风力发电原理

合集下载

风力发电原理

风力发电原理
类型:有传统风车、低速风力机及高速风力机
水平轴力风机图
3、垂直轴风力机
特点:凡风轮转轴与地面呈垂直状态的风力 机叫垂直抽风力机。
形式有:如s型、H型、Ф型等。 应用:虽然目前垂直轴风力机尚未大量商品
化,但是它有许多特点,如不需大型塔架、 发电机可安装在地面上、维修方便及叶片 制造简便等,研究日趋增多,各种形式不 断出现。各种形式的垂直轴风力机。
风力发电原理
主讲:
风力发电的原理:是利 用风力带动风车叶片旋 转,再透过增速机将旋 转的速度提升,来促使 发电机发电。简单的说 风力发电就是将风能转 换为机械能进而将机械 能再转换为电能的过程。
现代风力发电机采用空 气动力学原 理 ,就像 飞机的机翼一样。
风并非 " 推 " 动风轮叶片,而是吹过叶片形成叶 片正反面的压差,这种压差会产生升力,令风轮旋转 并不断横切风流 。

偏导航系统的作用
偏航系统的主要作用有两个: 1) 与风力发电机组的控制系统相互配合,使风发 电机组的风轮始终处于迎风状态,充分利用风能, 提高风力发电机组的发电效率; 2) 提供必要的锁紧力矩,以保障风力发电机组的安 全运行。
(四)发电机
发电机的作用,是利用电磁感应现象把由风轮输 出的机械能转变为电能。
依据目前的风车技术,大约是每秒三公尺 的微风速度(微风的程度),便可以开始 发电。 风力发电正在世界上形成一股热潮, 风力发电没有燃料问题,也不会产生辐射 或空气污染。
(一)风力发电设备
组成:风力发电机组包括两大部分; 一部分是风力机,由它将风能转换为机械能; 另一部分是发电机,由它将机械能转换为电能。
发电机有基本类型: 普通异步风力发电机组 双馈异步风力发电机组 直驱式同步风力发电机组(含永磁发电机和直流 励磁发电机) 混合式风力发电机组

