数理统计试卷

合集下载

数理统计试卷

数理统计试卷

数理统计试卷试卷名称:数理统计I课程所在院系:理学院考试班级:学号:姓名:成绩:试卷说明:1.本次考试为闭卷考试。

本试卷共4页,共八大部分,请勿漏答;2.考试时间为120分钟,请掌握好答题时间;3.所有试题答案写在试卷上;4.答题中可能用到的数据如下:,,,,,,,,,一.填空(每空2分,共30分)1.设A、B、C为三个随机事件,则事件“A、B发生但C不发生”可表示为。

2.将一枚骰子连续投掷两次,第二次出现的点数为3的概率等于。

3.每次试验结果相互独立,设每次试验成功的概率为。

则重复进行试验直到第10次才取得次成功的概率等于。

4.已知为从总体中抽取出来的容量为20的简单随机样本的样本平均,且=7,=4,则,。

5.已知到连续型随机变量的概率密度函数为,则。

6.已知,,,则,。

7.为估计大学生近视眼所占的百分比,用重复抽样方式抽取200名同学进行调查,结果发现有68个同学是近视眼。

则大学生近视眼所占的百分比的95%的置信区间为。

8.已知是来自总体的简单随机样本,。

令,则当时,为总体均值的无偏估计。

9.已知随机变量和相互独立,且,,则所服从的分布为。

10.已知=25,36,且和的相关系数,则。

11.已知,(这里).由车比雪夫不等知。

12.已知和都是连续型随机变量,,设的概率密度函数,则的概率密度函数。

13.已知服从参数为1的泊松分布,则=。

二.(12分)一个口袋里有三个球,这三个球上面依次标有数字0、1、1。

现在从袋里任取一个球,不放回袋中,接着再从袋里取出一个球。

设表示第一次取到的球上标有的数字,表示第二次取到的球上标有的数字。

(1)求的联合概率分布;(2)求关于的边缘概率分布和关于的边缘概率分布,判断和是否独立(3)计算和的协方差。

三.(8分)某商场所供应的电视机中,甲厂产品与乙厂产品各占50%;甲厂产品的次品率是10%,乙厂产品的次品率是15%。

(1)求该商场电视机的次品率;(2)现某人从该商场上买了一台电视,发现它是次品,求它由甲厂生产的概率。

2024年概率论与数理统计试卷参考答案与评分标准

2024年概率论与数理统计试卷参考答案与评分标准

2023─2024学年第二学期《概率论与数理统计》课程考试试卷(A 卷)参考答案与评分标准一、填空题(每空3分,共30分)1.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加样本容量.2.设随机变量X 具有数学期望()E X μ=与方差2()D X σ=,则有切比雪夫不等式{}2P X μσ-≥≤14.3.设X 为连续型随机变量,a 为实常数,则概率{}P X a ==0.4.设X 的分布律为,{}1,2,k k P X x p k === ,2Y X =,若1nkk k xp ∞=∑绝对收敛(n为正整数),则()E Y =21kk k xp ∞=∑.5.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为17.6.设X 服从参数为λ的poisson 分布,则(2)E X =2λ.7.设(2,3)Y N ,则数学期望2()E Y =7.8.(,)X Y 为二维随机变量,概率密度为(,)f x y ,X 与Y 的协方差(,)Cov X Y 的积分表达式为(())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰.9.设X 为总体N (3,4)中抽取的样本14,,X X 的均值,则{}15P X ≤≤=2(2)1Φ-.(计算结果用标准正态分布的分布函数()x Φ表示)10.随机变量2(0,)X N σ ,n X X X ,,,21 为总体X 的一个样本,221()(1)ni i Y k X χ==∑ ,则常数k =21n σ.A 卷第1页共4页二、概率论试题(45分)1、(8分)题略解:用A B C 、、,分别表示三人译出该份密码,所求概率为P A B C ()(2分)由概率公式P A B C P ABC P A P B P C ()=1-()=1-()()()(4分)1-1-1-p q r =1-()()()(2分)2、(8分)设随机变量()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====,求数学期望()E X Y +与方差(23)D X Y -.解:(1)()E X Y +=E X E Y ()+()=1+3=4(3分)(2)(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-(3分)8361244XY ρ=+--(2分)3、(8分)某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,它们的寿命i T 相互独立,记161ii T T ==∑,用中心极限定理计算{1920}P T ≥的近似值(计算结果用标准正态分布的分布函数()x Φ表示).解:i i ET D T E T D T 2()=100,()=100,()=1600,()=160000(3分){1920}0.8}1P T P ≥=≈-Φ(0.8)(5分)(4分)4、(10分)设随机变量X 具有概率密度11()0x x f x ⎧-≤≤=⎨⎩,,其它,21Y X =+.(1)求Y 的概率密度()Y f y ;(2)求概率312P Y ⎧⎫-<<⎨⎩⎭.解:(1)12Y Y y F y y F y ≤>时()=0,时()=1(1分)A 卷第2页共4页212,{}{1}()d Y y F y P Y y P X y f x x<≤≤=+≤=()=(2分)02d 1x x y ==-(2分)概率密度函数2()=Y Y y f y F y ≤⎧'⎨⎩1,1<()=0,其它(2分)(2)3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222.(3分)5、(11分)设随机变量(,)X Y 具有概率分布如下,且{}1103P X Y X +===.XY-101013p114q112(1)求常数,p q ;(2)求X 与Y 的协方差(,)Cov X Y ,并问X 与Y 是否独立?解:(1)1111134123p q p q ++++=+=,即(2分)由{}{}{}{}{}101011010033P X Y X P Y X pP X Y X P X P X p +====+========+,,(2分)可得16p q ==(1分)X 01Y -11P1212P7121614(2)EX 1()=2,E Y 1()=-3,E XY 1()=-6(3分),-Cov X Y E XY E X E Y ()=()()()=0(2分)由..ij i j P P P ≠可知X 与Y 不独立(1分)三、数理统计试题(25分)1、(8分)题略.A 卷第3页共4页证明:222(1)(0,1),(1)X n S N n χσ-- ,22(1)X n S σ-相互独立(4分)2(1)Xt n - ,即(1)X t n - (4分)2、(10分)题略解:似然函数2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑(4分)由2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑可得221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑为2,μσ的最大似然估计(2分)由221ˆˆ(),()n nE E μμσσ-==可知11ˆni i x n μ==∑为μ的无偏估计量,2211ˆ()ni i x n σμ==-∑为2σ的有偏估计量(4分)3、(7分)题略解:01: 4.55: 4.55H H μμ=≠(2分)检验统计量x z =,拒绝域0.025 1.96z z ≥=(2分)而0.185 1.960.036z ==>(1分)因而拒绝域0H ,即不认为总体的均值仍为4.55(2分)A 卷第4页共4页。

