与三角形有关的线段测试题

合集下载

《与三角形有关的线段》典型例题、习题精选

《与三角形有关的线段》典型例题、习题精选

《与三角形有关的线段》典型例题、习题精选例题:1.三角形两边的长分别为3和5,则周长l的范围是( )A.2<l<8 B.10<l<18 C.10<l<16 D.无法确定答案:C说明:因为三角形中的任意两边之和大于第三边,所以要想构成三角形,第三边的长需要比5-3 = 2要大,但不能比3+5 = 8的值大,这样就不难得出该三角形周长l的范围应该是2+3+5<l<3+5+8,即10<l<16,所以答案为C.2.一个三角形的两边长为3cm、8cm,第三边的数值的奇数,那么这个三角形的周长为( )A. 18cm B. 20cm C. 19cmD. 18cm或 20cm答案:D说明:因为这个三角形的第三边的数值为奇数,并且三角形中任意两边之和大于第三边,所以第三边的数值一定大于5并且小于11,这样第三边长只能是7cm或9cm,因此,这个三角形的周长为18cm或20cm,答案为D.3.从长度为3、5、7、10的四条线段中任选三条组成一个三角形,这样的三角形有几个?解析:有四种不同的选法.①3,5,7;②3,5,10;③3,7,10;④5,7,10.其中,3+5<10,3+7 = 10.故只有两组线段长3,5,7和5,7,10可作为边长组成三角形,即有两个这样的三角形.4.如图,D为△ABC内一点,说明:AB+AC>BD+DC.解析:延长BD与AC相交于E.在△ABE中,AB+AE>BE = BD+DE,在△DEC中,DE+EC>CD..∴AB+AE+DE+EC>BD+DE+CD∴AB+AE+EC>BD+CD.即AB+AC>BD+DC.习题一一、选择题:1.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形的有( )A.1个B.2个 C.3个 C.4个2.如果三角形的两边长分别为3和5,则周长L的取值范围是( )A.6<L<15 B.6<L<16 C.11<L<13 D.10<L<163.现有两根木棒,它们的长度分别为 20cm和 30cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取 ( )A. 10cm的木棒B. 20cm的木棒 C. 50cm的木棒D. 60cm的木棒4.已知等腰三角形的两边长分别为3和6,则它的周长为( )A.9 B.12 C.15 D.12或155.已知三角形的三边长为连续整数,且周长为 12cm,则它的最短边长为( )A. 2cm B. 3cm C. 4cm D. 5cm6.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( )A.2个B.3个C.4个D.5个二、填空题:1.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.2.若等腰三角形的两边长分别为3和7,则它的周长为_______;若等腰三角形的两边长分别是3和4,则它的周长为_____.3.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.4.若五条线段的长分别是 1cm, 2cm, 3cm, 4cm, 5cm,则以其中三条线段为边可构成______个三角形.5.已知等腰三角形ABC中,AB=AC= 10cm,D为AC边上一点,且BD=AD,△BCD的周长为 15cm,则底边BC的长为__________.6.已知等腰三角形的两边长分别为 4cm和 7cm,且它的周长大于 16cm,则第三边长为_____.三、基础训练:1.如图所示,已知P是△ABC内一点,试说明PA+PB+PC>(AB+BC+AC).2.已知等腰三角形的两边长分别为4,9,求它的周长.四、提高训练:设△ABC的三边a,b,c的长度都是自然数,且a≤b≤c,a+b+c=13,则以a,b,c 为边的三角形共有几个?