空间向量知识点归纳(期末复习)

合集下载

(完整word版)空间向量知识点总结

(完整word版)空间向量知识点总结

空间向量知识点总结1。

直线的方向向量和平面的法向量 ⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量。

⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面α的法向量为(,,)n x y z =.③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==.④根据法向量定义建立方程组00n a n b ⎧⋅=⎪⎨⋅=⎪⎩。

⑤解方程组,取其中一组解,即得平面α的法向量.(如图)2。

用向量方法判定空间中的平行关系 ⑴线线平行设直线12,l l 的方向向量分别是a b 、,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈。

即:两直线平行或重合两直线的方向向量共线。

⑵线面平行①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a u ⊥,即0a u ⋅=。

即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可。

⑶面面平行若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=. 即:两平面平行或重合两平面的法向量共线。

3。

用向量方法判定空间的垂直关系 ⑴线线垂直设直线12,l l 的方向向量分别是a b 、,则要证明12l l ⊥,只需证明a b ⊥,即0a b ⋅=。

即:两直线垂直两直线的方向向量垂直。

⑵线面垂直①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明a ∥u ,即a u λ=。

空间向量知识点归纳总结

空间向量知识点归纳总结

空间向量知识点归纳总结空间向量是高中数学中的一个重要概念,出现在向量代数、几何问题、解析几何以及线性代数等多个数学分支中。

下面是空间向量知识点的归纳总结:1.空间向量的定义:空间向量是具有大小和方向的量,它可以用有序三元数组表示,例如(a,b,c)。

2.空间向量的运算:(1)向量加法:两个向量相加得到一个新的向量,加法满足交换律和结合律。

(2)向量数乘:一个向量与一个实数相乘得到一个新的向量,数乘满足分配律。

(3)内积:两个向量的内积是一个实数,可以用数量积的公式计算。

(4)外积:两个向量的外积是一个向量,可以用矢量积的公式计算。

3.空间向量的基本性质:(1)零向量:长度为零的向量,与任何向量的加法的结果都是原向量本身。

(2)单位向量:长度为1的向量,可以用一个非零向量除以其长度得到。

(3)向量的长度:向量的长度定义为该向量的模。

(4)向量的方向:向量的方向可以用与该向量共线的单位向量表示。

4.空间向量的共线与异面:(1)两个向量共线意味着它们的方向相同或者相反。

(2)三个向量共面意味着它们位于同一个平面上。

(3)两个向量异面意味着它们不共线,且它们所在的直线与另外一个直线垂直。

5.空间向量的投影:(1)向量在一些方向上的投影是一个标量,可以用点积的公式计算。

(2)向量在一些方向上的单位向量是该方向的基向量。

(3)向量在一些方向上的分量是该方向的基向量的数乘。

6.空间向量的表示:(1)分解:一个向量可以表示为它在不同方向上的分量的和。

(2)基底:一个空间中的向量可以表示为基底向量的线性组合。

(3)坐标:一个向量可以用它在基底向量上的投影的值表示。

7.空间向量的几何意义:(1)位移向量:两点之间的位移可以用一个向量表示。

(2)向量的数量积:两个向量的数量积等于一个向量在另一个向量的方向上的投影乘以另一个向量的长度。

(3)向量的矢量积:两个向量的矢量积的大小等于这两个向量张成的平行四边形的面积,方向垂直于这两个向量所在平面。

空间向量免费知识点总结

空间向量免费知识点总结

空间向量免费知识点总结一、基本概念1. 空间向量的定义空间向量是指n维实数空间中的元素,通常以n维列向量的形式表示。

例如,在三维空间中,一个向量可以表示为\[ \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \]2. 向量的模长向量的模长也叫向量的长度,表示向量的大小。

在三维空间中,向量\[ \mathbf{v} =\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \]的模长可以表示为\[ |\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2} \]3. 向量的方向向量的方向是指向量的指向。

在三维空间中,向量\[ \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \]的方向可以表示为\[ \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{1}{|\mathbf{v}|} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \]4. 向量的标准化将向量沿着其方向进行缩放,使得其模长等于1。

