)或(−2, 4)【解析】根据全等三角形的判定和已知点的坐标画出图形,即可得出答案.【解答】解:如图所示:有三个点符合,∵点A(2, 0),B(0, 4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(−2, 0),C2(−2, 4),C3(2, 4).故答案为:(2, 4)或(−2, 0)或(−2, 4).20. 【答案】证明:∵AB // CD,∴∠BAC=∠ECD,在△ABC和△CED中∠BAC=∠ECD ∠B=∠EAC=CD,∴△ACB∽△CED(AAS),∴BC=ED.【解析】首先根据平行线的性质可得∠BAC=∠ECD,再利用AAS定理证明△ACB∽△CED,然后再根据全等三角形对应边相等可得结论.【解答】证明:∵AB // CD,∴∠BAC=∠ECD,在△ABC和△CED中∠BAC=∠ECD ∠B=∠EAC=CD,∴△ACB∽△CED(AAS),∴BC=ED.21. 【答案】解:∵AD是△ABC的角平分线,∠BAC=60∘,∴∠DAC=∠BAD=30∘,∵CE是△ABC的高,∠BCE=40∘,∴∠B=50∘,∴∠ADB=180∘−∠B−∠BAD=180∘−30∘−50∘=100∘.【解析】根据AD是△ABC的角平分线,∠BAC=60∘,得出∠BAD=30∘,再利用CE是△ABC的高,∠BCE=40∘,得出∠B的度数,进而得出∠ADB的度数.【解答】解:∵AD是△ABC的角平分线,∠BAC=60∘,∴∠DAC=∠BAD=30∘,∵CE是△ABC的高,∠BCE=40∘,∴∠B=50∘,∴∠ADB=180∘−∠B−∠BAD=180∘−30∘−50∘=100∘.22. 【答案】(3, 2),(4, −3),(1, −1),6.5求出即,【解析】根据总数=频数频率科普物的阅读,增加活动次数来激发学生学习趣.【解答】解:∵45÷0.5300,∴这次机调查了300名学/空//格/(分)∴估计读艺术类书籍的生全校有3.(分建:填科普类频数(1分填艺术类频率并补画条形图(1,文学术同)建议强科普书的阅读,学校举行科识讲座来促进这项作(只合,出发点积即可).(8)23. 【答案】证明:△DFB是等腰三角形.理由是:∵DE=DA,∴∠A=∠AED,∵∠AED=∠CEF,∵∠A=∠CEF,∵∠ACB=∠ECF=90∘,∴∠A+∠B=∠CEF+∠F,∴∠B=∠F,∴DB=DF,∴△DFB是等腰三角形.【解析】根据等腰三角形的性质,得出∠A=∠AED,根据对顶角相等得出∠AED=∠CEF,由直角三角形的两个锐角互余,得出∠B=∠F,则DB=DF,即可证明△DFB是等腰三角形.【解答】证明:△DFB是等腰三角形.理由是:∵DE=DA,∴∠A=∠AED,∵∠AED=∠CEF,∵∠A=∠CEF,∵∠ACB=∠ECF=90∘,∴∠A+∠B=∠CEF+∠F,∴∠B=∠F,∴DB=DF,∴△DFB是等腰三角形.24. 【答案】(1)证明:∵∠BAC=∠DAE=90∘∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≅△CAE(SAS).; (2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≅△CAE,∴∠ADB=∠E.∵∠DAE=90∘,∴∠E+∠ADE=90∘.∴∠ADB+∠ADE=90∘.即∠BDE=90∘.∴BD、CE特殊位置关系为BD⊥CE.【解析】要证(1)△BAD≅△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90∘很易证得.; (2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDE=90∘,需证∠ADB+∠ADE=90∘可由直角三角形提供.【解答】(1)证明:∵∠BAC=∠DAE=90∘∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≅△CAE(SAS).; (2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≅△CAE,∴∠ADB=∠E.∵∠DAE=90∘,∴∠E+∠ADE=90∘.∴∠ADB+∠ADE=90∘.即∠BDE=90∘.∴BD、CE特殊位置关系为BD⊥CE.25. 【答案】解:(1)证明:∵∠ACB=60∘,∠DCE=60∘,∴∠BCD=60∘−∠ACD,∠ACE=60∘−∠ACD,∴∠BCD=∠ACE,在△DBC和△EAC中,∵ BC=AC∠BCD=∠ACE DC=EC,∴△DBC≅△EAC(SAS),∴∠EAC=∠B=60∘.又∵∠ACB=60∘∴∠EAC=∠ACB∴AE // BC.; (2)结论:AE // BC,理由:∵△ABC、△EDC为等边三角形∴BC=AC,DC=CE,∠BCA=∠DCE=60∘∠BCA+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△DBC和△EAC中,∵ BC=AC∠BCD=∠ACE DC=EC,∴△DBC≅△EAC(SAS),∴∠EAC=∠B=60∘,又∵∠ACB=60∘∴∠EAC=∠ACB∴AE // BC.【解析】(1)证明△ACE≅△BCD推出∠ACB=∠EAC即可证.; (2)证明△DBC≅△EAC可推出∠EAC=∠ACB,由此可证.【解答】解:(1)证明:∵∠ACB=60∘,∠DCE=60∘,∴∠BCD=60∘−∠ACD,∠ACE=60∘−∠ACD,∴∠BCD=∠ACE,在△DBC和△EAC中,∵ BC=AC∠BCD=∠ACE DC=EC,∴△DBC≅△EAC(SAS),∴∠EAC=∠B=60∘.又∵∠ACB=60∘∴∠EAC=∠ACB∴AE // BC.; (2)结论:AE // BC,理由:∵△ABC、△EDC为等边三角形∴BC=AC,DC=CE,∠BCA=∠DCE=60∘∠BCA+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△DBC和△EAC中,∵ BC=AC∠BCD=∠ACE DC=EC,∴△DBC≅△EAC(SAS),∴∠EAC=∠B=60∘,又∵∠ACB=60∘∴∠EAC=∠ACB∴AE // BC.26. 【答案】解:(1)如图1,过点C作CH⊥y轴于H,∵A(−3, 0),B(0, 1),∴OA=3,OB=1,∵△ABC是等腰直角三角形,∴AB=CB,∠ABC=90∘,∴∠ABO+∠CBH=90∘,∵∠ABO+∠BAO=90∘,∴∠BAO=∠CBH,在△AOB和△BHC中,∠AOB=∠BHC=90∘∠BAO=∠CBHAB=CB,∴△AOB≅△BHC,∴CH=OB=1,BH=OA=3,∴OH=OB+BH=4,∴C(−1, 4);; (2)∵△ABC是等腰直角三角形,∴AB=CB,∠ABC=90∘,∴∠ABO+∠CBD=90∘,∵∠ABO+∠BAO=90∘,∴∠BAO=∠CBD,在△AOB和△BDC中,∠AOB=∠BHC=90∘∠BAO=∠CBHAB=CB,∴△AOB≅△BDC,∴CD=OB,BD=OA,∵BD=OB+OD=CD+OD,∴OA=CD+OD;; (3)CF=12AE,理由:如图3,延长CF,AB相交于点D,∴∠CBD=180∘−∠ABC=90∘,∵CF⊥x轴,∴∠BCD+∠D=90∘,∵∠DAF+∠D=90∘,∴∠BCD=∠DAF,在△ABE和△CBD中,∠ABE=∠CBD ∠BAE=∠BCD AB=CB,∴△ABE≅△CBD,∴AE=CD,∵x轴平分∠BAC,CF⊥x轴,∴AC=AD,∵CF⊥x轴,∴CF=DF,∴CF=12CD=12AE.【解析】(1)先求出OA=3,OB=1,再判断出AB=CB,∠BAO=∠CBH,进而得出△AOB≅△BHC,即可得出结论;; (2)同(1)的方法即可得出结论;; (3)先判断出∠CBD=90∘,再判断出∠BCD=∠DAF,进而判断出△ABE≅△CBD,得出AE=CD,最后判断出DF=CF即可得出结论、【解答】解:(1)如图1,过点C作CH⊥y轴于H,∵A(−3, 0),B(0, 1),∴OA=3,OB=1,∵△ABC是等腰直角三角形,∴AB=CB,∠ABC=90∘,∴∠ABO+∠CBH=90∘,∵∠ABO+∠BAO=90∘,∴∠BAO=∠CBH,在△AOB和△BHC中,∠AOB=∠BHC=90∘∠BAO=∠CBHAB=CB,∴△AOB≅△BHC,∴CH=OB=1,BH=OA=3,∴OH=OB+BH=4,∴C(−1, 4);; (2)∵△ABC是等腰直角三角形,∴AB=CB,∠ABC=90∘,∴∠ABO+∠CBD=90∘,∵∠ABO+∠BAO=90∘,∴∠BAO=∠CBD,在△AOB和△BDC中,∠AOB=∠BHC=90∘∠BAO=∠CBHAB=CB,∴△AOB≅△BDC,∴CD=OB,BD=OA,∵BD=OB+OD=CD+OD,∴OA=CD+OD;; (3)CF=12AE,理由:如图3,延长CF,AB相交于点D,∴∠CBD=180∘−∠ABC=90∘,∵CF⊥x轴,∴∠BCD+∠D=90∘,∵∠DAF+∠D=90∘,∴∠BCD=∠DAF,在△ABE和△CBD中,∠ABE=∠CBD ∠BAE=∠BCD AB=CB,∴△ABE≅△CBD,∴AE=CD,∵x轴平分∠BAC,CF⊥x轴,∴AC=AD,∵CF⊥x轴,∴CF=DF,∴CF=12CD=12AE.。
