11.1反比例函数
(完整版)初中数学反比例函数知识点及经典例

04
利用相似三角形求解线段长度或角度大小
通过相似三角形的性质,我们可以建立 比例关系,从而求解未知线段长度或角 度大小。
解方程求解未知量。
具体步骤
根据相似比建立等式关系。
确定相似三角形,找出对应边或对应角 。
经典例题讲解和思路拓展
例题1
解题思路
例题2
解题思路
已知直角三角形ABC中, ∠C=90°,AC=3,BC=4,将 △ABC沿CB方向平移2个单位 得到△DEF,若AG⊥DE于点G ,则AG的长为____反比例函数$y = frac{m}{x}$的图像经过点$A(2,3)$,且与直线$y = -x + b$相 交于点$P(4,n)$,求$m,n,b$的
值。
XXX
PART 03
反比例函数与不等式关系 探讨
REPORTING
一元一次不等式解法回顾
一元一次不等式的定义
01
在材料力学中,胡克定律指出弹簧的 伸长量与作用力成反比。这种关系同 样可以用反比例函数来描述。
牛顿第二定律
在物理学中,牛顿第二定律表明物体 的加速度与作用力成正比,与物体质 量成反比。这种关系也可以用反比例 函数来表示。
经济学和金融学领域应用案例分享
供需关系
在经济学中,供需关系是决定商品价 格的重要因素。当供应量增加时,商 品价格下降;反之,供应量减少时, 商品价格上升。这种供需关系可以用 反比例函数来表示。
XXX
PART 02
反比例函数与直线交点问 题
REPORTING
求解交点坐标方法
方程组法
将反比例函数和直线的方程联立 ,解方程组得到交点坐标。
图像法
在同一坐标系中分别作出反比例 函数和直线的图像,找出交点并 确定其坐标。
初中数学苏科版八年级下册第11章 反比例函数11.1 反比例函数-章节测试习题

章节测试题1.【答题】已知y=y1+y2,其中y1与x成反比例,且比例系数为k1(k1≠0),y2与x成正比例,且比例系数为k2(k2≠0),当x=-1时,y=0,则k1与k2的关系是()A. k1+k2=0B. k1-k2=0C. k1k2=1D. k1k2=-1【答案】A【分析】由题意y1与x成反比例,y2与x成正比例,可用待定系数法设出,再将x=-1时,y=0代入即可表示出k1与k2的关系.【解答】解:∵,∵当x=-1时,y=0,∴0=-k1-k2,∴k1+k2=0,选A.2.【答题】已知y与x2成反比例,并且当x=-2时,y=2,那么当x=4时,y等于()A. -2B. 2C.D. -4【答案】C【分析】由题意y与x2成反比例,设y=,然后把点(-2,2),代入求出k 值,从而求出函数的解析式,求出y值.【解答】解:∵y与x2成反比例,∴y=当x=-2时,y=2,∴,∴k=8,∴.当x=4时,.选C.3.【答题】甲、乙两地相距100千米,一辆汽车从甲地开往乙地,把汽车到达乙地所用时间t(小时)表示为汽车速度v(千米/时)的函数,其函数表达式为______.【答案】【分析】根据等量关系“路程=速度×时间”写出函数关系式.【解答】解:根据题意,得.故答案为:.4.【答题】已知y1与x成正比例系数为k1,y2与x成反比例,比例系数为k2,若函数y=y1-y2的图象经过点(1,2),(2,),则8k1+5k2的值为______.【答案】9【分析】设出y1和y2的解析式,由y=y1+y2的图象经过点(1,2),(2,),代入求得k1 、k2的值,再求得8k1+5k2的值.【解答】解:设则,将点(1,2),(2,),代入得,,解得,,∴8k1+5k2==9.5.【题文】已知y=y1+y2,其中y1与x成反比例,y2与(x-2)成正比例.当x=1时,y=-1;x=3时,y=3.(1)求y与x的函数关系式;(2)当x=-1时,y的值。
反比例函数知识点知识点总结

反比例函数知识点知识点总结反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。
需要注意的是,反比例函数中自变量 x 的取值范围是x≠0,因为分母不能为 0。
例如,当 k = 5 时,反比例函数为 y = 5/x。
二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x (k 为常数,k≠0),这是最基本的形式。
2、 xy = k (k 为常数,k≠0),通过将 y = k/x 两边同乘 x 得到。
3、 y = kx^(-1) (k 为常数,k≠0),这是反比例函数的幂函数形式。
三、反比例函数的图像反比例函数的图像是双曲线。
当 k>0 时,双曲线的两支分别位于第一、三象限,在每一象限内 y 随 x 的增大而减小。