这样的向量称为单位向量。

5. 向量的相等两个向量相等,当且仅当它们的对应分量都相等。

6. 向量的数量积向量的数量积也称为点积或内积,在空间中表示为\[ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos{\theta} \]其中\[ \theta \]为\[ \mathbf{a} \]和\[ \mathbf{b} \]之间的夹角。

7. 向量的叉积向量的叉积也称为矢量积或外积,在空间中表示为\[ \mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin{\theta} \mathbf{n} \]其中\[ \theta \]为\[ \mathbf{a} \]和\[ \mathbf{b} \]之间的夹角,\[ \mathbf{n} \]为\[ \mathbf{a} \]和\[ \mathbf{b} \]的方向向量。

空间向量复习课

空间向量复习课

解:①思路一:几何法 ① 作、证、求
思路二:代数法
② 等体积法
③ 点的迁移
空间向量的应用: 二、空间量的计算
解:②思路一:几何法
① 作、证、求
② 转化为“点到面距离”
思路二:代数法 转化为“方向向量”与“法向量”夹角
空间向量的应用: 二、空间量的计算
解:③思路一:几何法 ① 作、证、求 思路二:代数法 转化为“法向量”与“法向量”夹角
知识点梳理: 一、空间点的坐标:
1. 空间直角坐标系.
知识点梳理: 二、空间向量概念:
1. 定义:在空间,具有大小和方向的量. 模、零向量、单位向量、相等向量、相反向量、共线向量
2. 向量的坐标表示
终点减起点
知识点梳理: 二、空间向量概念:
1.定义:在空间,具有大小和方向的量. 共线向量
②直线的方向向量: 向量与直线平行
解:② 思路二:代数法 利用“向量共面”证明“线面平行” 利用“向量垂直”证明“线面平行”
空间向量的应用: 一、位置关系的判断
解:③思路一:几何法 线线垂直:共面用“勾股定理”、异面用“三垂线定理”、线面垂直 思路二:代数法
空间向量的应用: 二、空间量的计算
空间距离
空间的角
空间向量的应用: 二、空间量的计算
③共面向量:向量与平面平行 向量共面:平行于同一个平面的向量
知识点梳理: 三、空间向量基本定理:
基向量、基底
基向量、基底
知识点梳理: 三、空间向量基本定理:
基向量、基底
位移
知识点梳理: 三、空间向量基本定理: 重要推论
知识 三角形法则,平行四边形法则 减 法: 三角形法则 数 乘: 数量积:
空间向量的应用: 一、位置关系的判断

(完整版)空间向量知识点归纳(期末复习),推荐文档

(完整版)空间向量知识点归纳(期末复习),推荐文档

空间向量期末复习知识要点:1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示(2)空间的两个向量可用同一平面内的两条有向线段来表示。

2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

;;OB OA AB a b =+=+ BA OA OB a b =-=- ()OP a R λλ=∈运算律:⑴加法交换律:ab b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:ba b aλλλ+=+)(3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,平行于,记作。

a b b a//当我们说向量、共线(或//)时,表示、的有向线段所在的直线可能是a b a b a b同一直线,也可能是平行直线。

(2)共线向量定理:空间任意两个向量、(≠),//存在实数λ,使a b b 0 a b=λ。

ab 4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量不共线,与向量共面的条件是存在实,a b p,a b 数使。

,x y p xa yb =+5. 空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在一,,a b c p个唯一的有序实数组,使。

,,x y z p xa yb zc =++若三向量不共面,我们把叫做空间的一个基底,叫做基向量,空,,a b c{,,}a b c ,,a b c 间任意三个不共面的向量都可以构成空间的一个基底。

推论:设是不共面的四点,则对空间任一点,都存在唯一的三个有序实,,,O A B C P 数,使。

,,x y z OP xOA yOB zOC =++6. 空间向量的数量积。

(1)空间向量的夹角及其表示:已知两非零向量,在空间任取一点,作,a bO ,则叫做向量与的夹角,记作;且规定,OA a OB b == AOB ∠a b,a b <> ,显然有;若,则称与互相垂直,记作:0,a b π≤<>≤ ,,a b b a <>=<> ,2a b π<>= a b。