2018-2019学年度第一学期八年级(上)期中数学试题(含答案).doc

2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学(满分:100分考试时间:100分钟)注意事项:1.选择题请用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.2.非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列“表情”中属于轴对称图案的是A. B. C. D.2.下列说法正确的是A .两个等边三角形一定全等B .形状相同的两个三角形全等C .面积相等的两个三角形全等D .全等三角形的面积一定相等3.下列长度的三条线段,能组成直角三角形的是 A .1,2,3B .2,3,4C .3,4,5D .4,5,64.在△ABC 中,AB =AC ,BD 为△ABC 的高,若∠BAC =40°,则∠CBD 的度数是 A .70°B .40°C .20°D .30°5.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A 的面积是 A .16 B .32 C .34 D .64925A(第5题)(第4题)ABCD6.到三角形三条边距离相等的点是A .三条边的垂直平分线的交点B .三条边上高的交点C .三条边上中线的交点D .三个内角平分线的交点7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′C ′B ′=∠ACB 的依据是A .SASB .SSSC .ASAD .AAS8.如图,长方形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′,点B 落在点B ′处.若∠2=40°,则∠1的度数为 A .115°B .120°C .130°D .140°二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题..卷.相应位置....上) 9.等边三角形有▲条对称轴.10.在Rt △ABC 中,∠C =90°,AB =13,BC =12,则AC =▲.11.已知△ABC ≌△DEF ,且△DEF 的周长为12.若AB =5,BC =4,则AC =▲. 12.若等腰三角形的两边长分别为4和8,则这个三角形的周长为▲. 13.在等腰△ABC 中,AC =AB ,∠A =70°,则∠B =▲°.14.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB ,垂足为D ,CD =▲.15.如图,在等腰△ABC 中,AB =AC ,AD 为△ABC 的中线,∠B =72°,则∠DAC =▲°. 16.在Rt △ABC 中,∠C =90°,∠A =30°,D 是斜边AB 的中点,DE ⊥AC ,垂足为E ,DE =2,则AB =▲.(第7题) AC DBB ′A ′C ′D ′(第8题)1 2BB ′ CA ′ DEAF(第15题)DACBDACB(第14题)(第16题)ACBDE17.如图,△DEF 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形.若在图中再画1个格点△ABC (不包括△DEF ),使△ABC ≌△DEF ,这样的格点三角形能画▲个.18.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =4,M 在BC 上,且BM =1,N 是AC上一动点,则BN +MN 的最小值为▲.三、解答题(本大题共9小题,共64分.请在答题..卷.指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤)19.(6分)已知:如图,在△ABC 中,DE ∥BC ,AD =AE .求证:AB =AC .20.(5分)如图,三个直角三角形(Ⅰ,Ⅱ,Ⅲ)拼成一个梯形(两底分别为a 、b ,高为a +b ),利用这个图形,小明验证了勾股定理.请将计算过程补充完整. 解:S 梯形=12(上底+下底)×高=12(a +b )•(a +b ),即S 梯形=12(▲).①S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =▲+▲+▲.即S 梯形=12(▲).②由①、②,得a 2+b 2=c 2.DE C(第19题)A(第20题)cⅢcⅡⅠb ba a(第17题)EDFMNABC(第18题)21.(6分)如图,育苗棚的顶部是长方形,求育苗棚顶部薄膜ABDE 的面积.22.(6分)已知:如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:BC ∥EF .23.(6分)如图,△ABC 是等边三角形,D 是BC 上任意一点(与点B 、C 不重合),以AD 为一边向右侧作等边△ADE ,连接CE .求证:△CAE ≌△BAD .FECBA(第22题)DCEA(第23题)B(第21题)E24.(7分)如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,CD =12,AD =13.求四边形ABCD 的面积.25.(8分)如图,在△ABC 中,∠C =90°.E 是AB 中点,DE ⊥AB ,垂足为E .若CD =ED ,求∠BAC ,∠B 的度数.26.(8分)如图,在四边形ABCD 中,∠ABC =∠ADC =90°,M 为AC 的中点.(1)求证:MB =MD .(2)若∠BAD =100°,求∠BMD 的度数.M(第26题)CABD (第24题)CBDA(第25题)BE DC27.(12分)在Rt △ABC 中,∠C =90°,将△ABC 沿着某条直线折叠.(1)若该直线经过点A ,且折叠后点C 落在AB 边上,请用直尺和圆规在图①中作出该直线(不写作法,保留作图痕迹); (2)若折叠后点A 与点B 重合.①请用直尺和圆规在图②中作出该直线(不写作法,保留作图痕迹); ②若图②中所画直线与AC 交于点P ,且AB =8,AP =5,求CP 的长.(第27题)AC图①AC图②2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计16分)二、填空题(每小题2分,共计20分)9.3 10.5 11.3 12.20 13.55 14.4.8 15.18 16.8 17.3 18.5三、解答题(本大题共9小题,共计64分) 19.(本题6分) 证明:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C .……………………………………………2分 ∵AD =AE ,∴∠ADE =∠AED . …………………………………………………………4分 ∴∠B =∠C . ………………………………………………………………5分 ∴AB =AC .……………………………………………………………………6分20.(本题5分)解:S 梯形=12(上底+下底)•高=12(a +b )•(a +b ),即S 梯形=12(a 2+2ab +b 2).①…………………………1分S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =12ab +12c 2+12ab .…………………………4分即S 梯形=12(c 2+2 ab ).②……………………………5分由①、②,得a 2+b 2=c 2.21.(本题6分)解:在Rt △ABC 中,∠ACB =90°,由勾股定理得:AB 2=AC 2+BC 2=22+1.52=6.25,∴AB =2.5(m ).…………3分∴S 四边形ABDE =2.5×20=50(m 2).……………………………………………5分 答:四边形ABDE 的面积是50m 2.……………………………………………6分 22.(本题6分)证明:∵AF =DC ,∴AF +FC =DC +FC .即AC =DF .