五、探索发现:若三角形的各边长均为正整数,且最长边为9,则这样的三角形的个数是多少?六、中考题与竞赛题:1.(2001.南京)有下列长度的三条线段,能组成三角形的是( )A. 1cm, 2cm, 3cm B. 1cm, 2cm, 4cm; C. 2cm, 3cm, 4cm D. 2cm,3cm, 6cm2.(2002.青海)两根木棒的长分别是 8cm, 10cm,要选择第三根木棒将它们钉成三角形,那么第三根木棒的长x的取值范围是________;如果以 5cm为等腰三角形的一边,另一边为10cm,则它的周长为________.答案:一、1.B 2.D 3.B 4.C 5.B 6.B二、1.5<c<9 6或8 6 2.17 10或11 3.0<a<12 b>2 4.3 5. 5cm 6. 7cm三、1.解:在△APB中,AP+BP>AB,同理BP+PC>BC,PC+AP>AC,三式相加得2(AP+BP+PC)>AB+AC+BC,∴AP+BP+CP>(AB+AC+BC).2.22四、5个五、25个六、1.C 2.2cm<x<18cm 25cm.习题二1.如图(1)所示,在△ABC中,∠ACB=90°,把△ABC沿直线AC翻折180°,使点 B 落在点B′的位置,则线段AC具有性质( )A.是边BB′上的中线 B.是边BB′上的高C.是∠BAB′的角平分线 D.以上三种性质合一(1) (2)(3)2.如图(2)所示,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是( )A.DE是△BCD的中线 B.BD是△ABC的中线C.AD=DC,BE=EC D.∠C的对边是DE3.如图(3)所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S △ABC= 4cm2,则黄色部分面积等于( )A. 2cm2 B. 1cm 2 C.cm2 D.cm24.在△ABC,∠A=90°,角平分线AE、中线AD、高AH的大小关系为( )A.AH<AE<AD B.AH<AD<AE C.AH≤AD≤AE D.AH≤AE≤AD5.在△ABC中,D是BC上的点,且BD:DC=2:1,S△ACD=12,那么S△ABC等于( )A.30 B. 36 C.72 D.246.不是利用三角形稳定性的是( )A.自行车的三角形车架 B.三角形房架C.照相机的三角架 D.矩形门框的斜拉条二、填空题:1.直角三角形两锐角的平分线所夹的钝角为_______度.2.等腰三角形的高线、角平分线、中线的总条数为________.3.在△ABC中,∠B=80°,∠C=40°,AD,AE分别是△ABC的高线和角平分线,则∠DAE 的度数为_________.4.三角形的三条中线交于一点,这一点在_______,三角形的三条角平分线交于一点,这一点在__________,三角形的三条高线所在直线交于一点,这一点在_____.1.如图所示,在△ABC中,∠C-∠B=90°,AE是∠BAC的平分线,求∠AEC的度数.2.在△ABC中,AB=AC,AD是中线,△ABC的周长为 34cm,△ABD的周长为 30cm,求AD 的长.四、提高训练:在△ABC中,∠A = 50°,高BE,CF所在的直线交于点O,求∠BOC的度数.五、探索发现:如图5所示的是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s.按此规律推断s与n有什么关系,并求出当n=13时,s的值.六、中考题与竞赛题:(2000.杭州)AD,AE分别是等边三角形ABC的高和中线,则AD 与AE 的大小关系为____.答案:一、1.D 2.D 3.B 4.D 5.B 6.C二、1.135 2.3条或7条 3.20°4.三角形内部三角形内部三角形内部、边上或外部三、1.∠AEC=45° 2.AD= 13cm四、∠BOC=50°或130°五、s=3n-3,当n=13时,s=36.六、AD=AE.。