空间向量知识点总结

空间向量知识点总结

空间向量知识点总结空间向量是高中数学中一个重要的概念,它在解决立体几何问题时具有独特的优势。

以下是对空间向量知识点的详细总结。

一、空间向量的基本概念1、空间向量的定义空间向量是既有大小又有方向的量。

与平面向量类似,但所处的空间维度更高。

2、空间向量的表示可以用有向线段表示,其起点和终点分别表示向量的起点和终点。

也可以用坐标表示,如在空间直角坐标系中,向量\(\overrightarrow{AB}\)的坐标为\((x_B x_A, y_B y_A, z_B z_A)\)。

3、空间向量的模空间向量的模长计算公式为\(\vert\overrightarrow{a}\vert =\sqrt{x^2 + y^2 + z^2}\),其中\(\overrightarrow{a} =(x, y, z)\)。

4、单位向量模长为 1 的向量称为单位向量。

对于向量\(\overrightarrow{a}\),其单位向量为\(\frac{\overrightarrow{a}}{\vert\overrightarrow{a}\vert}\)。

5、零向量模长为 0 的向量称为零向量,其方向任意。

二、空间向量的运算1、加法和减法空间向量的加法和减法满足三角形法则和平行四边形法则。

\(\overrightarrow{a} +\overrightarrow{b} =(x_a + x_b, y_a + y_b, z_a + z_b)\),\(\overrightarrow{a} \overrightarrow{b} =(x_a x_b, y_a y_b, z_a z_b)\)。

2、数乘运算实数\(λ\)与空间向量\(\overrightarrow{a}\)的乘积是一个空间向量,记作\(λ\overrightarrow{a}\)。

\(λ\overrightarrow{a} =(λx_a, λy_a, λz_a)\)。

3、数量积(点积)\(\overrightarrow{a} \cdot \overrightarrow{b} =\vert\overrightarrow{a}\vert \vert\overrightarrow{b}\vert \cos <\overrightarrow{a},\overrightarrow{b} >\)。

空间向量知识点归纳总结

空间向量知识点归纳总结

空间向量知识点归纳总结知识要点:1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)空间的两个向量可用同一平面内的两条有向线段来表示。

2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r运算律:⑴加法交换律:a b b a ϖϖϖρ+=+⑵加法结合律:)()(c b a c b a ϖϖϖϖρϖ++=++⑶数乘分配律:b a b a ϖϖϖϖλλλ+=+)( 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a ρ平行于b ρ,记作b a ρϖ//。

当我们说向量a ρ、b ρ共线(或a ρ//b ρ)时,表示a ρ、b ρ的有向线段所在的直线可能是同一直线,也可能是平行直线。

(2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ=λb ρ。

4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b r r 不共线,p r与向量,a b r r 共面的条件是存在实数,x y 使p xa yb =+r r r。

5. 空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r。

若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

空间向量相关知识点总结

空间向量相关知识点总结

空间向量相关知识点总结一、空间向量的定义和基本概念1. 空间向量的定义空间向量是指在三维空间中的一种特殊的向量,它可以用有向线段表示,也可以用坐标表示。

空间向量具有大小和方向,是空间中的一个几何概念。

2. 空间向量的基本概念(1)长度:空间向量的长度也称为模,它表示向量的大小,一般用|AB|表示,其中A和B分别表示向量的起点和终点。

(2)方向:空间向量的方向是指向量的指向,可以用一组坐标表示,也可以用夹角表示。

(3)共线:如果两个向量的方向相同或者相反,则它们是共线的。

(4)共面:如果三个向量在同一个平面内,则它们是共面的。

二、空间向量的运算1. 空间向量的加减法(1)几何法:向量的加法就是将两个向量的起点相接,然后将两个向量的终点相连,新的向量就是两个向量的和向量;向量的减法就是将减数的起点和被减数的终点相接,然后将减数的终点和被减数的起点相连,新的向量就是两个向量的差向量。