………………………1分在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠A =∠D ,AC =DF .∴△ABC ≌△DEF (SAS ).…………………4分∴∠BCA =∠EFD .……………………………………………5分 ∴BC ∥EF .……………………………………………6分 23.(本题6分)证明:∵△ABC 和△ADE 是等边三角形,∴AC =AB ,AE =AD ,∠DAE =∠BAC =60°.………………………………3分 ∴∠DAE -∠CAD =∠BAC -∠CAD ,即∠CAE =∠BAD .………………4分 在△CAE 和△BAD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD .∴△CAE ≌△BAD (SAS ).………6分24.(本题7分)解:∵在△ABC 中,∠B =90°,AB =4,BC =3,∴AC =5.………………………2分在△ADC 中,AD =13,CD =12,AC =5. ∵122+52=132,即CD 2+AC 2=AD 2,∴△ADC 是直角三角形,且∠DCA =90°.……………………………………4分∴S 四边形ABCD =S △ABC +S △ADC =12AB •BC +12AC •CD =12×3×4+12×5×12=36.……7分25.(本题8分) 解:连接AD .∵∠C =90°,DE ⊥AB ,CD =ED , ∴点D 在∠BAC 的角平分线上.∴∠CAD =∠EAD .……………………………………………………………………2分 ∵E 是AB 中点,DE ⊥AB ,∴DB =DA .……………………………………………………………………4分 ∴∠DBA =∠DAB .……………………………………………………………………6分 ∵∠DBA +∠CAB =90°, ∴3∠DBA =90°. ∴∠DBA =30°.∴∠B =30°,∠BAC =60°.…………………………………………………………8分 26.(本题8分)(1)证明:∵∠ABC =∠ADC =90°,又∵M 为AC 的中点,∴MB =12AC ,MD =12AC .………………………………4分∴MB =MD .…………………………………………………………………………5分 (2)解:∵∠BAD =100°,∴∠BCD =360°-(∠ABC +∠ACB )-∠BAD =80°,……………………………6分 ∵MB =MC =MD ,∴∠MBC =∠MCB ,∠MCD =∠MDC .……………………………………………7分 ∴∠BMD =∠BMA +∠DMA =2∠BCA +2∠DCA =2∠ACB =2×80°=160°.……8分27.(本题12分)解:(1)如图,直线AD 即为所求.…………………………………………………3分(2)①如图,直线MN 即为所求.……………………………………………………6分②由①中的作图得:AP =PB .…………………………………………………7分 ∵∠C =90º,∴ △BCP 和△ACB 是直角三角形. 在Rt △ABC 中,∵AC 2+CB 2=AB 2,∴BC 2=AB 2-AC 2.………………………………………8分 在Rt △PCB 中,∵PC 2+CB 2=PB 2,∴ BC 2=PB 2-CP 2.………………………………………9分 ∴ AB 2-AC 2=PB 2-CP 2. 设CP =x ,则AC =5+x ,52-x 2=82-(5+x )2.……………………………………………………………11分 ∴ x =1.4.即CP 的长为1.4.…………………………12分.ACDBBCAPMN。
2018-2019(含答案)八年级(上)期中数学试卷 (9)

2018-2019(含答案)八年级(上)期中数学试卷 (9).................................................................................................................................................................2018.10.22一、选择题(将正确答案序号填入下表相应的空格内,每小题3分,共20分)1.下列标志中,可以看作是轴对称图形的是()A. B.C. D.2.在一个三角形的外角中,钝角至少有()A.个B.个C.个D.个3.已知等腰三角形中,腰,底,则这个三角形的周长为()A. B. C. D.4.将的三个顶点坐标的横坐标都乘以,并保持纵坐标不变,则所得图形与原图形的关系是()A.关于轴对称B.关于轴对称C.关于原点对称D.将原图形沿轴的负方向平移了个单位5.如果一个多边形的内角和是,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形6.如图所示,三角形纸片中,有一个角为,剪去这个角后,得到一个四边形,则的度数为()A. B. C. D.7.如图,在中,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,,作直线,交于点,连接.若的周长为,,则的周长为()A. B. C. D.8.下面四个图形中,线段是的高的图是()A. B.C. D.9.如图所示,,,,结论:① ;② ;③ ;④ .其中正确的有()A.个B.个C.个D.个10.已知:点、是的边上的两个点,且,的度数是()A. B. C. D.二、填空题(每小题2分,共20分)11.如图所示,图中的的值是________.12.如图,点在的平分线上,于,于,若,则________.13.如图是由射线,,,,组成的平面图形,则________.14.如图,在中,点是上一点,,,则________度.15.如图,已知中,,点、在上,要使,则只需添加一个适当的条件是________.(只填一个即可)16.如图,中,,,平分,平分,经过点,与、相交于点、,且,则的周长等于________.17.如图,,,若为,,则________.18.如图,在平面直角坐标系中,点在第一象限,点在轴上,若以,,为顶点的三角形是等腰三角形,则满足条件的点共有________个.三、解答题(8分)19.如图,五边形的内角都相等,且,,求的值.四、作图解答题(8分)20.如图,已知,,.为上一点,且到,两点的距离相等.用直尺和圆规,作出点的位置(不写作法,保留作图痕迹);连结,若,求的度数.五、解答题(8分)21.如图,在平面直角坐标系中的位置如图所示.画出关于轴对称的,并写出各顶点坐标;将向左平移个单位,作出平移后的,并写出的坐标.六、解答题(8分)22.如图,,,,求证:.七、解答题(8分)23.如图,等边三角形中,是的中点,为延长线上一点,且,,垂足为.求证:是的中点.八、解答题(8分)24.如图,过平分线上一点作交于点,是线段的中点,请过点画直线分别交射线、于点、,探究线段、、之间的数量关系,并证明你的结论.答案1. 【答案】C【解析】根据轴对称图形的概念,可得答案.【解答】解:、是中心对称图形,故错误;、是中心对称图形,故正确;、是轴对称图形,故正确;、是中心对称图形,故错误;故选:.2. 【答案】C【解析】因为三角形的内角和为,所以至少有两个锐角,因为外角和相邻的内角互补,所以外角中至少有两个钝角.【解答】解:一个三角形的三个内角中,至少有两个锐角,三个外角中至少有两个钝角.故选.3. 【答案】A【解析】由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解.【解答】解:.故这个三角形的周长为.故选:.4. 【答案】B【解析】熟悉:平面直角坐标系中任意一点,分别关于轴的对称点的坐标是,关于轴的对称点的坐标是.【解答】解:根据对称的性质,得三个顶点坐标的横坐标都乘以,并保持纵坐标不变,就是横坐标变成相反数.即所得到的点与原来的点关于轴对称.故选.5. 【答案】C【解析】边形的内角和可以表示成,设这个正多边形的边数是,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是,则,解得:.则这个正多边形的边数是.故选:.6. 【答案】C【解析】三角形纸片中,剪去其中一个的角后变成四边形,则根据多边形的内角和等于即可求得的度数.【解答】解:∵ ,∴ .∵四边形的内角和等于,∴ .故选.7. 【答案】C【解析】首先根据题意可得是的垂直平分线,即可得,又由的周长为,求得的长,则可求得的周长.【解答】解:∵在中,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,,作直线,交于点,连接.