三角形有关的线段和角度测试题

三角形有关的线段和角度测试题

三角形有关的线段和角度测试题1、能把一个三角形分成面积相等的两部分的是该三角形的一条()A.中线 B.角平分线 C.高线 D.边的垂直平分线2.△ABC的周长为19cm,AC的垂直平分线DE交BC于D,E为垂足,AE=3cm,则△ABD的周长为_________ cm.2.高BD与CE交于O点,若∠BAC=72°,则∠DOE = .3.一个三角形的两边分别是2厘米和9厘米,第三边长是一个奇数,则第三边长4、已知等腰三角形的一边等于5,另一边等于6,则它的周长等于5、已知:a、b、c是三角形的三边,化简:(1)|a+b-c|-|b-a-c|= (2)|2a+2b-c|-|2a-2b-3c|=6、如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAB= ,∠CAP= .7、在△ABC中,点P是的△ABC的内心,则∠PBC+∠PCA+∠PAB= ;若∠B AC=80°,则∠BPC= ,8、顶角为100的等腰三角形的两底角的平分线交于一点,则它们所夹的钝角为______度9、如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,∠BOC与∠A的关系是;如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,∠BOC与∠A的关系;如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A的关系。

(6题)10、如上图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影=11、在△ABC中,AB=AC,AC上的中线把三角形的周长分为24cm和30cm的两个部分,则这个三角形的腰长=_______二、解答题1、已知等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,求这个三角形的腰长2、,△ABC中,AB=AC,D为AC的中点,△ABD的周长比△BDC的周长大2,且BC的边长是方程的解,求△ABC三边的长.3.如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,BC=12,AC=8,AD=6,求BE 的长.4.(2010•雅安)如图,点C 是线段AB 上除点A 、B 外的任意一点,分别以AC 、BC 为边在线段AB 的同旁作等边△ACD 和等边△BCE ,连接AE 交DC 于M ,连接BD 交CE 于N ,连接MN .(1)求证:AE=BD ;(2)求证:MN ∥AB .5.(2009•辽阳)如图,△ABC 为正三角形,D 为边BA 延长线上一点,连接CD ,以CD 为一边作正三角形CDE ,连接AE ,判断AE 与BC 的位置关系,并说明理由.6、探究题:如图,点E 是等边△ABC 内一点,且EA=EB ,△ABC 外一点D 满足BD=AC ,且BE 平分∠DBC ,求∠BDE 的度数.(提示:连接CE )(12分)(4题) (5题) (6题) EDAB。

与三角形有关的线段练习题

与三角形有关的线段练习题

与三角形有关的线段练习题1.等腰三角形的底边BC=8 cm,且|AC-BC|=2 cm,则腰长AC为()A.10 cm或6 cmB.10 cmC.6 cmD.8 cm或6 cm2.如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为()A.5B.6C.7D.83。

如果三角形的三边长是三个连续自然数,则下面判断错误的是().A。

周长大于6 B.周长可以被6整除 C。

周长可以被3整除 D。

周长有时是奇数4.三角形三边长a、b、c满足(a-b-c)(b-c)=0,则这个三角形是()A.等边三角形B.等腰三角形 C。

斜三角形 D。

任意三角形5。

等腰三角形周长为23,且腰长为整数,这样的三角形共有( )个A.4个B。

5个 C.6个 D。

7个7。

用7根火柴首尾顺次连结摆成一个三角形,能摆成不同的三角形的个数是___________8。

古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为9。

探究规律:如图,已知直线∥,A、B为直线上的两点,C、P为直线上的两点。

(1)请写出图中面积相等的各对三角形:______________________________.(2)如果A、B、C为三个定点,点P在上移动,那么无论P点移动到任何位置总有: 与△ABC的面积相等; 理由是:10.已知△ABC的周长是24cm,三边a、b、c满足c+a=2b,c-a=4cm,求a、b、c的长。

11.一个等腰三角形的周长为32 cm,腰长的3倍比底边长的2倍多6 cm。

求各边长。

12.已知:△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求:△ABC的各边的长。

13。

图中的每个小正方形的边长都为1,请写出以A、B、C、D、E、F中的三点为顶点且面积为1的三角形.。

2023-2024学年八年级上学期数学:与三形有关的线段(附答案解析)

2023-2024学年八年级上学期数学:与三形有关的线段(附答案解析)

2023-2024学年八年级上数学:第十一章三角形
11.1
与三角形有关的线段
一、选择题
1.下列各组数中,不可能是同一个三角形的三边长的是()
A.3,4,5B.5,7,7C.6,8,10D.5,7,12 2.劳动课上,小莉要用三根木棒首尾相接钉一个三角形框架,现有两根木棒长分别为4cm,5cm,则第三根木棒的长可取()
A.1cm B.4cm C.9cm D.10cm
3.已知三角形的三边长分别为3、5、x,则x的取值范围为()
A.8
x<<
x<<D.28
x>C.08
x<B.2
4.如图所示,工人师傅在砌门时,通常用木条BD固定长方形门框ABCD,使其不变形,这样做的数学根据是()
A.两点确定一条直线B.两点之间,线段最短
C.同角的余角相等D.三角形具有稳定性
5.若三角形的两边长分别为4和7,则该三角形的周长可能为()
A.9B.14C.18D.22
6.下列说法中,正确的是()
第1页(共12页)。

专题01 与三角形有关的线段(九大题型)(原卷版)

专题01 与三角形有关的线段(九大题型)(原卷版)