高校统计学专业数理统计期末试卷及详解

高校统计学专业数理统计期末试卷及详解

高校统计学专业数理统计期末试卷及详解一、选择题1. 在统计学中,数据可分为以下哪两种类型?A.连续型和离散型B. 定量型和定性型C. 正态分布型和偏态分布型D. 样本数据和总体数据答案:B. 定量型和定性型解析:定量型数据是指可用数值表示且具有可比较性的数据,如身高、体重等;定性型数据则是以描述性质的方式呈现,如性别、颜色等。

2. 下列哪个统计指标用来度量数据的集中趋势?A. 标准差B. 方差C. 中位数D. 最大值答案:C. 中位数解析:中位数是将数据按升序排列后,位于中间位置的数值,它可以较好地度量数据的集中趋势。

3. 若两个事件A和B相互独立,则下列说法正确的是:A. P(A并B) = P(A) × P(B)B. P(A或B) = P(A) + P(B)C. P(A|B) = P(A)D. P(A且B) = P(A) + P(B)答案:A. P(A并B) = P(A) × P(B)解析:当事件A和B相互独立时,它们的联合概率等于各自概率的乘积。

4. 假设一组数据的标准差为0,则该组数据的变异程度是?A. 高B. 低C. 无法确定D. 不存在答案:B. 低解析:标准差反映了数据的变异程度,当标准差为0时,数据的变异程度为低。

5. 在一组数据中,75%的数据落在均值两侧的范围内,这个范围可以用以下哪个统计指标来度量?A. 标准差B. 方差C. 百分位数D. 偏度答案:A. 标准差解析:标准差描述了数据的离散程度,当数据的标准差较小时,就说明数据集中在均值附近,75%的数据落在均值两侧可以通过标准差来衡量。

二、填空题1. 在正态分布曲线上,μ代表_______,σ代表_______。

答案:μ代表均值,σ代表标准差。

2. 甲、乙两个班的考试成绩平均数分别为75和80,标准差分别为8和10。

如果将甲、乙两个班的成绩合并,合并后的成绩标准差为_____。

答案:合并后的成绩标准差无法确定。

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案数理统计练习⼀、填空题1、设 A 、 B 为随机事件,且 P (A)=0.5 , P (B)=0.6 ,P (B A)=0.8 ,则 P (A+B)=__ 0.7 __ 。