∴ 是的垂直平分线,∴ ,∵ 的周长为,∴ ,∵ ,∴ 的周长为:.故选.8. 【答案】D【解析】根据高的画法知,过点作边上的高,垂足为,其中线段是的高.【解答】解:线段是的高的图是.故选.9. 【答案】C【解析】根据已知的条件,可由判定,进而可根据全等三角形得出的结论来判断各选项是否正确.【解答】解:∵,∴ ;∴ ,∴ ,即;(故③正确)又∵ ,,∴ ;∴ ;(故①正确)由知:,;又∵ ,∴ ;(故④正确)由于条件不足,无法证得② ;故正确的结论有:①③④;故选.10. 【答案】B【解析】根据等边三角形的性质,得,再根据等腰三角形的性质和三角形的外角的性质求得,从而求解.【解答】解:∵ ,∴ ,,.又∵ ,,∴ .∴ .故的度数是.故选:.11. 【答案】【解析】根据四边形内角和等于列出方程求解即可.【解答】解:依题意有:,解得.故答案为:.12. 【答案】【解析】由点在的平分线上,丄于,丄于,根据角平分线上的点到角的两边的距离相等得到.【解答】解:∵点在的平分线上,丄于,丄于,∴ ,而,∴ .故答案为:.13. 【答案】【解析】首先根据图示,可得,,,,,然后根据三角形的内角和定理,求出五边形的内角和是多少,再用减去五边形的内角和,求出等于多少即可.【解答】解:.故答案为:.14. 【答案】【解析】本题考查的是三角形内角和定理,三角形外角与外角性质以及等腰三角形的性质.由可得,易求解.【解答】解:∵ ,,∴ ,由三角形外角与外角性质可得,又∵ ,∴,∴ .15. 【答案】【解析】此题是一道开放型的题目,答案不唯一,如,根据推出即可;也可以等.【解答】解:,理由是:∵ ,∴ ,在和中,,∴ ,故答案为:.16. 【答案】【解析】根据平分,平分,且,可得出,,所以三角形的周长是.【解答】解:∵ 平分,平分,∴ ,,∵ ,∴ ,,∴ ,,∴ ,,∵ ,,∴ 的周长.故答案为:.17. 【答案】【解析】首先证明为等边三角形,然后依据证明全等,从而可得到,然后依据等腰三角形三线合一的性质可得到,从而可求得的长,故此可得到的长.【解答】解:在和中,∴ .∴ .又∵ ,∴ .∴ .∵ ,,∴ 为等边三角形.∴ .故答案为:.18. 【答案】或【解析】分为三种情况:① ,② ,③ ,分别画出即可.【解答】解:以为圆心,以为半径画弧交轴于点和,此时三角形是等腰三角形,即个;以为圆心,以为半径画弧交轴于点 ″(除外),此时三角形是等腰三角形,即个;作的垂直平分线交轴于一点,则,此时三角形是等腰三角形,即个;,当与轴正半轴夹角等于的时候,图中的,和会重合,是一个点,加上原来的负半轴的点,总共个点,故答案为或.19. 【答案】解:因为五边形的内角和是,则每个内角为,∴ ,又∵ ,,由三角形内角和定理可知,,∴ .【解析】由五边形的内角都相等,先求出五边形的每个内角度数,再求出,从而求出度.【解答】解:因为五边形的内角和是,则每个内角为,∴ ,又∵ ,,由三角形内角和定理可知,,∴ .20. 【答案】解:如图所示:点即为所求;; 在中,,∴ ,又∵ ,∴ ,∴ .【解析】利用线段垂直平分线的作法得出点坐标即可;; 利用线段垂直平分线的性质得出,,进而求出即可.【解答】解:如图所示:点即为所求;; 在中,,∴ ,又∵ ,∴ ,∴ .21. 【答案】解:如图,即为所求,,,;; 如图,即为所求,,.【解析】作出各点关于轴的对称点,再顺次连接,并写出各点坐标即可;; 根据图形平移的性质作出平移后的,并写出的坐标.【解答】解:如图,即为所求,,,;; 如图,即为所求,,.22. 【答案】证明:∵ ,∴ ,即,在和中∴ ,∴ .【解析】由条件证明即可.【解答】证明:∵ ,∴ ,即,在和中∴ ,∴ .23. 【答案】证明:连接,∵等边三角形中,是的中点,∴ ,∵ ,∴,∴ ,又∵ ,垂足为,∴ 是的中点.【解析】要证是的中点,根据题意可知,证明为等腰三角形,利用等腰三角形的高和中线向重合即可得证.【解答】证明:连接,∵等边三角形中,是的中点,∴ ,∵ ,∴,∴ ,又∵ ,垂足为,∴ 是的中点.24. 【答案】解:线段、、之间的数量关系是:.证明:∵ 是的平分线,∴ ,又∵ ,∴ ,∴ ,∴ ,∵ 是线段的中点,∴ ,∵ ,∴,∴ ,又∵ ,∴ .【解析】首先根据是的平分线,,判断出,所以;然后根据是线段的中点,,推得,即可判断出,据此解答即可.【解答】解:线段、、之间的数量关系是:.证明:∵ 是的平分线,∴ ,又∵ ,∴ ,∴ ,∴ ,∵ 是线段的中点,∴ ,∵ ,∴,∴ ,又∵ ,∴ .。
2018-2019学年苏科版八年级上数学期中复习试题含答案详解

期中测试题【本试卷满分120分,测试时间120分钟】一、选择题(每小题3分,共36分) 1.下列说法中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形. 正确的有( )A.1个B.2个C.3个D.4个 2.已知等腰三角形的周长为15 cm ,其中一边长为7 cm ,则该等腰三角形的底边长为( ) A.3 cm 或5 cm B.1 cm 或7 cm C.3 cm D.5 cm 3.下列各组数中互为相反数的是( )A.2)2(2--与 B.382--与 C.2)2(2-与 D.22与-4.下列运算中,错误的是( ) ①1251144251=;②4)4(2±=-;③22222-=-=-;④2095141251161=+=+. A. 1个 B. 2个 C. 3个 D. 4个 5.如图,在△中,是角平分线,∠∠36°,则图中有等腰三角形( ) A.3个 B.2个 C.1个 D.0个6.如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为( )A.45°,90°B.90°,45°C.60°,30°D.30°,60° 7.如图,已知∠∠15°,∥,⊥,若,则( )A.4B.3C.2D.18.如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.12 9.如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为( )A.24B.36C.40D.48 10. 已知平行四边形的周长为,两条对角线相交于点,且△的周长比△的周长大,则的长为( ) A.2ba -B.2ba + C.22ba + D.22ba + 11. 下列图形是轴对称图形而不是中心对称图形的是( )A.平行四边形B.菱形C.正方形D.等腰梯形12.顺次连接四边形四边中点所组成的四边形是菱形,则原四边形为( )A.平行四边形B.菱形C.对角线相等的四边形D.直角梯形 二、填空题(每小题3分,共30分)13.把下列各数填入相应的集合内:-7,0.32,31,46,0,8,21,3216,-2π. ①有理数集合: { };②无理数集合: { }; ③正实数集合: { };④实数集合: { }.14.若等腰梯形三边的长分别为3、4、11,则这个等腰梯形的周长为 . 15.在△中, cm , cm ,⊥于点,则_______. 16.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为________.17.如图所示,点为∠内一点,分别作出点关于、的对称点,,连接交于点,交于点,已知,则△的周长为_______.18.如图,在△中,,∠90°,是边的中点,是边上一动点,则的最小值是__________.19.已知5-a +3+b ,那么.20.若02733=+-x ,则_________.21.如图,点、分别是菱形的边、上的点,且∠∠60°,∠45°,则∠___________.22.把边长为3、5、7的两个全等三角形拼成四边形,一共能拼成____________种不同的四边形,其中有____________个平行四边形. 三、解答题(共54分)23.(6分)如图,四边形ABCD 是平行四边形,,BD ⊥AD ,求BC ,CD 及OB 的长.24.(6分)作一直线,将下图分成面积相等的两部分(保留作图痕迹).25.(6分)如图,在矩形中,是边上一点,的延长线交的延长线于点,⊥,垂足为,且.(1)求证:;(2)根据条件请在图中找出一对全等三角形,并证明你的结论.26.(6分)如图,在梯形中,∥,,⊥,延长至点,使.(1)求∠的度数.(2)试说明:△为等腰三角形.27.(7分)如图,四边形为一梯形纸片,∥,.翻折纸片,使点与点重合,折痕为.已知⊥,试说明:∥.28.(7分)如图,菱形中,点是的中点,且⊥,.求:(1)∠的度数;(2)对角线的长;(3)菱形的面积.29.(8分)已知矩形中,6,8,平分∠交于点,平分∠交于点.(1)说明四边形为平行四边形;(2)求四边形的面积.30.(8分)如图,点是等腰直角△的直角边上一点,的垂直平分线分别交、、于点、、,且.