专题01 与三角形有关的线段(九大题型)【题型1 三角形的分类】【题型2 判断三角形的个数】【题型3 三角形的三边关系】【题型4三角形的稳定性】【题型5三角形的平分线、中线和高的概念辨别】【题型6 三角形中线与面积问题】【题型7 三角形中线与周长问题】【题型8 证明三角形中线段不等关系】【题型9 根据三角形的三边关系化简】【题型1 三角形的分类】1.(2022秋•颍泉区期中)如图,一个三角形纸片被木板遮掩了一部分,则这个三角形为()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定2.(2022秋•文峰区月考)有下列说法:①等边三角形是等腰三角形;②等腰三角形也可能是直角三角形;③三角形按边分类可分为等腰三角形、等边三角形和三边都不相等的三角形;④三角形按角分类可分为锐角三角形、直角三角形和钝角三角形.其中正确的有()A.1个B.2个C.3个D.4个3.(2022秋•民权县月考)关于三角形的分类,有如图所示的甲、乙两种分法,则()A.甲、乙两种分法均正确B.甲、乙两种分法均错误C.甲的分法错误,乙的分法正确D.甲的分法正确,乙的分法错误4.(2021春•宛城区期末)下列关于三角形的分类,正确的是()A.B.C.D.5.(2022秋•惠州月考)三角形按边可分为()A.等腰三角形,直角三角形,锐角三角形B.直角三角形,不等边三角形C.等腰三角形,不等边三角形D.等腰三角形,等边三角形6.(2022春•馆陶县期末)有下列两种图示均表示三角形分类,则正确的是()A.①对,②不对B.②对,①不对C.①、②都不对D.①、②都对7.(2022春•鼓楼区校级期末)如图表示的是三角形的分类,则正确的表示是()A.M表示三边均不相等的三角形,N表示等腰三角形,P表示等边三角形B.M表示三边均不相等的三角形,N表示等边三角形,P表示等腰三角形C.M表示等腰三角形,N表示等边三角形,P表示三边均不相等的三角形D.M表示等边三角形,N表示等腰三角形,P表示三边均不相等的三角形8.(2021秋•威县期末)下列关于三角形的分类,有如图所示的甲、乙两种分法,则()A.甲、乙两种分法均正确B.甲分法正确,乙分法错误C.甲分法错误,乙分法正确D.甲、乙两种分法均错误【题型2 判断三角形的个数】9.(2022春•本溪县期末)如图,图中三角形的个数为()A.3B.4C.5D.6 10.(2022秋•玉州区期中)如图所示的图形中,三角形共有()A.5个B.6个C.3个D.4个11.(2022春•建邺区校级期中)如图,以AB为边的三角形的个数是()A.1个B.2个C.3个D.4个12.(2021秋•高阳县期末)如图,图中以BC为边的三角形的个数为.13.(2022秋•宜都市期中)如图,点D,E在△ABC的边BC上,则图中共有三角形个.【题型3 三角形的三边关系】14.(2023春•常州期末)用下列长度的三根细木棒首尾相接,能搭成三角形的是()A.1cm、2cm、3cm B.2cm、2cm、4cmC.2cm、3cm、4cm D.2cm、3cm、6cm15.(2023春•青岛期末)小亮想用三根木棒搭一个三角形,其中两根木棒的长度分别为2cm和9cm,如果第三根木棒的长度为奇数,则小亮所搭的三角形的周长为()A.18cm B.20cm C.22cm D.24cm 16.(2022秋•启东市校级期末)已知三条线段长分别为3cm、4cm、a,若这三条线段首尾顺次联结能围成一个三角形,那么a的取值范围是()A.1cm<a<5cm B.2cm<a<6cm C.4cm<a<7cm D.1cm<a<7cm 17.(2023春•高明区月考)已知三角形的三边长分别为3,5,x,则x不可能是()A.5B.4C.3D.2 18.(2023春•盐城月考)已知某三角形三边长分别为4,x,11,其中x为正整数,则满足条件的x值的个数是()A.6B.7C.8D.9 19.(2023春•南京期中)把12cm长的铁丝截成三段,每段长度为整数.若将这三段铁丝首尾顺次相接组成三角形,则不同的三角形有()A.4种B.3种C.2种D.1种【题型4三角形的稳定性】20.(2023•裕华区二模)如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样做的数学道理是()A.两点之间线段最短B.垂线段最短C.两点确定一条直线D.三角形具有稳定性21.(2023•山阴县模拟)如图是位于汾河之上的通达桥,是山西省首座独塔悬索桥,是连接二青会的水上运动、沙滩排球等项目及场馆的主要通道,被誉为“时代之门”.桥身通过吊索与主缆拉拽着整个桥面,形成悬索体系使其更加稳固.其中运用的数学原理是()A.三角形具有稳定性B.两点确定一条直线C.两点之间,线段最短D.三角形的两边之和大于第三边22.(2023春•睢宁县期中)下列图形中,具有稳定性的是()A.B.C.D.23.(2023•滨湖区一模)王师傅用6根木条钉成一个六边形木架,如图,要使这个木架不变形,他至少还要再钉上木条的条数为()A.0根B.1根C.2根D.3根【题型5三角形的平分线、中线和高的概念辨别】24.(2023•佛山模拟)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定25.(2023春•高明区月考)下列说法正确的个数有()①三角形的角平分线、中线和高都在三角形内;②直角三角形只有一条高;③三角形的高至少有一条在三角形内;④三角形的高是直线,角平分线是射线,中线是线段.A.1个B.2个C.3个D.4个26.