当 k<0 时,双曲线的两支分别位于第二、四象限,在每一象限内 y 随 x 的增大而增大。
例如,对于函数 y = 2/x,因为 k = 2>0,所以图像位于第一、三象限,在每个象限内,当 x 增大时,y 减小。
四、反比例函数图像的性质1、对称性反比例函数的图像关于原点对称,即若点(a,b)在反比例函数图像上,则点(a,b)也在其图像上。
2、渐近线双曲线逐渐接近但永远不会与坐标轴相交,其渐近线为 x 轴和 y 轴。
3、连续性反比例函数在定义域内不是连续的,存在间断点 x = 0。
五、反比例函数中 k 的几何意义在反比例函数 y = k/x 图像上任取一点 P,过点 P 分别作 x 轴、y轴的垂线 PM、PN,垂足分别为 M、N,则矩形 PMON 的面积 S =PM×PN =|y|×|x| =|xy| =|k|。
例如,在函数 y = 6/x 的图像上有一点 P(2,3),则矩形 PMON 的面积为 6。
六、反比例函数与一次函数的综合在解决反比例函数与一次函数的综合问题时,通常需要联立两个函数的解析式,组成方程组,求解交点坐标。
11.1反比例函数

(4) 实数 m 与 n 的积为 -200,m 随 n 的变化而变化.
交流
上述函数表达式 y 500、y 20、t 5000、m 200
x
x
v
n
是一次函数吗?是正比例函数吗?
已知y是x的反比例函数,当x=5时,y=2
(1)求y与x的函数关系式; (2)当x=-4时,y的值是多少?
11.1 反比例函数
一般地, 在一个 变化过程中的两个变量x和y, 如果对于x的每一个值, y都有 唯一 的值与它对 应,那么我们称 y是x的函数 .
其中,x是 自变量.
生活与数学
飞驰的列车
问题情境
一辆列车从南京出发开往上海,以速度 v (km/h) 行驶,行驶时间为 t (h),行驶路程为 s (km).
x是不等于0的一切实数
试一试 下列关系式中的 y 是 x 的反比例函数吗?
(1) y 4 x
(3) y 1 x
(2) y 1 2x
(4) xy 1
(5) y x 2
(7) y k x
(6) y 3x1 (8) y 2 1
x
反比例函数通常有三种表达式:y = k ,y = kx-1,
思考
用函数表达式表示下列问题中两个变量之间的关系:
(1) 计划修建一条长为 500 km 的高速公路,完成该项目 的天数 y (天) 随日完成量 x (km) 的变化而变化;
(2) 一家银行为某社会福利厂提供了 20 万元的无息贷款, 该厂的平均年还款额 y (万元) 随还款年限 x (年) 的变 化而变化;
《反比例函数》 讲义

《反比例函数》讲义一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。
其中 x 是自变量,y 是因变量,k 称为反比例系数。
例如,速度 v 一定时,路程 s 与时间 t 之间的关系为 s = vt。
当路程一定时,即 s 为常数,此时 s = vt 就变成了 t = s/v,这里的 t 是 v 的反比例函数,s 就是反比例系数。
需要注意的是,反比例函数的自变量 x 不能为 0,因为分母不能为0。
二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x (k 为常数,k≠0),这是最基本的形式。
2、 xy = k (k 为常数,k≠0)。
3、 y = kx^(-1) (k 为常数,k≠0),这种形式更能体现出 x 的次数为-1。
例如,已知反比例函数经过点(2,3),则可以将点的坐标代入 y= k/x 中,得到 3 = k/2,解得 k = 6,所以该反比例函数的表达式为 y = 6/x。
三、反比例函数的图像反比例函数的图像是双曲线。
当 k>0 时,双曲线的两支分别位于第一、第三象限,在每一象限内 y 随 x 的增大而减小;当 k<0 时,双曲线的两支分别位于第二、第四象限,在每一象限内 y 随 x 的增大而增大。
以 y = 2/x 为例,当 x = 1 时,y = 2;当 x = 2 时,y = 1。
通过列表、描点、连线,可以得到其图像。
可以发现,图像关于原点对称,并且无限接近坐标轴,但永远不会与坐标轴相交。
再比如 y =-2/x,同样通过列表、描点、连线的方法绘制图像,会发现它的两支分别在第二、第四象限。
四、反比例函数中 k 的几何意义在反比例函数 y = k/x(k≠0)中,过双曲线上任意一点 P 作 x 轴、y 轴的垂线 PM、PN,垂足为 M、N,则矩形 PMON 的面积 S =PM·PN =|y|·|x| =|xy| =|k|。
2021版八年级数学下册第11章反比例函数11.1反比例函数教案新版人教版