(2)坐标法:向量的加减法也可以用坐标表示,对应坐标相加或者相减即可。

2. 数乘向量的数乘即将向量与一个常数相乘,结果是一个新的向量,其大小是原向量的模与常数的乘积,方向与原向量的方向一致(如果是负数,则方向相反)。

3. 空间向量的数量积和向量积(1)数量积:也称为点积或内积,即将两个向量的对应坐标相乘再相加,结果是一个标量。

(2)向量积:也称为叉积或外积,即将两个向量的叉乘结果是一个新的向量,其大小是原向量所构成的平行四边形的面积,方向垂直于原向量所构成的平面。

三、空间向量的几何应用1. 向量的方向余弦(1)定义:设向量a=(x, y, z),则a的方向余弦分别为l=x/|a|,m=y/|a|,n=z/|a|,它们互为方向余弦。

(2)性质:方向余弦l、m、n满足l²+m²+n²=1。

(3)应用:方向余弦可用于求向量的夹角、判断向量的共线性等。

2. 向量的投影(1)定义:设向量a和b不共线,a在b上的投影为向量a在b方向上的分量,记为prj_b a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量期末复习知识要点:1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)空间的两个向量可用同一平面内的两条有向线段来表示。

2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a//。

当我们说向量a 、b 共线(或a b a b a b b 0 a b a b共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。

6. 空间向量的数量积。

(1)空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥。

(2)向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a 。

(3)向量的数量积:已知向量,a b ,则||||cos ,a b a b ⋅⋅<>叫做,a b 的数量积,记作a b ⋅,即a b ⋅=||||cos ,a b a b ⋅⋅<>。