(2022秋•磁县期末)三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形27.(2023•衡山县二模)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.28.(2023春•巴州区月考)如图,△ABC的边BC上的高是()A.线段AF B.线段DB C.线段CF D.线段BE 29.(2023•丰润区模拟)如图,在△ABC中,∠1=∠2=∠3=∠4,则下列说法中,正确的是()A.AD是△ABE的中线B.AE是△ABC的角平分线C.AF是△ACE的高线D.AE是△DAF的中线30.(2022秋•荣昌区期末)下列说法中正确的是()A.平分三角形内角的射线叫做三角形的角平分线B.三角形的中线是经过顶点和对边中点的直线C.钝角三角形的三条高都在三角形外D.三角形的三条中线总在三角形内31.(2023•梁山县二模)如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=∠ACBC.AE=BE D.CD⊥BE【题型6 三角形中线与面积问题】32.(2022春•西乡塘区校级期末)如图,已知△ABC中,点D、E分别是边BC、AB的中点.若△ABC的面积等于8,则△BDE的面积等于()A.2B.3C.4D.5 33.(2022秋•张店区校级期末)已知:如图所示,在△ABC中,点D,E,F=4cm2,则阴影部分的面积为cm2.分别为BC,AD,CE的中点,且S△ABC34.(2023春•常州期末)如图,AD是△ABC的中线,,F是EC的中点.若S△BEF =10,则S△ABC=.35.(2023春•灌云县期中)如图,CD是△ABC的一条中线,E为BC边上一点且BE=2CE,AE、CD相交于F,四边形BDFE的面积为6,则△ABC的面积是.36.(2023春•济南期末)如图,AD是△ABC的中线,M是AC边上的中点,连接DM,若△ABC的面积为12cm2,则△ADM的面积为cm2.37.(2023春•于洪区期中)如图,CD,BE是△ABC的中线,它们相交于点O.若△ABC的面积是12,则图中阴影部分的面积为.38.(2023•德兴市一模)如图,BD是△ABC的中线,点E、F分别为BD、CE 的中点,若△AEF的面积为3cm2,则△ABC的面积是cm2.39.(2023春•香坊区校级期中)如图,在△ABC中,已知BD为△ABC的中线,过点A作AE⊥BD分别交BD、BC于点F、E,连接CF,若DF=2,AF=6,BE:EC=3:1,则S△ABC=.40.(2023春•大渡口区校级期中)如图,在△ABC中,已知D、E、F分别为BC、AD、CE的中点,且△ABC的面积等于8cm2,则阴影部分面积为.【题型7 三角形中线与周长问题】41.(2023春•二七区校级期中)在△ABC中,AD是BC边上的中线,△ADC 的周长比△ABD的周长多3,AB与AC的和为13,则AC的长为()A.5B.6C.7D.8 42.(2023春•良庆区校级期末)如图,△ABC中,AB=16,BC=10,BD是AC边上的中线,若△ABD的周长为30,则△BCD的周长是()A.20B.24C.26D.28 43.(2023春•工业园区期中)如图,CM是△ABC的中线,BC=8cm,若△BCM 的周长比△ACM的周长大3cm,则AC的长为()A.3cm B.4cm C.5cm D.6cm 44.(2023•鲤城区校级模拟)如图,AD是△ABC的中线,AB=8,AC=6.若△ACD的周长为16,则△ABD周长为.45.(2023春•崂山区校级期中)如图,在△ABC中,点E是BC的中点,AB =7,AC=10,△ACE的周长是25,则△ABE的周长是.46.(2023春•碑林区校级期中)如图,AD为△ABC的中线,△ABD的周长为23,△ACD的周长为18,AB>AC,则AB﹣AC为.【题型8 证明三角形中线段不等关系】47.(2022春•南靖县校级月考)已知:△ABC中,AD是BC边上的中线.求证:AD+BD>(AB+AC).48.(2022春•鼓楼区期末)如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.49.(2022秋•富顺县校级期末)如图所示,已知P是△ABC内一点,试说明P A+PB+PC>(AB+BC+AC).50.(2022秋•海淀区校级期中)已知:如图,AC和BD相交于点O,说明:AC+BD>AB+CD.51.(2022秋•固始县期中)AM是△ABC的中线,求证:AM<.52.(2022春•卧龙区期末)如图,在△ABC中,∠ABC和∠ACB的平分线交于点D.连接AD,试说明DA+DB+DC与的大小关系.【题型9 根据三角形的三边关系化简】53.(2022秋•游仙区校级月考)设a,b,c是△ABC的三边.化简|﹣a﹣b+c|+2|a+c ﹣b|﹣|b﹣a﹣c|.54.(2022春•莲湖区期末)已知△ABC的三边长分别为1,4,a,化简:|a﹣2|﹣|a﹣1|+|a﹣6|.55.(2023春•丰泽区校级期中)已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式:|a+b﹣c|+|b﹣a﹣c|=.(2)若AB=AC,AC边上的中线BD把三角形的周长分为15和6两部分,求腰长AB.56.(2023春•邗江区月考)已知△ABC的三边长是a,b,c.(1)若a=4,b=6,且三角形的周长是小于18的偶数.求c边的长;(2)化简|a+b﹣c|+|c﹣a﹣b|.。