当时,试说明四边形是菱形.期中测试题参考答案一、选择题1.A 解析:①两个全等三角形合在一起,由于位置关系不确定,不能判定是否为轴对称图形,错误;②等腰三角形的对称轴是底边上的中线所在的直线,而非中线,故错误; ③等边三角形一边上的高所在的直线是这边的垂直平分线,故错误;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,正确.故选A . 2.B 解析:(1)当边长7是腰时,底边长(cm ), 三角形的三边长为1、7、7,能组成三角形; (2)当边长7是底边时,腰长(cm ),三角形的三边长为4、4、7,能组成三角形.因此,三角形的底边长为1 cm 或7 cm . 3.A 解析:选项A 中;选项B 中;选项C 中;选项D中,故只有A 正确.4.D 解析:4个算式都是错误的.其中①12111213144169144251===;②4)4(2=-; ③22-没有意义; ④204125162516251161=⨯+=+.5.A 解析:∵ 是角平分线,∠36°,∴ ∠36°,∠72°,∴ (△是等腰三角形). ∵ ∠∠72°,∴(△是等腰三角形).∵ ∠72°,∴ (△是等腰三角形),故选A . 6.A 解析:∵ △和△都是等腰直角三角形,∴ ∠∠. 又∵ △绕着点沿逆时针旋转度后能够与△重合,∴ 旋转中心为点,旋转角度为45°,即45.若把图(1)作为“基本图形”绕着点沿逆时针旋转度可得到图(2),则454590,故选A .7.C 解析:如图,作⊥于点,∵ ∠,⊥,⊥,∴ .∵ ∥,∴ ∠2∠30°,∴ 在Rt △中,,故选C .8.C 解析:如图为圆柱的侧面展开图,∵ 为的中点,则就是蚂蚁爬行的最短路径. ∵,∴.∵ ,∴ ,即蚂蚁要爬行的最短距离是10 cm . 9.D 解析:设,则,根据“等面积法”得,解得,∴ 平行四边形的面积.10.B 解析:依据平行四边形的性质有,由△的周长比△的周长大,得,故2ba +. 11.D 解析:A 是中心对称图形,不是轴对称图形;B 、C 是轴对称图形,也是中心对称图形;D 是轴对称图形,不是中心对称图形,故选D . 12.C 解析:由于菱形的四边相等,且原四边形对角线为菱形边长的2倍,故原四边形为对角线相等的四边形. 二、填空题13. ①-7,0.32,31,46,0,3216;②8,21,-2π; ③0.32,31,46,8,21,3216;④-7,0.32,31,46,0,8,21,3216,-2π14.29 解析:当腰长为3时,等腰梯形不成立.同理,当腰长为4时,也不能构成等腰梯形.故只有当腰长为11时满足条件,此时等腰梯形的周长为29.15.15 cm 解析:如图,∵ 等腰三角形底边上的高、中线以及顶角平分线三线合一, ∴.∵,∴ .∵ ,∴ (cm ).16.108 解析:因为,所以△是直角三角形,且两条直角边长分别为9、12,则以两个这样的三角形拼成的长方形的面积为.17.15 解析:∵ 点关于的对称点是,关于的对称点是,∴ ,. ∴ △的周长为. 18. 解析:如图,过点作⊥于点,延长到点,使,连接,交于点,连接,此时的值最小.连接,由对称性可知∠45°,,∴ ∠90°.根据勾股定理可得.19.8 解析:由5-a +3+b ,得,所以.20.27 解析:因为,所以,所以. 21. 解析:连接,∵ 四边形是菱形,∠, ∴ ∠,,∠,∠21∠.∴ ∠,△为等边三角形,∴ ,∠,即∠.又∠,即∠, ∴ ∠.又,∠,∴△≌△(ASA),∴.又,则△是等边三角形,∴.又,则.22.6、3 解析:因为将三角形的三边分别重合一次,可拼得3个四边形,通过旋转后可得3个,所以共有6个.其中有3个是平行四边形.三、解答题23.分析:在平行四边形中,可由对边分别相等得出,的长,再在Rt △中,由勾股定理得出线段的长,进而可求解的长.解:∵四边形ABCD是平行四边形,∴,,.∵ BD⊥AD,∴,∴2125.24.解:将此图形分成两个矩形,分别作出两个矩形的对角线的交点,,则,分别为两矩形的对称中心,过点,的直线就是所求的直线,如图所示.25.(1)证明:在矩形ABCD中,,且,所以.(2)解:△ABF≌△DEA.证明:在矩形ABCD中,∵ BC∥AD,∴∠.∵ DE⊥AG,∴∠.∵∠,∴∠.又∵,∴△ABF≌△DEA.26.分析:(1)在三角形中,根据等边对等角,再利用角的等量关系可知,再由直角三角形中,两锐角互余即可求解.(2)有两条边相等的三角形是等腰三角形,故连接,根据等腰梯形的性质及线段间的关系及平行的性质,可得.解:(1)∵∥,∴.∵,∴.∴.∵,∴梯形为等腰梯形,∴.∴.在△中,∵,∴.∴.∴21.∴.(2)如图,连接,由等腰梯形可得.EF在四边形中,∵ ∥,,∴ 四边形是平行四边形.∴ ,∴ , 即△为等腰三角形.27.分析:过点作∥,交的延长线于点,连接,交于点,则. 证明四边形是平行四边形,△是等腰三角形,根据等腰三角形的性质,底边上的高是底边上的中线,得到是△的中位线, 可得∥,即∥.解:如图,过点作∥,交的延长线于点, 连接,交于点,则.∵ ∥,∴ 四边形是平行四边形,∴ ,.∵ ,∴ .∴ △是等腰三角形.又∵ ⊥,∴ .∴ 是△的中位线.∴ ∥.∴ ∥. 28.分析:(1)连接,可证△是等边三角形,进而得出;(2)可根据勾股定理先求得的一半,再求的长; (3)根据菱形的面积公式计算即可. 解:(1)如图,连接,∵ 点是的中点,且⊥,∴ (垂直平分线的性质).又∵ ,∴ △是等边三角形,∴ .∴ (菱形的对角线互相垂直平分,且每一条对角线平分一组对角). (2)设与相交于点,则2a.根据勾股定理可得a 23,∴ a 3.(3)菱形的面积=21××a 3=223a . 29.分析:(1)可证明∥,又∥,可证四边形为平行四边形.(2)先求△的面积,再求平行四边形的面积. 解:(1)∵ 四边形是矩形,∴ ∥,∥,∴ ∵ 平分,平分,∴ .∴ ∥. ∴ 四边形为平行四边形(两组对边分别平行的四边形是平行四边形). (2)如图,作⊥于点.∵ 平分∠,∴ (角平分线的性质).又,∴ ,.在Rt △中,设,则, 那么,解得.∴ 平行四边形的面积等于.30.解:如图,过点作⊥于点,∵,,∴△是等腰直角三角形,∵,,∴.又,,∴△≌△,∴.∵是的垂直平分线,∴,,∴,∴△≌△,∴,∴四边形是菱形.。
江苏省盐城市阜宁县2017-2018学年八年级数学上学期期中试卷

江苏省盐城市阜宁县2017-2018学年八年级数学上学期期中试题第一部分 基础题(100分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.下列四个数中,是负数的是AB .()22-C .2-D 2.如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是A .CB=CDB .∠BAC=∠DAC C .∠B=∠D=90°D .∠BCA=∠DCA 3.下列图形中,是.轴对称图形的为A B C D4.由四舍五入法得到的近似数3104.6⨯,它的精确程度为A .1.0B .10C .100D .10005.已知三组数据:①2,3,4;②3,4,5;③5,12,13.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有 A .②B .①②C .①③D .②③6.下列计算正确的是A =±2B 3-C 4-D7.下列命题中:正确的说法有①两个全等三角形合在一起是一个轴对称图形; ②成轴对称的两个图形一定全等;③直线l 经过线段AB 的中点,则l 是线段AB 的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形. A .1个B .2个C .3个D .4个8.如图,数轴上A B ,两点表示的数分别为1-,点A 是线段BC 的中点,则点C 所表示的数为A.2- B.1-C.2-+D.1+二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.94的算术平方根是 ▲ . 10.角平分线上的点到角两边的距离 ▲ .11.圆周率 1415926.3=π精确到001.0是 ▲ .12.已知等腰三角形的两边长分别为4 cm 、2 cm ,则该等腰三角形的周长是 ▲ . 13.如图,用“SAS”证明△ABC≌△ADE,若已知AB =AD ,AC =AE ,则还需添加条件为 ▲ .C第13题图 第14题图 第15题图14.如图,在Rt△ABC 中,∠B=90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE=12°,则∠C 的度数为 ▲ .15.如图△ABC 中,4,5==AC AB ,∠B,∠C 的平分线相交于点O ,过O 点的直线MN∥BC 交AB 、AC 于点M 、N 。