80 22、某射⼿对⽬标独⽴射击四次,⾄少命中⼀次的概率为 80 ,则此射⼿的命中率 2 。

81 33、设随机变量 X 服从[0 , 2] 上均匀分布,则 D(X) 1/3 。

[E(X)]24、设随机变量 X 服从参数为的泊松( Poisson )分布,且已知 E[(X 1)(X 2)] =1,则 ___1 。

5、⼀次试验的成功率为 p ,进⾏ 100 次独⽴重复试验,当 p 1/2 _______ 时,成功次数的⽅差的值最⼤,最⼤值为 25 。

6、(X ,Y )服从⼆维正态分布 N( 1, 2, 12, 22, ),则 X 的边缘分布为 N( 1, 12)7、已知随机向量( X ,Y )的联合密度函数3 xy 2, 0 x 2,0 y 1,则f (x, y ) 20, 其他8、随机变量 X 的数学期望 EX ,⽅差 DX2,k 、b 为常数,则有 E(kX b)=22D(kX b)=k 2 2。

9、若随机变量 X ~N ( -2,4),Y ~N (3 ,9),且 X 与 Y 相互独⽴。

设 Z =2X -Y +5,则 Z ~ N(-2, 25) 。

10、 ?1, ?2是常数的两个⽆偏估计量,若 D(?1) D( ?2 ) ,则称 ?1⽐ ?2有效。

1、设 A 、 B 为随机事件,且 P ( A )=0.4, P ( B )=0.3, P ( A ∪ B )=0.6 ,则 P ( AB )=_0.3__ 。

2、设 X B (2, p ),Y B (3, p ),且 P {X ≥ 1}= 5 ,则 P {Y ≥ 1}= 19 。

9 273、设随机变量 X 服从参数为 2的泊松分布,且 Y =3X -2, 则E ( Y )=44、设随机变量 X 服从 [0,2] 上的均匀分布, Y =2X +1,则 D (Y )= 4/35、设随机变量 X 的概率密度是:2f (x) 3x 0 x 1,且 P X 0 .784 ,则 =0.6 。

数理统计试题及答案

数理统计试题及答案

数理统计考试试卷一、填空题(本题15分,每题3分)1、总体的容量分别为10,15的两独立样本均值差________;2、设为取自总体的一个样本,若已知,则=________;3、设总体,若和均未知,为样本容量,总体均值的置信水平为的置信区间为,则的值为________;4、设为取自总体的一个样本,对于给定的显著性水平,已知关于检验的拒绝域为2≤,则相应的备择假设为________;5、设总体,已知,在显著性水平0.05下,检验假设,,拒绝域是________。

1、;2、0.01;3、;4、;5、.二、选择题(本题15分,每题3分)1、设是取自总体的一个样本,是未知参数,以下函数是统计量的为()。

(A)(B) (C)(D)2、设为取自总体的样本,为样本均值,,则服从自由度为的分布的统计量为()。

(A)(B) (C)(D)3、设是来自总体的样本,存在, ,则( )。

(A)是的矩估计(B)是的极大似然估计(C)是的无偏估计和相合估计(D)作为的估计其优良性与分布有关4、设总体相互独立,样本容量分别为,样本方差分别为,在显著性水平下,检验的拒绝域为()。

(A) (B)(C)(D)5、设总体,已知,未知,是来自总体的样本观察值,已知的置信水平为0.95的置信区间为(4.71,5。

69),则取显著性水平时,检验假设的结果是()。

(A)不能确定(B)接受(C)拒绝(D)条件不足无法检验1、B;2、D;3、C;4、A;5、B。

三、(本题14分)设随机变量X的概率密度为:,其中未知参数,是来自的样本,求(1)的矩估计;(2)的极大似然估计。

解:(1) ,令,得为参数的矩估计量。

(2)似然函数为:,而是的单调减少函数,所以的极大似然估计量为.四、(本题14分)设总体,且是样本观察值,样本方差,(1)求的置信水平为0.95的置信区间;(2)已知,求的置信水平为0。

95的置信区间;(,)。

解:(1)的置信水平为0。

95的置信区间为,即为(0。

数理统计学试题答案(2)

数理统计学试题答案(2)