人教版八年级数学上册第十一章《与三角形有关的线段》课时练习题(含答案)

人教版八年级数学上册第十一章《与三角形有关的线段》课时练习题(含答案)

人教版八年级数学上册第十一章《与三角形有关的线段》课时练习题(含答案)一、单选题1.已知ABC 中,D 、E 分别是边AB 、AC 上的点,连接DE 、BE 、DC ,下列各式中正确的是( ).A .ADE ABC S AD S AB =△△ B .ADE ABC S AE S AC =△△ C .ADC ABC S AD S AB =△△ D .ADE EDC S AE S AC=△△ 2.平面内,将长分别为1,5,1,1,d 的线段,顺次首尾相接组成凸五边形(如图),则d 可能是( )A .1B .2C .7D .83.下列说法中正确的是( )A .三角形的三条中线必交于一点B .直角三角形只有一条高C .三角形的中线可能在三角形的外部D .三角形的高线都在三角形的内部 4.如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l ,则l 是△ABC 的( )A .中线B .中位线C .高线D .角平分线5.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7B.8C.9D.106.如图,在ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一点,将ACD沿CD翻折后得到CED,边CE交AB于点F.若DEF中有两个角相等,则∠ACD的度数为()A.15°或20°B.20°或30°C.15°或30°D.15°或25°二、填空题7.如图,BE是△ABC的中线,点D是BC边上一点,BD=2CD,BE、AD交于点F,若△ABC 的面积为24,则S△BDF﹣S△AEF等于_____.8.已知三角形三边长分别为2,9,x,若x为偶数,则这样的三角形有___________个.9.周长为30,各边长互不相等且都是整数的三角形共有_______个.--+-+---=______.10.已知a,b,c是ABC的三边长,则b c a a b c a b c三、解答题11.如图,在△ABC中,AE为边BC上的高,点D为边BC上的一点,连接AD.(1)当AD为边BC上的中线时.若AE=4,△ABC的面积为24,求CD的长;(2)当AD为∠BAC的角平分线时.①若∠C =65°,∠B =35°,求∠DAE 的度数;②若∠C -∠B =20°,则∠DAE = °.12.(1)若一个三角形三边分别为1x +,3,4,求x 的取值范围; (2)若一个三角形两边长为6和8,求最长边x 的取值范围.13.在△ABC 中,BC =8,AB =1;(1)若AC 是整数,求AC 的长;(2)已知BD 是△ABC 的中线,若△ABD 的周长为17,求△BCD 的周长考答案1.C2.C3.A4.D5.C6.C7.48.29.12##十二10.33a b c -+11.(1)6 ;(2)①15°;②10.12.(1)06x <<;(2)814x ≤<13.(1)8(2)24。

11.1——与三角形有关的线段(难)