2018-2019(含答案)八年级(上)期中数学试卷 (10)

2018-2019(含答案)八年级(上)期中数学试卷 (10).................................................................................................................................................................2018.10.22一、选择题:本大题共12题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下面各组线段中,能组成三角形的是()A.5,11,6B.8,8,16C.10,5,4D.6,9,143.若一个多边形的内角和为1080∘,则这个多边形的边数为()A.6B.7C.8D.94.等腰三角形的一个内角是50∘,则这个三角形的底角的大小是()A.65∘或50∘B.80∘或40∘C.65∘或80∘D.50∘或80∘5.如图,在△ABC中,BC边上的高为()A.BEB.AEC.BFD.CF6.在△ABC中,∠B的平分线与∠C的平分线相交于O,且∠BOC=130∘,则∠A=()A.50∘B.60∘C.80∘D.100∘7.已知:如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,则图中共有全等三角形()A.5对B.4对C.3对D.2对8.和点P(2, −5)关于x轴对称的点是()A.(−2, −5)B.(2, −5)C.(2, 5)D.(−2, 5)9.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙10.如图,∠A =15∘,AB =BC =CD =DE =EF ,则∠DEF 等于( )A.90∘B.75∘C.70∘D.60∘11.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180∘形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为( )A.80∘B.100∘C.60∘D.45∘12.已知AB =AC =BD ,则∠1与∠2的关系是( )A.∠1=2∠2B.2∠1+∠2=180∘C.∠1+3∠2=180∘D.3∠1−∠2=180∘二、填空题:本大题共5个小题,共20分,只要求填写最后结果,每小题填对得4分.13.等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为________.14.点P 到△ABC 三边的距离相等,则点P 是________的交点.15.一辆汽车车牌在水中的倒影为如图,该车牌的牌照号码是________.16.如图在中,AB =AC ,∠A =40∘,AB 的垂直平分线MN 交AC 于D ,则∠DBC =________度.17.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为________.三、解答题18.如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点.(保留作图痕迹)19.如图,在平面直角坐标系中,A(1, 2),B(3, 1),C(−2, −1).(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)写出A1,B1,C1的坐标(直接写出答案),A1________;B1________;C1________.(3)△A1B1C1的面积为________.20.如图,△ABC≅△ADE,且∠CAD=10∘,∠B=∠D=25∘,∠EAB=120∘,求∠DFB和∠DGB的度数.21.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.22.已知:如图所示,在△ABC中,AB=AC,E在CA延长线上,AE=AF,AD是高,试判断EF与BC的位置关系,并说明理由.23.如图,在△ABC中,∠ACB=90∘,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≅△CEB.(2)AD=5cm,DE=3cm,求BE的长度.24.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF 的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.答案1. 【答案】C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.2. 【答案】D【解析】根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【解答】解:A、∵5+6<11,∴不能组成三角形,故A选项错误;B、∵8+8=16,∴不能组成三角形,故B选项错误;C、∵5+4<10,∴不能组成三角形,故C选项错误;D、∵6+9>14,∴能组成三角形,故D选项正确.故选:D.3. 【答案】C【解析】首先设这个多边形的边数为n,由n边形的内角和等于180∘(n−2),即可得方程180(n−2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n−2)=1080,解得:n=8.故选C.4. 【答案】A【解析】等腰三角形的两个底角相等,已知一个内角是50∘,则这个角可能是底角也可能是顶角.要分两种情况讨论.【解答】解:当50∘的角是底角时,三角形的底角就是50∘;当50∘的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65度.故选:A.5. 【答案】B【解析】根据三角形的高线的定义解答.【解答】解:根据高的定义,AE为△ABC中BC边上的高.故选B.6. 【答案】C【解析】在△BOC中由三角形的内角和可求得∠OBC+∠OCB=50∘,再由角平分线的定义可得∠ABC+∠ACB=2(∠OBC+∠OCB)=100∘,在△ABC中再利用三角形内角和定理可求得∠A.【解答】解:∵∠BOC=130∘,∴∠OBC+∠OCB=180∘−∠BOC=180∘−130∘=50∘,∵BO和CO分别平分∠ABC和∠ACB,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=100∘,∴∠A=180∘−(∠ABC+∠ACB)=180∘−100∘=80∘,故选C.7. 【答案】A【解析】三角形全等条件中必须是三个元素,并且一定有一组对应边相等.此类题可以先把单独的两个全等三角形的对数找完,再找由两个三角形组合的全等的大三角形的对数,最后找由三个小三角形组合的全等的大三角形的对数.【解答】解:单独的两个全等三角形的对数是3,分别是:△BDE≅△CDF、△DGE≅△DGF、△AGE≅△AGF;由两个三角形组合的全等的大三角形的对数是1,是:△AED≅△AFD;由三个小三角形组合的全等的大三角形的对数是1,是:△ADB≅△ADC;所以共5对,故选A.8. 【答案】C【解析】点P(m, n)关于x轴对称点的坐标P′(m, −n),然后将题目已经点的坐标代入即可求得解.【解答】解:根据轴对称的性质,得点P(2, −5)关于x轴对称的点的坐标为(2, 5).故选:C.9. 【答案】B【解析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选B.10. 【答案】D【解析】根据已知条件,利用等腰三角形的性质及三角形的内角和外角之间的关系进行计算.【解答】解:∵AB=BC=CD=DE=EF,∠A=15∘,∴∠BCA=∠A=15∘,∴∠CBD=∠BDC=∠BCA+∠A=15∘+15∘=30∘,∴∠BCD=180∘−(∠CBD+∠BDC)=180∘−60∘=120∘,∴∠ECD=∠CED=180∘−∠BCD−∠BCA=180∘−120∘−15∘=45∘,∴∠CDE=180∘−(∠ECD+∠CED)=180∘−90∘=90∘,∴∠EDF=∠EFD=180∘−∠CDE−∠BDC=180∘−90∘−30∘=60∘,∴∠DEF=180∘−(∠EDF+∠EFC)=180∘−120∘=60∘.故选D.11. 【答案】A【解析】先根据三角形的内角和定理易计算出∠1=140∘,∠2=25∘,∠3=15∘,根据折叠的性质得到∠1=∠BAE=140∘,∠E=∠3=15∘,∠ACD=∠E=15∘,可计算出∠EAC,然后根据∠α+∠E=∠EAC+∠ACD,即可得到∠α=∠EAC.