(4)空间向量数量积的性质:①||cos ,a e a a e ⋅=<>。

②0a b a b ⊥⇔⋅=。

③2||a a a =⋅。

(5)空间向量数量积运算律:①()()()a b a b a b λλλ⋅=⋅=⋅。

②a b b a ⋅=⋅(交换律)。

③()a b c a b a c ⋅+=⋅+⋅(分配律)。

7.空间向量的坐标运算: (1).向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则(1) a +b =112233(,,)a b a b a b +++; (2) a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4) a ·b =112233a b a b a b ++; (2).设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---. (3).设111(,,)a x y z =,222(,,)b x y z =,则2||a a a =⋅=212121z y x ++a b ⇔(0)a b b λ=≠; a b ⊥⇔0a b ⋅=⇔1212120x x y y z z ++=.(4).夹角公式 设a =123(,,)a a a ,b =123(,,)b b b , 则2cos ,a b a <>=(5).异面直线所成角cos |cos ,|a b θ==121212222222111222||||||||x x y y z z a b a b x y z x y z ++⋅=⋅++⋅++.(6).直线和平面所成的角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|n·e||n||e|.(7). 二面角的求法(1)如图①,AB ,CD 是二面角α ­l ­β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图②③,n 1,n 2分别是二面角α ­l ­β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉或π-〈n 1,n 2〉.212121,cos cos n n n n n n =><=θ练习题:1.已知a =(-3,2,5),b =(1,x ,-1)且a·b =2,则x 的值是( ) A .3 B .4 C .5 D .62.已知a =(2,4,5),b =(3,x ,y ),若a∥b ,则( ) A .x =6,y =15 B .x =3,y =152C .x =3,y =15D .x =6,y =1523.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).若|a |=3,且a 分别与AB →,AC →垂直,则向量a 为( )A .(1,1,1)B .(-1,-1,-1)C .(1,1,1)或(-1,-1,-1)D .(1,-1,1)或(-1,1,-1)4.若a =(2,-3,5),b =(-3,1,-4),则|a -2b |=________.5.如图所示,已知正四面体ABCD 中,AE =14AB ,CF =14CD ,则直线DE 和BF 所成角的余弦值为________.解析 ∵a -2b =(8,-5,13), ∴|a -2b |=82+-52+132=258.解析 因四面体ABCD 是正四面体,顶点A 在底面BCD 内的射影为△BCD 的垂心,所以有BC ⊥DA ,AB ⊥CD .设正四面体的棱长为4, 则BF →·DE →=(BC →+CF →)·(DA →+AE →) =0+BC →·AE →+CF →·DA →+0=4×1×cos 120°+1×4×cos 120°=-4,BF =DE =42+12-2×4×1×cos 60°=13,所以异面直线DE 与BF 的夹角θ的余弦值为:cos θ==413.6.如图所示,在平行六面体ABCD ­A 1B 1C 1D 1中,设1AA =a ,AB =b ,AD =c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP ; (2)1A N ; (3)MP +1NC .解:(1)∵P 是C 1D 1的中点, ∴AP =1AA +11A D +1D P=a +AD +1211D C=a +c +12AB=a +c +12b .(2)∵N 是BC 的中点,∴1A N =1A A +AB +BN =-a +b +12BC=-a +b +12AD =-a +b +12c .(3)∵M 是AA 1的中点,∴MP =MA +AP =121A A +AP=-12a +⎝ ⎛⎭⎪⎫a +c +12b =12a +12b +c ,又1NC =NC +1CC =12BC +1AA=12AD +1AA =12c +a , ∴MP +1NC =⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫a +12c=32a +12b +32c . 7.已知直三棱柱ABC ­A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.(1)求证:DE ∥平面ABC ; (2)求证:B 1F ⊥平面AEF .证明:以A 为原点,AB ,AC ,AA 1所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A ­xyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B 1(4,0,4),D (2,0,2),A 1(0,0,4),(1)DE =(-2,4,0),平面ABC 的法向量为1AA =(0,0,4), ∵DE ·1AA =0,DE ⊄平面ABC , ∴DE ∥平面ABC .