简述风力发电原理

简述风力发电原理

简述风力发电原理风力发电是利用风能将其转化为电能的一种可再生能源。

风能是地球上存在的一种自然能源,来源于太阳能的辐射和地球自转所形成的气候系统。

风力发电利用风能的原理是通过风轮的旋转驱动发电机产生电能。

风力发电的基本原理可以简单地归纳为:风能转化为机械能,再由机械能转化为电能。

具体来说,当风吹过风轮时,风轮叶片会受到风力的作用而转动。

风轮连接着发电机的转子,当风轮转动时,转子也会跟着转动。

转子内部的磁场与定子之间的磁场产生相互作用,这种相互作用会产生电流,从而产生电能。

风力发电系统主要由风机叶片、风轮、传动系统和发电机组成。

风机叶片是收集风能的关键部件,它们的形状和数量都会影响风力发电的效率。

风轮是将风能转化为机械能的装置,一般由多个叶片组成。

传动系统将风轮的旋转转动传递给发电机。

发电机是将机械能转化为电能的关键部件,一般采用的是感应发电机。

风力发电的效率受多种因素影响。

首先是风的强度和稳定性,风速越大、越稳定,风力发电的效率就越高。

其次是风机叶片的形状和数量,设计合理的叶片能够更好地捕捉风能。

还有风轮的转速和传动系统的效率等因素也会影响风力发电的效率。

此外,地理位置也是影响风力发电效果的重要因素,选择适合的地点能够最大限度地利用风能。

风力发电作为一种清洁、可再生的能源形式,具有多个优点。

首先,风能广泛分布于全球各地,几乎每个地区都可以通过风力发电来获得电能。

其次,风力发电不会产生二氧化碳等温室气体和污染物,有利于减少环境污染和气候变化。

再次,风力发电具有可再生性,风能源源不断,不会像化石燃料一样会耗尽。

此外,风力发电还可以降低对传统能源的依赖,提高能源的多样化。

然而,风力发电也存在一些挑战和限制。

首先是风能资源的不稳定性和不可控性,风速的变化会直接影响风力发电的输出。

其次是风力发电设备的成本较高,需要大量的投资。

此外,风力发电设备对环境的影响也需要考虑,如鸟类和蝙蝠的迁徙和栖息地受到一定程度的影响。

风力发电机的原理运作

风力发电机的原理运作

风力发电机的原理运作风力发电机是一种利用风能转化为电能的装置。

它利用风的能量转动叶轮,通过传动装置将旋转的动能转化为电能。

下面我们详细介绍风力发电机的原理和运作过程。

一、风力发电机的原理1. 风的动能转换为叶轮的动能:当风经过叶轮时,叶轮所受到的风力会使其开始旋转。

这是因为风有一定的动能,当它与叶轮表面接触时,由于叶轮的形状和设计,风力会使叶轮开始转动。

2. 叶轮的转动驱动发电机:叶轮的转动会通过传动装置传递到发电机,从而驱动发电机产生电能。

传动装置通常由齿轮、轴等组成,可以将叶轮旋转的动能转换为发电机所需要的转动力。

3. 发电机的工作原理:发电机是将机械能转化为电能的关键部件。

它由转子、定子、磁场等构成。

当叶轮转动传递给发电机时,转子内的导线会受到磁场力的作用而产生电动势。

这个电动势经过适当的电路处理后,最终输出为可用的电能。

二、风力发电机的运作过程1. 风力发电机的启动:风力发电机需要一定的风速才能启动。

一般来说,需要的风速在3米/秒至5米/秒之间。

当风速达到或超过设定值时,发电机会自动启动。

2. 风力发电机的控制:发电机可以根据不同的风速自动调整叶轮的转速。

当风速过高时,会启动风速控制器,通过改变叶轮的角度来降低风力对叶轮的影响。

这种控制可以保证风力发电机在不同风速下都能正常工作,同时也可以保护发电机避免风力过大造成的损坏。

3. 风力发电机的发电:当风力发电机启动后,叶轮开始旋转,带动发电机转动。

发电机可以将机械能转化为电能,并通过输出端口输出。

这些电能可以进行储存或传输供给社会使用。

4. 风力发电机的维护和安全:风力发电机需要定期对设备进行维护和保养,以确保其正常工作。

同时,风力发电机也要注意安全问题,避免发电机受到恶劣天气或其他外部因素的影响。

三、风力发电机的优势和应用1. 可再生能源:风力发电是一种利用风能的可再生能源。

风是一种无尽的能源,而且对环境几乎没有污染。

2. 低碳环保:风力发电过程中不产生温室气体和空气污染物。

风力发电的原理是什么

风力发电的原理是什么

风力发电的原理是什么风力发电是指利用风能将风动能转换为电能的一种可再生能源发电技术。

它利用风能驱动风轮转动,将机械能转化为电能。

本文将详细介绍风力发电的原理及其工作原理。

风力发电原理风力发电的原理基于风的运动和空气的物理性质。

当地球受到太阳的照射,不同地区的气温和气压产生差异,形成气候系统。

气候系统中,气体在不同气压区域之间产生气流,形成风。

这种风能被称为风动能。

风力发电利用风动能,通过风轮转动,产生机械能,再由发电机将机械能转换为电能。

下面将详细介绍风力发电的工作过程。

风力发电的工作原理风力发电的工作原理可以归纳为以下几个步骤:1.风的捕获:风力发电机通常由三个主要部分组成:风轮、转子和发电机。

风轮是风力发电机中最重要的部分,它的作用是捕获风能。

风轮通常由多个叶片组成,通过叶片的形状和角度,能够最大程度地捕获风能。

2.风能转换:当风轮受到风的作用力时,风轮会转动。

转动的风轮会带动转子旋转,通过机械传动装置(如齿轮箱)将风轮转动的速度提高,并使其与发电机的转子同步旋转。

这样,机械能就被转化为转子的旋转动能。

3.电能转换:转子的旋转运动会激励发电机中的线圈产生感应电动势,然后通过电磁感应现象将机械能转换为电能。

发电机的输出电流经过电路控制系统处理,最终输入电网供人们使用。

4.电能传输和储存:发电后的电能经过变压器进行传输,将电压调整到合适的水平后输送到电网。

人们可以通过电网获得风力发电机产生的电能。

电能也可以通过储能设备,如电池,进行短期或长期的储存,以备不时之需。

风力发电的优势风力发电具有一系列的优势,使其成为一种重要的可再生能源发电技术:1.环保:风力发电不排放温室气体和污染物,对环境无污染,能够减少对化石燃料的依赖,有助于降低空气和水的污染。