11.1——与三角形有关的线段(难)

2. 7条长度均为整数厘米的线段:a1,a2,a3,a4,a5,a6,a7,满足a1<a2<a3<a4<a5<a6<a7,且这7条 线段中的任意3条都不能构成三角形.若a1=1厘米,a7=21厘米,则a6能取的值是( ) A. 18厘米 B. 13厘米 C. 8厘米 D. 5厘米
3. 已知不等腰三角形三边长为a,b,c,其中a,b两边满足 a 2 -12a+36 + b-8 =0 ,那么这个三角形的最大边c的取 值范围是( ) A. c>8 B. 8<c<14 C. 6<c<8 D. 8≤c<14
38. 三角形纸片内有n个点,连同三角形的三个顶点的n+3个点中,没有任何三点在同一直线上,用剪刀把三角形 纸剪成这n+3个点为顶点的一个个小三角形.问: (1)当n=1时,这样的小三角形有多少个?当n=2,n=3时呢? (2)若要剪出2001个这样的小三角形,原三角形内需要有多少个符合条件的点,并需要剪几刀?
42. 从1、2、3、4…、2004中任选k个数,使所选的k个数中一定可以找到能构成三角形边长的三个数(这里要求 三角形三边长互不相等),试问满足条件的k的最小值是多少? 43. (1)用长度相等的100根火柴杆,摆放成一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的 每个三角形的各边所用火柴杆的根数. (2)现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于1cm的整数.如果其中任意3小段 都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件的n段. 44. 在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC内一点,证明:PB>PC(如 图).
三、解答题 (共13小题,共 分)
33. 已知a、b、c为△ABC的三边,有2b-c =2c-a =2a-b =k,且满足4b2-c2=2bc+c2.

[数学]-必考点01 与三角形有关的线段(原卷版)