(2)1B F =(-2,2,-4),EF =(2,-2,-2), 1B F ·EF =(-2)×2+2×(-2)+(-4)×(-2)=0,∴1B F ⊥EF ,B 1F ⊥EF ,1B F ·AF =(-2)×2+2×2+(-4)×0=0,∴1B F ⊥AF ,∴B 1F ⊥AF . ∵AF ∩EF =F ,∴B 1F ⊥平面AEF .8.如图所示,在四棱锥P ­ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°的角.求证:(1)CM ∥平面PAD ; (2)平面PAB ⊥平面 PAD .证明:以C 为坐标原点,CB 为x 轴,CD 为y 轴,CP 为z 轴建立如图所示的空间直角坐标系C ­xyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°,∵PC =2,∴BC =23,PB =4,∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝⎛⎭⎪⎫32,0,32,∴DP =(0,-1,2),DA =(23,3,0), CM =⎝⎛⎭⎪⎫32,0,32.(1)设n =(x ,y ,z )为平面PAD 的一个法向量,由⎩⎨⎧DP ·n =0,DA ·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,令y =2,得n =(-3,2,1). ∵n ·CM =-3×32+2×0+1×32=0, ∴n ⊥CM .又CM ⊄平面PAD , ∴CM ∥平面PAD .(2)如图,取AP 的中点E ,连接BE ,则E (3,2,1),BE =(-3,2,1). ∵PB =AB ,∴BE ⊥PA .又∵BE ·DA =(-3,2,1)·(23,3,0)=0, ∴BE ⊥DA .∴BE ⊥DA . 又PA ∩DA =A ,∴BE ⊥平面PAD . 又∵BE ⊂平面PAB , ∴平面PAB ⊥平面PAD .9. 如图,在正方体ABCD ­A 1B 1C 1D 1中,E 为AB 的中点. (1)求直线AD 和直线B 1C 所成角的大小; (2)求证:平面EB 1D ⊥平面B 1CD .解:不妨设正方体的棱长为2个单位长度,以DA ,DC ,DD 1分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系D ­xyz .根据已知得:D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),B 1(2,2,2).(1)∵DA =(2,0,0),1CB =(2,0,2),∴cos 〈DA ,1CB 〉=DA ·1CB |DA ||1CB |=22.∴直线AD 和直线B 1C 所成角为π4.(2)证明:取B 1D 的中点F ,得F (1,1,1),连接EF . ∵E 为AB 的中点,∴E (2,1,0), ∴EF =(-1,0,1),DC =(0,2,0), ∴EF ·DC =0,EF ·1CB =0, ∴EF ⊥DC ,EF ⊥CB 1.∵DC ∩CB 1=C ,∴EF ⊥平面B 1CD .又∵EF ⊂平面EB 1D ,∴平面EB 1D ⊥平面B 1CD .10. 如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.AB ∥CD ,AB ⊥BC ,AB =2CD =2BC ,EA ⊥EB .(1)求证:AB ⊥DE ;(2)求直线EC 与平面ABE 所成角的正弦值;(3)线段EA 上是否存在点F ,使EC ∥平面FBD 若存在,求出EFEA;若不存在,请说明理由. 解:(1)证明:取AB 的中点O ,连接EO ,DO . 因为EB =EA ,所以EO ⊥AB . 因为四边形ABCD 为直角梯形.AB =2CD =2BC ,AB ⊥BC ,所以四边形OBCD 为正方形,所以AB ⊥OD . 因为EO ∩DO =O ,所以AB ⊥平面EOD ,所以AB ⊥ED . (2)因为平面ABE ⊥平面ABCD ,且EO ⊥AB ,所以EO ⊥平面ABCD ,所以EO ⊥OD .由OB ,OD ,OE 两两垂直,建立如图所示的空间直角坐标系O ­xyz . 因为三角形EAB 为等腰直角三角形, 所以OA =OB =OD =OE , 设OB =1,所以O (0,0,0),A (-1,0,0),B (1,0,0),C (1,1,0),D (0,1,0),E (0,0,1).所以EC =(1,1,-1),平面ABE 的一个法向量为OD =(0,1,0). 设直线EC 与平面ABE 所成的角为θ,所以sin θ=|cos 〈EC ,OD 〉|=|EC ·OD ||EC ||OD |=33,即直线EC 与平面ABE 所成角的正弦值为33. 11.(12分)如图,在底面是矩形的四棱锥P —ABCD 中,PA ⊥平面ABCD ,PA =AB =2,BC =4,E 是PD 的中点.(1)求证:平面PDC ⊥平面PAD ; (2)求点B 到平面PCD 的距离. 21.(1)证明 如图,以A 为原点,AD 、AB 、AP 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则依题意可知A (0,0,0),B (0,2,0),C (4,2,0),D (4,0,0),P (0,0,2).∴PD →=(4,0,-2),CD →=(0,-2,0),PA →=(0,0,-2). 设平面PDC 的一个法向量为n =(x ,y,1),则⇒⎩⎪⎨⎪⎧-2y =04x -2=0⇒⎩⎪⎨⎪⎧y =0x =12,所以平面PCD 的一个法向量为⎝ ⎛⎭⎪⎫12,0,1. ∵PA ⊥平面ABCD ,∴PA ⊥AB ,又∵AB ⊥AD ,PA ∩AD =A ,∴AB ⊥平面PAD . ∴平面PAD 的法向量为AB →=(0,2,0). ∵n ·AB →=0,∴n ⊥AB →. ∴平面PDC ⊥平面PAD .