2.可再生能源:风力是一种可再生能源,取之不尽,用之不竭。

利用风力发电可以减少对有限资源的消耗,对未来能源供应具有重要意义。

3.风力资源广泛:全球范围内都存在风力资源,且分布广泛。

风力发电机组的工作原理

风力发电机组的工作原理

风力发电机组的工作原理
风力发电机组是利用风能转换成电能的设备,是一种清洁、可再生的能源发电
方式。

它的工作原理主要包括风能转换、机械能转换和电能转换三个过程。

首先,风能转换。

当风吹过风力发电机组的叶片时,叶片受到风的作用而转动。

风的动能转化为叶片的动能,使叶片旋转。

这个过程就是风能转换的过程,也是风力发电机组能够正常工作的基础。

其次,机械能转换。

叶片的旋转带动风力发电机组的转子转动,转子与发电机
内部的磁场相互作用,产生感应电动势。

这时,机械能转化为电能的过程就开始了。

通过转子和定子之间的电磁感应作用,机械能被转化为电能。

最后,电能转换。

产生的交流电通过变压器升压后,送入电网,供给用户使用。

这个过程就是电能转换的过程,也是风力发电机组最终实现发电的过程。

总的来说,风力发电机组的工作原理就是通过风能转换、机械能转换和电能转
换三个过程,最终将风能转化为电能。

这种清洁、可再生的能源发电方式在当前的能源结构调整和环境保护中具有重要的意义。

希望通过不断的技术创新和设备升级,风力发电机组能够更加高效、稳定地工作,为人类的可持续发展做出更大的贡献。

风力发电厂工作原理

风力发电厂工作原理

风力发电厂工作原理风力发电是一种利用风能将其转化为电能的可再生能源。

风力发电厂是专门用于发电的设备,通常由风能转换系统、发电机组、电力传输系统和电力调度系统组成。

风力发电厂的工作原理是利用风能将风转化为机械能,再将机械能转化为电能。

下面将详细介绍风力发电厂的工作原理。

1. 风能转换系统风力发电厂的核心是风能转换系统,它由风轮、塔架和控制系统组成。

风轮是将风能转化为机械能的关键部件,通常由数片叶片组成。

当风吹过风轮时,风轮转动,产生机械能。

塔架是支持风轮的结构,通常较高,以便于获取更强的风能。

控制系统用于监测和调节风轮的转速和角度,以保证风能的最大利用效率。

2. 发电机组风力发电厂的发电机组是将机械能转化为电能的关键部件。

机械能通过传动系统传送给发电机,发电机将机械能转化为电能。

发电机通常由转子和定子组成,转子由风轮带动旋转,而定子则产生感应电流。

通过定子上的导线,感应电流转化为交流电能。

3. 电力传输系统发电机组产生的电能需要通过电力传输系统传送到电网中。

电力传输系统由变压器、电缆和开关设备组成。

发电机组产生的电能首先通过变压器升高电压,然后通过电缆输送到变电站或直接输送到电网。

开关设备用于控制电能的流向和分配。

4. 电力调度系统电力调度系统是风力发电厂的管理系统,它负责监测和控制发电机组的运行状态,并根据电网的需求进行电力调度。

电力调度系统可以根据电网负荷和风能状况来控制发电机组的输出功率,以保持电网的稳定运行。

总结起来,风力发电厂的工作原理是利用风能转化为机械能,再将机械能转化为电能。

通过风能转换系统将风能转化为机械能,再通过发电机组将机械能转化为电能。

最后,通过电力传输系统将电能输送到电网中,并通过电力调度系统进行管理和控制。

风力发电厂的工作原理简单清晰,具有可再生能源、环保、节能等优点,因此被广泛应用于全球各地。

随着科技的不断进步,风力发电技术也在不断提高,使得风力发电成为一种可靠、高效的清洁能源。