【解答】解:设∠3=3x,则∠1=28x,∠2=5x,∵∠1+∠2+∠3=180∘,∴28x+5x+3x=180∘,解得x=5∘,∴∠1=140∘,∠2=25∘,∠3=15∘,∵△ABE是△ABC沿着AB边翻折180∘形成的,∴∠1=∠BAE=140∘,∠E=∠3=15∘,∴∠EAC=360∘−∠BAE−∠BAC=360∘−140∘−140∘=80∘,又∵△ADC是△ABC沿着AC边翻折180∘形成的,∴∠ACD=∠E=15∘,而∠α+∠E=∠EAC+∠ACD,∴∠α=∠EAC=80∘.故选A.12. 【答案】D【解析】根据等腰三角形的性质和三角形内角和定理可得∠1和∠C之间的关系,再根据三角形外角的性质可得∠1和∠2之间的关系.【解答】解:∵AB=AC=BD,∴∠B=∠C=180−2∠1,∴∠1−∠2=180−2∠1,∴3∠1−∠2=180.故选D.13. 【答案】8cm【解析】设腰长为2x,得出方程(2x+x)−(5+x)=3或(5+x)−(2x+x)=3,求出x后根据三角形三边关系进行验证即可.【解答】解:设腰长为2x,一腰的中线为y,则(2x+x)−(5+x)=3或(5+x)−(2x+x)=3,解得:x=4,x=1,∴2x=8或2,①三角形ABC三边长为8、8、5,符合三角形三边关系定理;②三角形ABC三边是2、2、5,2+2<5,不符合三角形三边关系定理;故答案为:8cm.14. 【答案】角平分线的交点【解析】根据角平分线上的点到角的两边距离相等解答.【解答】解:∵点P到△ABC三边的距离相等,∴点P是角平分线的交点.故答案为:角平分线的交点.15. 【答案】M17936【解析】在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面成轴对称图形.【解答】解:根据镜面对称的性质,题中所显示的图片所显示的数字与M17936成轴对称,该车牌的牌照号码是M17936.故答案为M17936.16. 【答案】30【解析】由AB=AC,∠A=40∘,即可推出∠C=∠ABC=70∘,由垂直平分线的性质可推出AD=BD,即可推出∠A=∠ABD=40∘,根据图形即可求出结果.【解答】解:∵AB=AC,∠A=40∘,∴∠C=∠ABC=70∘,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠A=∠ABD=40∘,∴∠DBC=30∘.故答案为30∘.17. 【答案】15【解析】P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N.【解答】解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.故答案为:1518. 【答案】解:作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置.【解析】根据两点间线段最短可知作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置.【解答】解:作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置.19. 【答案】; (−1, 2),(−3, 1),(2, −1); 4.5【解析】(1)根据网格结构找出点A、B、C的对应点A1、B1、C1的位置,然后顺次连接即可;; (2)根据平面直角坐标系写出各点的坐标;; (3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.【解答】解:(1)△A1B1C1如图所示;; (2)△A1(−1, 2),B1(−3, 1),C1(2, −1);; (3)△A1B1C1的面积=5×3−12×1×2−12×2×5−12×3×3,=15−1−5−4.5,=15−10.5,=4.5.20. 【答案】解:∵△ABC≅△ADE,∴∠DAE=∠BAC=12(∠EAB−∠CAD)=12(120∘−10∘)=55∘.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10∘+55∘+25∘=90∘∠DGB=∠DFB−∠D=90∘−25∘=65∘.综上所述:∠DFB=90∘,∠DGB=65∘.【解析】由△ABC≅△ADE,可得∠DAE=∠BAC=12(∠EAB−∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B,因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形内角和定理可得∠DGB=∠DFB−∠D,即可得∠DGB的度数.【解答】解:∵△ABC≅△ADE,∴∠DAE=∠BAC=12(∠EAB−∠CAD)=12(120∘−10∘)=55∘.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10∘+55∘+25∘=90∘∠DGB=∠DFB−∠D=90∘−25∘=65∘.综上所述:∠DFB=90∘,∠DGB=65∘.21. 【答案】解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90∘.∠BAE=∠DAC=90∘+∠CAE,在△BAE和△DAC中AB=AC∠BAE=∠DACAE=AD∴△BAE≅△CAD(SAS).; (2)由(1)得△BAE≅△CAD.∴∠DCA=∠B=45∘.∵∠BCA=45∘,∴∠BCD=∠BCA+∠DCA=90∘,∴DC⊥BE.【解析】①可以找出△BAE≅△CAD,条件是AB=AC,DA=EA,∠BAE=∠DAC= 90∘+∠CAE.②由①可得出∠DCA=∠ABC=45∘,则∠BCD=90∘,所以DC⊥BE.; ①可以找出△BAE≅△CAD,条件是AB=AC,DA=EA,∠BAE=∠DAC=90∘+∠CAE.②由①可得出∠DCA=∠ABC=45∘,则∠BCD=90∘,所以DC⊥BE.【解答】解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90∘.∠BAE=∠DAC=90∘+∠CAE,在△BAE和△DAC中AB=AC∠BAE=∠DACAE=AD∴△BAE≅△CAD(SAS).; (2)由(1)得△BAE≅△CAD.∴∠DCA=∠B=45∘.∵∠BCA=45∘,∴∠BCD=∠BCA+∠DCA=90∘,∴DC⊥BE.22. 【答案】解:垂直.理由:∵在△ABC中,AB=AC,AD是高,∴∠BAD=∠CAD,∵AE=AF,∴∠E=∠EFA,∵∠BAC=∠E+∠EFA=2∠EFA,∴∠EFA=∠BAD,∴EF // AD,∵AD⊥BC,∴EF⊥BC.故EF与BC的位置关系为:垂直.【解析】根据等腰三角形三线合一的性质可得到∠BAD=∠CAD,再根据三角形外角的性质可推出∠EFA=∠BAD,再根据内错角相等两直线平行得到EF // AD,已知AD⊥BC,则EF与BC的关系为垂直.【解答】解:垂直.理由:∵在△ABC中,AB=AC,AD是高,∴∠BAD=∠CAD,∵AE=AF,∴∠E=∠EFA,∵∠BAC=∠E+∠EFA=2∠EFA,∴∠EFA=∠BAD,∴EF // AD,∵AD⊥BC,∴EF⊥BC.故EF与BC的位置关系为:垂直.23. 【答案】(1)证明:如图,∵AD⊥CE,∠ACB=90∘,∴∠ADC=∠ACB=90∘,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,∠ADC=∠CEB∠CAD=∠BCE,AC=BC∴△ADC≅△CEB(AAS);; (2)由(1)知,△ADC≅△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE−DE,∴BE=AD−DE=5−3=2(cm),即BE的长度是2cm.【解析】(1)根据全等三角形的判定定理AAS推知:△ADC≅△CEB;; (2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD−DE.【解答】(1)证明:如图,∵AD⊥CE,∠ACB=90∘,∴∠ADC=∠ACB=90∘,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,∠ADC=∠CEB∠CAD=∠BCE,AC=BC∴△ADC≅△CEB(AAS);; (2)由(1)知,△ADC≅△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE−DE,∴BE=AD−DE=5−3=2(cm),即BE的长度是2cm.24. 