数教案新版人教版教学目标1.结合具体情境体会反比例函数的意义,理解反比例函数的概念;2.能根据实际问题中的条件确定反比例函数的表达式;3.在探索过程中,引导学生体会反比例函数是刻画现实世界中特定数量关系的一种数学模型.教学重点反比例函数的概念.教学难点1.讨论两个变量之间的相互关系,从而让学生加深对函数概念的理解;2.通过对反比例函数的简单应用,使学生初步形成数学的建模意识和在函数概念中的运动变化观点.教学过程(教师)学生活动设计思路开场白:同学们,在小学里,我们已经知道如果两个量的乘积一定,那么这两个量成反比例.例如当路程s一定时,时间t 与速度v的关系.那成反比例的两个量之间的关系,怎样用函数表达式来表示呢?回顾旧知,进入学习状态.从学生熟悉的反比例知识入手,引发学生的数学学习兴趣.引入:南京与上海相距约300km,一辆汽车从南京出发,以速度v(km/h)开往上海,全程所用时间为t(h).写出t、v的关系式,并填写下表:v60 80 90 10 t随着速度的变化,全程所用时间发生怎样的变化?时间t是速度v的函数吗?为什么?积极思考,回答问题,填写表格.让学生重新回顾函数的有关知识,为引入反比例函数的概念做好准备.实践探索:用函数表达式表示下列问题中两个变量之间的关系.(1)计划修建一条长为500km的高速公路,完成该项目的天数y(天)随日完成量x(km)的变化而变化;(2)一家银行为某社会福利厂提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;(3)游泳池的容积为5000m3,向池内注水,注满水池所需时间t(h)随注水速度v(m3/h)的变化而变化;(4)实数m与n的积为-200,m 随n的变化而变化.交流讨论,积极回答:参考答案:(1)y=500x;(2)y=20x;(3)t=5000v;(4)m=-200n.通过学生相互讨论使学生主动参与到学习活动中来,培养学生小组合作意识.观察归纳:以上函数表达式具有什么共同特征?你还能举出类似的实例吗?小组讨论,代表回答:一般地,形如y=kx(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数.注意:1.反比例函数也可以表示为y=kx-1(k为常数,k≠0)的形式.2.反比例函数的自变量的取值范围是不等于0的一切实数.通过学生相互讨论,培养学生对问题的分析以及归纳能力,提高学生的数学语言表达能力.11.1 反比例函数作业设计1. 反比例函数ky x中,k 与x 的取值情况是( )A. k ≠0,x 取全体实数B. x ≠0,k 取全体实数C. k ≠0,x ≠0D. k 、x 都可取全体实数 2. 下列问题中两个变量间的函数关系式是反比例函数的是( ) A.小兰1分钟可以制作3朵花,x 分钟可以制y 朵花 B.体积12cm 3的长方体,高为h cm 时,底面积为S cm 2C.用一根长 40cm 的铜丝弯成一个矩形一边长为x cm 时,面积为y cm 2D.小李接到一次检修管道的任务,已知管道长100m ,设每天能完成10m ,x 天后剩下的未检修的管道长为y m3.矩形的面积是16cm 2,设它的一边长为x cm ,则矩形的另一边长y cm 与x cm 的函数关系是( ) A. x y 218-= B. y=16x C. x y 16= D. 16xy = 4. 下列函数:(1)y xπ=;(2)3y x =-;(3)52y x=-;(4)25y x =.其中反比例函数有( )A. 1个B. 2个C. 3个D. 4个5. 在某一电路中,保持电压不变,电流I (安培)与电阻R (欧姆)的函数关系式为RI 10=. 则当电流I =0.5安培时,电阻R 的值为( )A. 0.2欧姆B. 10欧姆C. 20欧姆D. 50欧姆 6. 下列各问题中,两个变量之间的关系不是反比例函数的是( ) A. 小明完成100m 赛跑时,时间t (s)与他跑步的平均速度v (m/s)之间的关系 B. 菱形的面积为48cm 2,它的两条对角线的长为y (cm)与x (cm)的关系C. 一个玻璃容器的体积为30L 时,所盛液体的质量m 与所盛液体的体积V 之间的关系D. 压力为600N 时,压强p 与受力面积S 之间的关系 7. 已知反比例函数x y 1=,当x=m 时,y=n ,则化简)1)(1(nn m m +-的结果是( ) A. 2m 2 B. 2n 2 C. n 2-m 2 D. m 2-n 2 8. 如果函数253(4)n n y n x-+=-是反比例函数,那么n =( )A. 1B. 4C. 1或4D. -1或-4 9. 