风力发电的构造原理

风力发电的构造原理

风力发电的构造原理把风的动能转变成机械动能,再把机械能转化为电力动能就是风力发电。

风力发电的原理是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升来促使发电机发电。

依据目前的风车技术计算出大约每秒三米的微风速度便可以开始发电。

风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料也不会产生辐射。

风力发电机的基础结构有机舱、转子叶片、低速轴、发电机、偏航装置、电子控制器及冷却元件等零部件。

机舱包括齿轮箱和发电机是风力发电机的关键设备,维护人员可以通过风力发电机塔进入机舱。

机舱左端是风力发电机转子,转子叶片捉获风并将风力传送到转子轴心。

现代六百千瓦风力发电机上每个转子叶片的测量长度大约为二十米,而且被设计得很像飞机的机翼。

转子轴心附着在风力发电机的低速轴上,风力发电机的低速轴将转子轴心与齿轮箱连接在一起。

在现代六百千瓦风力发电机上,转子转速慢至大约为19-30转每分钟,轴中有用于液压系统的导管来激发空气动力闸的运行。

齿轮箱左边是低速轴可以将高速轴的转速提高至低速轴的50倍,高速轴以1500转每分钟运转并驱动发电机,它装备有紧急机械闸以用于空气动力闸失效时或风力发电机被维修之时。

发电机通常被称为感应电机或异步发电机,在现代风力发电机上最大电力输出通常为500至1500千瓦。

偏航装置借助电动机转动机舱以使转子正对着风,偏航装置由电子控制器操作可以通过风向标来感觉风向,通常在风改变其方向时风力发电机一次只会偏转几度。

电子控制器包含一台不断监控风力发电机状态的计算机并控制偏航装置,为防止出现齿轮箱或发电机的过热等故障,该控制器可以自动停止风力发电机的转动并通过电话调制解调器来呼叫风力发电机操作员。

液压系统用于重置风力发电机的空气动力闸,冷却元件包含一个风扇以用于冷却发电机,此外它包含一个油冷却元件来用于冷却齿轮箱内的油,一些风力发电机还具有水冷发电机。

风力发电机塔载有机舱及转子,通常高的塔具有优势是因为离地面越高则风速越大。

风力发电什么原理

风力发电什么原理

风力发电什么原理
风力发电是一种利用风能将其转化为电能的发电方式。

其原理是基于风能转化为机械能的动力学原理。

当风经过风力发电机组时,风力将会使风轮旋转。

风轮连接到一个发电机,这个发电机将会将机械能转化为电能。

具体地说,风力作用下,风轮旋转时,风轮内的发电机会运转起来,通过磁铁和线圈之间的作用,相对运动产生感应电流,从而将机械能转化为电能。

风力发电需要一定的风速才能够有效工作。

通常情况下,风速需要达到一定的最低值,才能让风力发电机组开始工作。

此外,过大的风速也会对风力发电机组产生负面影响,因此还需要设定一个最大风速值,以保护设备的安全运行。

在选择风力发电站的位置时,也需要考虑到地理、气候等因素,以确保能够获得充足的风能资源。

因此,通常选择在具有较高的海拔、沿海地区或者开阔地带设置风力发电站,以获得更强的风速。

总的来说,风力发电利用风能的动力学原理,将风能转化为机械能,再转化为电能。

它是一种环保可再生的能源形式,因此在全球范围内得到了广泛应用和发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风力发电原理及风力发电的工艺流程
发电风力发电机最初出现在十九世纪末。