(2)解 由(1)知平面PCD 的一个单位法向量为n |n|=⎝ ⎛⎭⎪⎫55,0,255. ∴=⎪⎪⎪⎪⎪⎪4,0,0·⎝ ⎛⎭⎪⎫55,0,255=455,∴点B 到平面PCD 的距离为455.12. 如图所示,在多面体ABCD ­A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1; (3)在(2)的条件下,求二面角F ­CC 1­B 的余弦值.解:以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系D ­xyz ,则A (2a ,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD =(0,0,a ),∴|cos 〈1AB ,1DD 〉|=⎪⎪⎪⎪⎪⎪1AB ·1DD |1AB |·|1DD |=33,∴异面直线AB 1与DD 1所成角的余弦值为33.(2)证明:∵1BB =(-a ,-a ,a ),BC =(-2a,0,0),1FB =(0,a ,a ),∴⎩⎪⎨⎪⎧1FB ·1BB =0,1FB ·BC =0,∴FB 1⊥BB 1,FB 1⊥BC .∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.(3)由(2)知,1FB 为平面BCC 1B 1的一个法向量. 设n =(x 1,y 1,z 1)为平面FCC 1的法向量, ∵1CC =(0,-a ,a ),FC =(-a,2a,0),∴⎩⎨⎧n ·1CC =0,n ·FC =0,得⎩⎪⎨⎪⎧-ay 1+az 1=0,-ax 1+2ay 1=0.令y 1=1,则n =(2,1,1),∴cos 〈1FB ,n 〉=1FB ·n |1FB |·|n |=33,∵二面角F ­CC 1­B 为锐角, ∴二面角F ­CC 1­B 的余弦值为33.13. 如图, 四棱柱ABCD ­A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD ,AB ∥DC ,AB ⊥AD ,AD =CD =1,AA 1=AB =2,E 为棱AA 1的中点.(1)证明:B 1C 1⊥CE;(2)求二面角B 1­CE ­C 1的正弦值.(3)设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为26,求线段AM 的长. 解:法一:如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).(1)证明:易得11B C =(1,0,-1),CE =(-1,1,-1),于是11B C ·CE =0,所以B 1C 1⊥CE .(2) 1B C =(1,-2,-1).设平面B 1CE 的法向量m =(x ,y ,z ),则⎩⎨⎧m ·11B C =0,m ·CE =0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0.消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1).由(1)知,B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故11B C =(1,0,-1)为平面CEC 1的一个法向量.于是cos 〈m ,11B C 〉=m ·11B C |m |·|11B C |=-414×2=-277,从而sin 〈m ,11B C 〉=217. 所以二面角B 1­CE ­C 1的正弦值为217. (3)AE =(0,1,0),1EC =(1,1,1).设EM =λ1EC =(λ,λ,λ),0≤λ≤1,有AM =AE +EM =(λ,λ+1,λ).可取AB =(0,0,2)为平面ADD 1A 1的一个法向量.设θ为直线AM 与平面ADD 1A 1所成的角,则sin θ=|cos 〈AM ,AB 〉|=|AM ·AB ||AM |·|AB |=2λ2×λ2+λ+12+λ2=λ3λ2+2λ+1.于是λ3λ2+2λ+1=26,解得λ=13,所以AM = 2.法二:(1)证明:因为侧棱CC 1⊥底面A 1B 1C 1D 1,B 1C 1⊂平面A 1B 1C 1D 1,所以CC 1⊥B 1C 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3,从而B 1E2=B 1C 21+EC 21,所以在△B 1EC 1中,B 1C 1⊥C 1E ,又CC 1,C 1E ⊂平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1⊥平面CC 1E .又CE ⊂平面CC 1E ,故B 1C 1⊥CE .(2)过B 1作B 1G ⊥CE 于点G ,连接C 1G .由(1)知,B 1C 1⊥CE ,故CE ⊥平面B 1C 1G ,得CE ⊥C 1G ,所以∠B 1GC 1为二面角B 1­CE ­C 1的平面角.在△CC 1E 中,由CE =C 1E =3,CC 1=2,可得C 1G =263.在Rt △B 1C 1G 中,B 1G =423,所以sin ∠B 1GC 1=217,即二面角B 1­CE ­C 1的正弦值为217. (3)连接D 1E ,过点M 作MH ⊥ED 1于点H ,可得MH ⊥平面ADD 1A 1,连接AH ,AM ,则∠MAH 为直线AM 与平面ADD 1A 1所成的角.设AM =x ,从而在Rt △AHM 中,有MH =26x ,AH =346x .在Rt △C 1D 1E 中,C 1D 1=1,ED 1=2,得EH =2MH =13x .在△AEH 中,∠AEH =135°,AE =1,由AH 2=AE 2+EH 2-2AE ·EH cos135°,得1718x 2=1+19x 2+23x , 整理得5x 2-22x -6=0,解得x = 2.所以线段AM 的长为 2.。

相关文档
最新文档