如果y 是b 的反比例函数,b 是x 的反比例函数 则y 是x 的( )A. 正比例函数B. 反比例函数C. 一次函数D. 正比例函数或反比例函数 10. 把72y x=-化为ky x =的形式为 ,比例系数为 .11. 一批零件300个,一个工人每小时做15个,用关系式表示人数x •与完成任务所需的时间y 之间的函数关系式为________. 12. 对于函数xm y 1-=,当m 时,y 是x 的反比例函数. 13. 在电压U ,电流I ,电阻R 中,当 一定时,其余两个量成反比例. 14. 已知反比例函数xy 6-=中,当x=a 时,y= -a -1,则a = . 15.已知反比例函数xy 2-=,下表给出y 与x 的一些值: x -3 -1 1 3 y1-1请根据函数表达式完成上表.16. 已知变量x ,y 满足(2x -y )2=4x 2+y 2+6,则x ,y 是否成反比例,说明理由.11.1 反比例函数板书设计1.用函数表达式表示下列问题中两个变量之间的关系.(1)计划修建一条长为500km 的高速公路,完成该项目的天数y (天)随日完成量x (km)的变化而变化;(2)一家银行为某社会福利厂提供了20万元的无息贷款,该厂的平均年还款额y (万元)随还款年限x (年)的变化而变化;(3)游泳池的容积为5000m 3,向池内注水,注满水池所需时间t (h)随注水速度v (m 3/h)的变化而变化;(4)实数m 与n 的积为-200,m 随n 的变化而变化.2.一般地,形如y =kx(k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是函数. 注意:(1).反比例函数也可以表示为y =kx -1(k 为常数,k ≠0)的形式. (2).反比例函数的自变量的取值范围是不等于0的一切实数.【感谢您的阅览,下载后可自由复制或修改编辑,敬请您的关注】。
反比例函数知识点总结

反比例函数知识点总结反比例函数知识点总结1.反比例函数的定义一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数。
它可以从以下几个方面来理解:⑴ x是自变量,y是x的反比例函数;⑵自变量x的取值范围是x≠0的一切实数,函数值的取值范围是y≠0;⑶比例系数k≠0是反比例函数定义的一个重要组成部分;⑷反比例函数有三种表达式:① y=k/x(k≠0);② y=kx^-1(k≠0);③ xy=k(定值)(k≠0);⑸函数y=k/x(k≠0)与函数x=k/y(k≠0)是等价的,所以当y是x的反比例函数时,x也是y的反比例函数。
当k=0时,y=k/x就不是反比例函数了。
2.用待定系数法求反比例函数的解析式由于反比例函数y=k/x(k≠0)中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。
3.反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。
由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
4.反比例函数的性质关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表所示:反比例函数 y=k/x(k≠0) k的符号 k>0 k0 y0时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y随x的增大而减小。
当k<0时,函数图像的两个分支分别在第二、第四象限,在每个象限内,y随x的增大而增大。
反比例函数应用课件ppt课件ppt课件

例题一:求反比例函数的解析式
例题与实战演练
1. 已知某地电话费每分钟0.5元,求通话时间t(分)与电话费y(元)之间的函数关系式。
2. 如果某地有甲、乙两个车站,相距400km,甲站到乙站的距离为s(km),求甲车到乙站所 需时间t(h)与速度v(km/h)之间的函数关系式。
VS
详细描述
在解决一些实际应用问题时,常常需要将 不等式与反比例函数的知识结合起来,例 如在研究某些物理量之间的关系时,利用 反比例函数和不等式可以更好地描述它们 之间的关系。
与对数函数的结合
总结词
反比例函数与对数函数的结合,可以解决一 类实际应用问题。
详细描述
在解决一些实际应用问题时,常常需要将反 比例函数和对数函数的知识结合起来,例如 在研究某些传染病传播问题时,利用反比例 函数和对数函数可以更好地描述其传播速度 和时间的关系。
02
反比例函数通常表示为y=k/x或 x=k/y,其中k是常数且不为零。
反比例函数的基本形式
反比例函数的基本形式是y=k/x,其 中k是常数且不为零。