自二十世纪八十年代起,这项技术不断发展并日渐成熟,适合工业应用。

近二三十年,典型的风力发电机的风轮直径不断增大,而额定功率也不断提升。

在二十一世纪00 年代初,风力发电机最具经济效益的额定输出功率范围在600 千瓦至750 千瓦之间,而风轮直径则在40 米至47 米之间。

当时所有制造商都有生产这类风力发电机。

新一代的兆瓦级风力发电机是以这类机种作为基础发展出来的。

二零零七年初,有一些制造商开始生产额定功率为几兆瓦而风轮直径达到约90 米的风力发电机(例如Vestas V90 3.0 兆瓦
风电机,Nordex N90 2.5 兆瓦风电机等等),甚至有些直径达100米( 如GE 3.6 兆瓦风电机) 。

这些大型风力发电机主要市场是欧洲。

在欧洲,适合风电的地段日渐减少,因此有逼切性安装发电能力尽量高的风力发电机。

另一类更大型的为海上应用而设计的风力发电机,已经完成设计并制成原型机。

例如RE Power 公司设计的风力发电机风轮直径达126 米,功率达5 兆瓦。

1) 风的功率
风的能量指的是风的动能。

特定质量的空气的动能可以用下列公式计算。

能量= 1/2 X 质量X ( 速度)^2
吹过特定面积的风的的功率可以用下列公式计算。

功率= 1/2 X 空气密度X 面积X ( 速度)^3
其中,
功率单位为瓦特;
空气密度单位为千克/ 立方米;
面积指气流横截面积,单位为平方米;
速度单位为米/ 秒。

在海平面高度和摄氏15 度的条件下,乾空气密度为1.225 千克/ 立方米。

空气密度随气压和温度而变。

随著高度的升高,空气密度也会下降。

於上述公式中可以看出,风的功率与速度的三次方〔立方〕成正比,并与风轮扫掠面积成正比。

不过实际上,风轮只能提取风的能量中的一部分,而非全部。

2) 风力发电机的工作原理
现代风力发电机采用空气动力学原理,就像飞机的机翼一样。

风并非" 推" 动风轮叶片,而是吹过叶片形成叶片正反面
的压差,这种压差会产生升力,令风轮旋转并不断横切风流。

风力发电机的风轮并不能提取风的所有功率。

根据Betz 定律,理论上风电机能够提取的最大功率,是风的功率的59.6% 。

大多数风电机只能提取风的功率的40% 或者更少。

风力发电机主要包含三部分∶风轮、机舱和塔杆。

大型与电网接驳的风力发电机的最常见的结构,是横轴式三叶片风轮,并安装在直立管状塔杆上。

( 上图来源:Danish Wind Industry Association)
风轮叶片由复合材料制造。

不像小型风力发电机,大型风电机的风轮转动相当慢。

比较简单的风力发电机是采用固定
速度的。

通常采用两个不同的速度- 在弱风下用低速和在强风下用高速。

这些定速风电机的感应式异步发电机能够直接发
产生电网频率的交流电。

比较新型的设计一般是可变速的(比如Vestas 公司的V52-850 千瓦风电机转速为每分钟14 转到每分钟31.4 转)。

利用可变速操作,风轮的空气动力效率可以得到改善,从而提取更多的能量,而且在弱风情况下噪音更低。

因此,变速的风电机设
计比起定速风电机,越来越受欢迎。

机舱上安装的感测器探测风向,透过转向机械装置令机舱和风轮自动转向,面向来风。

风轮的旋转运动通过齿轮变速箱传送到机舱内的发电机(如果没有齿轮变速箱则直接传送到发电机)。

在风电工业中,配有变速箱的风力发电机是很普遍的。

不过,为风电机而设计的多极直接驱动式发电机,也有显著的发展。

设於塔底的变压器(或者有些设於机舱内)可提升发电机的电压到配电网电压(香港的情况为11 千伏)。

所有风力发电机的功率输出是随著风力而变的。

强风下最常见的两种限制功率输出的方法(从而限制风轮所承受压力)是失速调节和斜角调节。

使用失速调节的风电机,超过额定风速的强风会导致通过业片的气流产生扰流,令风轮失速。

当风力过强时,业片尾部制动装置会动作,令风轮剎车。

使
用斜角调节的风电机,每片叶片能够以纵向为轴而旋转,叶
片角度随著风速不同而转变,从而改变风轮的空气动力性能。

当风力过强时,叶片转动至迎气边缘面向来风,从而令风轮剎车。

叶片中嵌入了避雷条,当叶片遭到雷击时,可将闪电中的电流引导到地下去。

上图:Vestas V52-850 千瓦风力发电机机舱内的组成部份
( 来源:Vestas)
3) 风力发电机的功率曲线
在风速很低的时候,风电机风轮会保持不动。