【答案】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90∘,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中AB=CG∠ABD=∠ACG,BD=CA∴△ABD≅△GCA(SAS),∴AD=GA(全等三角形的对应边相等);; (2)位置关系是AD⊥GA,理由为:∵△ABD≅△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90∘,∴AD⊥GA.【解析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得到一对角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形BHF与三角形CHE相似,由相似三角形的对应角相等得到一对角相等,再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,; (2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90∘,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90∘,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中AB=CG∠ABD=∠ACG,BD=CA∴△ABD≅△GCA(SAS),∴AD=GA(全等三角形的对应边相等);; (2)位置关系是AD⊥GA,理由为:∵△ABD≅△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90∘,∴AD⊥GA.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年江苏省盐城市阜宁县八年级(上)期中数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四
个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.(3分)下列“表情图”中,属于轴对称图形的是()
A.B.C.D.
2.(3分)下列说法错误的是()
A.是3的一个平方根
B.是3的算术平方根
C.3的平方根就是3的算术平方根
D.的平方是3
3.(3分)如图,△ABC≌△CDA,则下列结论错误的是()
A.AC=CA B.∠B=∠D C.∠ACB=∠CAD D.AB=AD 4.(3分)如图,要用“SAS”证△ABC≌△ADE,若已知AB=AD,AC=AE,则还需条件()
A.∠B=∠D B.∠C=∠E C.∠1=∠2D.∠3=∠4 5.(3分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE =5,则点P到AB的距离是()
A.3B.4C.5D.6
6.(3分)如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC 于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()
A.30°B.40°C.50°D.60°
7.(3分)下列各组数为勾股数的是()
A.6,12,13B.3,4,7C.4,7.5,8.5D.8,15,17 8.(3分)△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()
A.如果∠C﹣∠B=∠A,则△ABC是直角三角形
B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°
C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形
二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,
请把答案直接填写在答题卡相应位置上)
9.(3分)﹣8的立方根是.
10.(3分)已知等腰三角形的两边长分别为2cm,4cm,则其周长为.11.(3分)若一个正数的两个平方根分别是2a﹣1和﹣a+5,这个正数是.12.(3分)已知:m、n为两个连续的整数,且m<n,则=.13.(3分)已知地球的半径约为6.4×103km,这个近似数精确度为km.14.(3分)如图,AC=AD,要使△ABC≌△ABD,可补充的一个条件是.
15.(3分)如图,已知△ABC中,BC=5,AB的垂直平分线交AC于点D,若AC=12,则△BCD的周长为.
16.(3分)如图,正方形网格中,已有两个小正方形被涂黑,再将图其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有个.
三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解
答时应写出必要的文字说明、证明过程或演算步骤)ABC
17.(6分)已知△ABC,求作一点P,使PB=PC且点P到∠ABC两边的距离相等.(保留作图痕迹,不写作法)
18.(8分)求下列各式中的x:
(1)5x2=15
(2)(x+2)3=﹣27
19.(10分)如图,AC=CD,∠ACB=∠BCD.求证:
(1)AB=BD;
(2)BC是线段AD的垂直平分线.
20.(10分)如图,已知AB=DE,BC=EF,AF=DC,求证:AB∥DE.
21.(8分)在△ABC中,AB=AC=8,∠BAC=100°,AD是∠BAC的平分线,交BC于D,点E是AB的中点,连接DE.
求:(1)∠B的度数;(2)线段DE的长.
22.(10分)如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.
(1)求DC和AB的长;
(2)证明:∠ACB=90°.
23.(8分)如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?
24.(10分)已知如图,AB=13cm,AD=4cm,CD=3cm,BC=12cm,∠D=90°.求四边形ABCD的面积.
25.(10分)在△ABC中,∠C=90°,∠A=30°,以AB、AC为边向△ABC 外作等边△ABD和等边△ACE.
(1)如图1.连接BE、CD,BE与CD交于点O,
①证明:DC=BE;
②∠BOC=°.(直接填答案)
(2)如图2,连接DE,交AB于点F.DF与EF相等吗?证明你的结论.26.(10分)如图,已知△ABC中,AB=AC=5厘米,BC=4厘米,点D为AB 的中点.如果点P在线段BC上以1.5厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP 是否全等,请说明理由;
(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
27.(12分)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小
正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.
(1)△ABC的面积为:.
(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.
(3)如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17
①试说明△PQR、△BCR、△DEQ、△AFP的面积相等;
②请利用第2小题解题方法求六边形花坛ABCDEF的面积.
2018-2019学年江苏省盐城市阜宁县八年级(上)期中数
学试卷
参考答案
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四
个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.A;2.C;3.D;4.C;5.C;6.B;7.D;8.B;
二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,
请把答案直接填写在答题卡相应位置上)
9.﹣2;10.10;11.81;12.3;13.100;14.∠CAB=∠DAB;15.17;
16.5;
三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解
答时应写出必要的文字说明、证明过程或演算步骤)ABC
17.;18.;19.;20.;21.;22.;
23.;24.;25.120;26.;27.;。