在这个函数中,x和y都是变量,而k是 一个常数。
反比例函数的图像特征
反比例函数的图像是一个双曲 线。
双曲线有两条曲线,一条在第 一象限,另一条在第三象限。
力学中的反比关系
在力学中,有些量之间存在反比关系,例如重力与距离的平方成反比,可以利用 反比例函数进行描述。
化学中的应用
化学反应速率
在化学反应中,反应速率与反应物的浓度成正比,与反应时 间成反比。利用反比例函数可以描述反应速率、反应物浓度 和反应时间之间的关系。
酸碱度与氢离子浓度
在酸碱度与氢离子浓度的关系中,氢离子浓度与酸碱度成反 比,可以利用反比例函数进行描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、已知y-3与x+2成反比例,且x=2时,y=7,求(1)y与x的函数关
系式。(2)求y=5时,x的值。
四、提炼总结:
由实际应用的反比例关系,认识了反比例函数,并理解其中K的意义及函数概念的本质,学会求简单的反比例函数关系式的方法。反比例函数与正比例函数类似,要研究其图像和性质,下一节课开始学习它的图像和性质。
:
活动一:
汽车从南京出发开往连云港(全程约为300km),全程所用的时间t(h)随速度v(km/h)的变化而变化.
(1)你能用含有v的代数式表示t吗?
(2)利用(1)中的关系式完成下表:
v/(km/h)
60
80
90
100
120
t/h
随着速度的变化,全程所用的时间发生怎样的变化?
速度变大,时间减小;速度变小,时间增大。
当
堂
达
标
1、在函数y=-1,y=,y=x-1,y=中,y是x的反比例函数的有个
2、下列哪些关系式中的y是x的反比例函数?如果是,比例系数是多少?
(1)y= x;(2)y= ;(3)xy-2=0;
3、若y与x成反比例,且x=-3时,y=7,则y与x的函数关系式是。
4、已知y-3与x+2成反比例,且x=2时,y=7,求(1)y与x的函数关系式。(2)求y=5时,x的值。
(1)一个面积为6400m 的长方形的长a(m)随宽b(m)的变化而变化;
(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均还款额y(万元)随还款年限x(年)的变化而变化;
(3)游泳池的容积为5000 m ,向池内注水,注满水所需时间t(h)随注水速度v(m /h)的变化而变化;
(4)实数m与n的积为-200,m随m的变化而变化。
(3)速度v是时间t的函数吗?为什么?
活动二:
(1)利函数关系式表示下列问题中的两个变量之间的关系:
①一个面积为6400㎡的长方形的长a(m)随宽b(m)的变化而变化;
函数关系式
②某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的
平均年还款额y(万元)随还款年限x(年)的变化而变化;
函数关系式
5、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数.如果是,指出比例系数k的值.
(1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;
(2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化;
学习反思:
课题
11.1反比例函数
自主
空间
学习目标
1、理解反比例函数的概念,会求比例系数。
2、感受反比例函数是刻画世界数量关系的一种有效模型,
能够列出实际问题中的反比例函数关系.
学习重点
理解反比例函数的概念。
学习难点
感受反比例函数是刻画世界数量关系的一种有效模型.
教学流程
预
习
导
航
思考:用函数关系式表示下列问题中的两个变量之间的关系:
③实数m与n的积为-200,m随n的变化而变化;
函数关系式
④一名工人加工80个零件的时间y(h)随该工人每小时能加工零件个数x(个/小时)的变化而变化.函数关系式
(2)交流:
函数关系式: 、 、 、 具有什么共同特征?
定义:一般地,形如 (k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,k是比例系数.
追问:指出上述4个反比例函数的比例系数。
二、例题分析:
例1、下列关系中的y是x的反比例函数吗?如果是,比例系数k是多少?
(1) ;(2) ;(3) ;(4) ;(5)
(6) ;(7)
三、展示交流:
1、已知函数 是反比例函数,求a的值
2、若y与x成反比例,且x=-3时,y=7,则y与x的函数关系式是
3、下列哪些关系中的y是x的反比例函数?如果是,比例系数是多少?