[数学]-必考点01 与三角形有关的线段(原卷版)
A.16B.18C.20D.22
★★三角形的角平分线
【例题8】(2021秋•大兴区校级期中)如图,在△ABC中,∠BAC=60°,∠ACE=40°,AD,CE是△ABC的角平分线,则∠DAC=,∠BCE=,∠ACB=.
★★三角形的角平分线、中线、高的综合运用
【例题9】(2022春•惠州期末)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.试求:
必考点01与三角形有关的线段
●题型一三角形的有关概念
【例题1】(2021秋•双牌县期末)下面是小强用三根火柴组成的图形,其中符合三角形概念的是( )
A. B.
C. D.
【例题2】(2021秋•泰山区校级月考)图中共有三角形个,其中以AE为边的三角形有个.
【解题技巧提炼】
三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边.相邻两边的公共端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角,简称三角形的角.
19.(2021秋•赵县月考)在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点.
(1)如图1,若S△ABC=1cm2,求△BEF的面积.
(2)如图2,若S△BFC=1cm2,则S△ABC=.
20.(2022春•方城县期末)如图,在△ABC中,∠ACB=90°,AC=8cm,BC=6cm,AB=10cm,点P从点A出发,沿射线AB以2cm/s的速度运动,点Q从点C出发,沿线段CB以1cm/s的速度运动,P、Q两点同时出发,当点Q运动到点B时P、Q停止运动,设Q点的运动时间为t秒.
12.(2022春•沭阳县校级月考)如图,在△ABC中,AD为BC边上的中线,DE⊥AB于点E,DF⊥AC于点F,AB=3,AC=4,DF=1.5,则DE=.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与三角形有关的线段测试题
一、选择题
1、△ABC的三条边长分别是a、b、c,则下列各式成立的是()
A.a+b=c B.a+b>c C.a+b<c D.a2+b2=c2
2、以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()
A.1个B.2个C.3个D.4个
3、已知△ABC的三边长为a,b,c,化简|a+b-c|-|b-a-c|的结果是()
A.2a B.-2b C.2a+2b D.2b-2c
4、已知三角形的周长为15cm,其中的两边长都等于第三边长的2倍,则这个三角形的最短边长是()
A.3cm B.4cm C.5cm D.6cm
5、如图,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,△ABC中BC边上的高是()
A.FC B.BE C.AD D.AE
6、三角形的三条高在()
A.三角形内部B.三角形外部
C.三角形的边上D.三角形的内部、外部或与边重合
7、如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()
A.三角形的稳定性B.两点之间线段最短
C.两点确定一条直线D.垂线段最短
8、如图,△ABC中,∠C=90°,D、E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法中不正确的是()
A.BC是△ABE边AE上的高B.BE是△ABD的中线
C.BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC
9、下列判断正确的是()
(1)平分三角形内角的射线叫三角形的角平分线;
(2)三角形的中线、角平分线都是线段;
(3)一个三角形有三条角平分线和三条中线;
(4)三角形的中线是经过顶点和对边中点的直线.
A.(1)(2)(3)(4)B.(2)(3)(4)
C.(3)(4)D.(2)(3)
10、如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()
A.两点之间线段最短B.矩形的对称性
C.矩形的四个角都是直角D.三角形的稳定性
二、填空题
11、已知BD、CE是△ABC的高,直线BD、CE相交的成的角中有一个角是50°,则∠BAC等于________度.
12、如图,在图(1)中,互不重叠的三角形共有4个,在图(2)中,互不重叠的三角形共有7个,在图(3)中,互不重叠的三角形共有10个,……,则在第(n)个图形中,互不重叠的三角形共有________个(用含n的代数式表示).
13、如图,在△ABC中,已知点D、E、F分别为BC、AD、CE的中点,且S△ABC=4cm2,则S阴影=________.
二、解答题
14、如图,△ABC中,AB=AC,D为AC的中点,△ABD的周长比△BDC的周长大2,且BC的边长是方程的解,求△ABC三边的长.
15、已知△ABC的三边长为5,12,3x-4,周长为偶数,求整数x及周长.
16、如图,草原上有4口油井,位于四边形ABCD的4个顶点,现在要建立一个维修站H,问H建在何处,才能使它到4口油井的距离之和最小?
17、已知△ABC的周长为45cm,(1)若AB=AC=2BC,求BC的长;(2)若AB:BC:AC=2:3:4,求△ABC三条边的长.
18、如图,在△ABC中,AB=AC,AC上的中线把三角形的周长分为24cm和30cm的两个部分,求三角形各边的长.
19、如图,在△ABC中,D是BC上一点,试说明下列不等式成立的理由.
AB+BC+AC>2CD.
20、平面上有n个点(n≥3),且任意三点不在同一条直线上,过任意三点作三角形,一共能作出多少个不同的三角形?
(1)分析:当平面上仅有3个点时,可作________个三角形;
当有4个点时,可作________个三角形;
当有5个点时,可作________个三角形;…
(2)归纳:考察点的个数n和可作出的三角形的个数S n发现:
(3)推理_______________________________________________________________
答案:
1--10:BCDAC DADDD
11、50或130 12、3n+1 13、1cm2
14、先求出k=BC=,而△ABD的周长比△BDC的周长大2,
所以AB比BC大2,即AB=AC=.
15、先求x的取值范围,
∴12-5<3x-4<12+5,即,而x为整数,
∴x=4、5或6.若周长12+5+3x-4=13+3x是偶数,则x为奇数,
∴x=5,从而周长为5+12+3x-4=28.
16、H建在段AC与BD的交点处,理由是:AC+BD<AB+BC+CD+DA.
17、(1)AB+AC+BC=45,5BC=45,BC=9cm;
(2)设AB=2x,BC=3x,AC=4x,
则2x+3x+4x=45,x=5,
∴AB=2x=10cm,BC=3x=15cm,AC=20cm.
18、因为BD是中线,所以AD=DC,造成所分两部分不等的原因就在于腰与底的不等,故应分情况讨论.
解:设AB=AC=2x,则AD=CD=x,
(1)当AB+AD=30,BC+CD=24时,有2x+x=30,
∴x=10,2x=20,BC=24-10=14,三边分别为:20cm,20cm,14cm.
(2)当AB+AD=24,BC+CD=30,有2x+x=24
∴x=8,BC=30-8=22,三边分别为:16cm,16cm,22cm.
19、AB+BC+AC=AB+BD+CD+AC>AD+AC+CD>CD+CD=2CD.
20、(1)1;4;10
(2)
(3)平面上有n个点,过不在同一条直线上的三点可以确定一个三角形,取第一个点A 有n种取法,
取第二个点B有(n-1)种取法,取第三个点C有(n-2)种取法,
所以一共有n(n-1)(n-2)个三角形,但△ABC、△ACB、△BAC、△CBA、△CAB是同一个三角形,故应除以6,
即.。

相关文档
最新文档