当到达切入风速时(通常每秒 3 到4 米),风轮开始旋转并牵引发电机开始发电。

随著风力越来越强,输出功率会增加。

当风速达到额定风速时,风电机会输出其额定功率。

之後输出功率会保留大致不变。

当风速进一步增加,达到切出风速的时候,风电机会剎车,不再输出功率,为免受损。

风力发电机的性能可以用功率曲线来表达。

功率曲线是用作显示在不同风速下(切入风速到切出风速)风电机的输出功率。

上图:V52-850 千瓦风力发电机於不同噪音级别下的工作曲线( 噪音级别可透过改变风力发电机的转速而改变)
( 来源:Vestas)
为特定地点选取合适的风力发电机,一般方法是采用风电机的功率曲线和该地点的风力资料以进行产电量估算。

(在大型风力发电机- 资源潜力部分有更多相关资讯)
4) 风力发电机的额定输出功率
风力发电机的额定输出功率是配合特定的额定风速设而定的。

由於能量与风速的立方成正比,因此,风力发电机的功
率会随风速变化会很大。

同样构造和风轮直径的风电机可以配以不同大小的发电机。

因此两座同样构造和风轮直径的风电机可能有相当不同的额定输出功率值,这取决於它的设计是配合强风地带(配较
大型发电机)或弱风地带(配较小型发电机)。

5) 风力发电机的主要种类
横轴风力发电机和竖轴风力发电机
根据叶片固定轴的方位,风力发电机可以分为横轴和竖轴两类。

横轴式风电机工作时转轴方向与风向一致,竖轴式风
电机转轴方向与风向成直角。

横轴式风电机通常需要不停地变向以保持与风向一致。

而竖轴式风电机则不必如此,因为它可以收集不同来向的风能。

横轴式风电机在世界上占主流位置。

逆风风力发电机和顺风风力发电机
逆风风电机是一种风轮面向来风的横轴式风电机。

而对於顺风风电机,来风是从风轮的背後吹来。

大多数的风力发电机是逆风式的。

单叶片、双叶片和三叶片风力发电机
叶片的数目由很多因素决定,其中包括空气动力效率、复杂度、成本、噪音、美学要求等等。

大型风力发电机可由1 、2 或者3 片叶片构成。

叶片较少的风力发电机通常需要更高的转速以提取风中的能量,因此噪音比较大。

而如果叶片太多,它们之间会相互作用而降低系统效率。

目前 3 叶片风电机是主流。

从美学角度上看,3 叶片的风电机看上去较为平衡和美观。

6) 岸上风电场
岸上风电系统可以是仅有一台风电机,或者由多台风电机器线性排列或方阵排列形成风电场。

风电场的风力发电机相互之间需要有足够的距离,以免造成过强的湍流相互影响,或由於" 尾流效应" 而严重减低後排风电机的功率输出。

为了配合运送大型设备(特别是叶片)到安装现场,须要建设道路。

另外亦须要建设输电线,把风电场的输出连接到电网接入点。

7) 世界各地的风力发电装置
到2005 年底,世界总风力发电装机容量达58 千兆瓦。

德国、西班牙、美国、印度和丹麦是以风力发电装机容量来算前几名的国家。

在丹麦,风能发电提供该国总用电量的20 %。


港第一台大型风力发电机是由香港电灯集团於2005 年末安装
在南丫岛上,并於2006 年二月正式启用。

该机额定输出功率为800 千瓦。

风能是可再生能源发展中最快的部分。

由1995 年到2005 年
之间的年增长率为28.5 %。

根据德国风能会(DEWI )的估计,风能发电的年增长率将保持高增长率,在2012 年或之前全球
风力发电装机容量可能达到150 千兆瓦。

相关文档
最新文档