湖北中医药大学期末考试《数理统计学》试卷一、选择题(每题1分,共30分)1、样本是总体中:()A、任意一部分B典型部分C、有意义的部分D、有代表性的部分E、有价值的部分2、参数是指:()A、参与个体数B研究个体数C总体的统计指标D样本的总和E、样本的统计指标3、抽样的目的是:()A、研究样本统计量B、研究总体统计量C、研究典型案例D、研究误差E、样本推断总体参数4、脉搏数(次/分)是:()A、观察单位B、数值变量C、名义变量D.等级变量E.研究个体5、疗效是:()A、观察单位B、数值变量C、名义变量D等级变量E、研究个体6、抽签的方法属于()A、分层抽样B、系统抽样C、整群抽样D单纯随机抽样E、二级抽样7、统计工作的步骤正确的是()A、收集资料、设计、整理资料、分析资料B、收集资料、整理资料、设计、统计推断C、设计、收集资料、整理资料、分析资料D、收集资料、整理资料、核对、分析资料E、搜集资料、整理资料、分析资料、进行推断8、实验设计中要求严格遵守四个基本原则,其目的是为了:()A、便于统计处理B严格控制随机误差的影响C、便于进行试验D减少和抵消非实验因素的干扰E、以上都不对9、对照组不给予任何处理,属()A、相互对照B、标准对照C、实验对照D自身对照E、空白对照10、统计学常将PO.05或PO.01的事件称()A、必然事件B、不可能事件C、随机事件D小概率事件E、偶然事件11、医学统计的研究内容是()A、研究样本B、研究个体C、研究变量之间的相关关系D研究总体E、研究资料或信息的收集.整理和分析12、统计中所说的总体是指:()A、根据研究目的确定的同质的研究对象的全体B、随意想象的研究对象的全体C根据地区划分的研究对象的全体D、根据时间划分的研究对象的全体E、根据人群划分的研究对象的全体13、概率P=0,则表示()A、某事件必然发生B、某事件必然不发生C某事件发生的可能性很小D、某事件发生的可能性很大E、以上均不对14、总体应该由()A、研究对象组成B研究变量组成C研究目的而定D同质个体组成E个体组成15、在统计学中,参数的含义是()A、变量B、参与研究的数目C、研究样本的统计指标D总体的统计指标E、与统计研究有关的变量16、调查某单位科研人员论文发表的情况,统计每人每年的论文发表数应属于()A、计数资料B、计量资料C、总体D个体E、样本17、统计学中的小概率事件,下面说法正确的是:()A、反复多次观察,绝对不发生的事件B、在一次观察中,可以认为不会发生的事件C发生概率小于0.1的事件D发生概率小于0.001的事件E、发生概率小于0.1的事件18、统计上所说的样本是指:()A、按照研究者要求抽取总体中有意义的部分B随意抽取总体中任意部分C、有意识的抽取总体中有典型部分D、按照随机原则抽取总体中有代表性部分E、总体中的每一个个体19、以舒张压 >12.7KPa为高血压,测量1000人,结果有990名非高血压患者,有10名高血压患者,该资料属()资料。

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。

把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。

概率论与数理统计试卷及参考答案

概率论与数理统计试卷及参考答案

概率论与数理统计 试卷及其答案一、填空题(每空4分,共20分)1、设随机变量ξ的密度函数为2(0,1)()0ax x x φ⎧∈=⎨⎩其它,则常数a =3 。

2、设总体2(,)XN μσ,其中μ与2σ均未知,12,,,n X X X 是来自总体X 的一个样本,2σ的矩估计为211()i ni i X X n ==-∑ 。

3、已知随机变量X 的概率分布为{},1,2,3,4,5,15kP X k k ===则1()15P X E X ⎧⎫<=⎨⎬⎩⎭___ 0.4___。

4、设随机变量~(0,4)X U ,则(34)P X <<= 0.25 。

5、某厂产品中一等品的合格率为90%,二等品合格率80%,现将二者以1:2的比例混合,则混合后产品的合格率为 5/6 。

二、计算题(第1、2、3题每题8分,第4题16分,第5题16分,共56分)1、一批灯泡共20只,其中5只是次品,其余为正品。

做不放回抽取,每次取一只,求第三次才取到次品的概率。

解:设i A 表示第i 次取到次品,i=1,2,3,B 表示第三次才取到次品, 则123121312()()()()()1514535201918228P B P A A A P A P A A P A A A ===⨯⨯=2、设X 服从参数为λ的指数分布,其概率密度函数为0()00xe xf x x λλ-⎧≥=⎨<⎩,求λ的极大似然估计。

解:由题知似然函数为:11()(0)i niii x i nx ni i L eex λλλλλ==-=-=∑=∏=≥对数似然函数为:1ln ()ln i ni i L n x λλλ===-∑由1ln ()0i ni i d L n x d λλλ===-=∑,得:*11i nii nxxλ====∑ 因为ln ()L λ的二阶导数总是负值,故*1Xλ=3、设随机变量X 与Y 相互独立,概率密度分别为:,0()0,0x X e x f x x -⎧>=⎨≤⎩,1,01()0,Y y f y <<⎧=⎨⎩其他, 求随机变量Z X Y =+的概率密度解:()()()Z X Y f z f x f z x dx +∞-∞=-⎰1,01,10,0z x z x ze dy z e dy z z ---⎧<<⎪⎪=≥⎨⎪≤⎪⎩⎰⎰ 11,01,10,0z z z e z e e z z ---⎧-<<⎪=-≥⎨⎪≤⎩4、 设随机变量X 的密度函数为,01,()2,12,0,x x f x x x <≤⎧⎪=-<≤⎨⎪⎩其它.求(),()E X D X 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档