光敏三极管应用电路

合集下载

光敏三极管

光敏三极管

二、菲涅尔透镜 使用热释电信息转换器件时, 使用热释电信息转换器件时,一般前面 需安装菲涅尔透镜, 需安装菲涅尔透镜,外来移动的辐射能 量通过菲涅尔透镜断续的聚光于热释电 使热释电输出相应的电信号。同时, 上,使热释电输出相应的电信号。同时, 菲涅尔透镜也能增加热释电的探测距离。 菲涅尔透镜也能增加热释电的探测距离。 每个透镜都有一个不大的视场,而相邻两个透镜的视场不连续, 每个透镜都有一个不大的视场,而相邻两个透镜的视场不连续,也 不重叠,彼此相隔一个微小的盲区。 不重叠,彼此相隔一个微小的盲区。一种典型的菲涅尔透镜外形如 图所示。 图所示。 视场角度范围如图所示。 视场角度范围如图所示。当辐射物在菲涅尔透镜的视场范围内运动 依次地进入某一单元透镜的视场,又离开这一视场, 时,依次地进入某一单元透镜的视场,又离开这一视场,热释电对 运动的辐射一会儿敏感,一会儿又不敏感,这样不断重复, 运动的辐射一会儿敏感,一会儿又不敏感,这样不断重复,于是运 动的辐射不断的改变热释电表面的温度, 动的辐射不断的改变热释电表面的温度,热释电输出一个又一个对 应的信号。不加菲涅尔透镜时,热释电的探测距离为2米左右, 应的信号。不加菲涅尔透镜时,热释电的探测距离为2米左右,加 上菲涅尔透镜后,探测距离可达10米以上。 10米以上 上菲涅尔透镜后,探测距离可达10米以上。
I c = βI Φ
β为三极管的电流放大极管的电流放大作用可从图(c)说明, 光敏三极管的电流放大作用可从图(c)说明,它与普通三极管在偏 (c)说明 流电路中接一个光敏三极管的作用是完全相同的, 流电路中接一个光敏三极管的作用是完全相同的,只是用由 I b 替代了 I Φ 。 光敏三极管的灵敏度比光敏二极管高,是光敏二极管的数十倍, 光敏三极管的灵敏度比光敏二极管高, 是光敏二极管的数十倍 , 故输出电流要比光敏二极管大得多,一般为毫安级 毫安级。 故输出电流要比光敏二极管大得多 , 一般为 毫安级 。但其他特性 不如光敏二极管好,在较强的光照下, 不如光敏二极管好, 在较强的光照下, 光电流与照度不成线性关 频率特性和温度特性也变差, 系 。 频率特性和温度特性也变差 , 故光敏三极管多用作光电开关 或光电逻辑元件。 或光电逻辑元件。 光敏三极管的输出电路如图(a)所示, 光敏三极管的输出电路如图(a)所示,基本上与光敏二极管输出 (a)所示 电路相同,输出电压的计算也同光敏二极管相同,只是灵敏度S 电路相同,输出电压的计算也同光敏二极管相同,只是灵敏度S 要比光敏二极管的灵敏度大些。 要比光敏二极管的灵敏度大些。 注意,光敏三极管的输出脚同光敏二极管相同, 注意,光敏三极管的输出脚同光敏二极管相同,是二只而不 是三只。 是三只。

第五讲 光敏三极管

第五讲 光敏三极管
结构、负载、时间常数等有关
大的信号电流--b/c结大--电容大-- 频率响应降低
用上升时间和下降时间表示
高增益+低输入阻抗的运算放大器,提高频 率响应和信号输出
温度特性
小信号时,温度升高,反向电流增 大,性能下降。
图2-57
光谱响应
由禁带宽度、几何工艺、制作工艺 决定
图2-58
特性参数和选用
注意:测试条件、型号
参数: 暗电流、光电流、电流放大 系 数、光调制截止频率、光谱峰 值波长、击穿电压、热阻、耗散功 率、集电极最大电流、灵敏度、光 谱响应范围、响应时间、使用温度、 结电容、最大使用功率、用途
性能比较和应用选择 接受光信号的方式
存在与否 按一定的频率交替变化 幅度大小 色度差异
光谱响应宽:PMT(偏紫外)和光敏电阻 (CdSe)(偏红外)
应用选择
要求:光电器件与被测信号、光学系统、 电子线路在特性和工作参数上匹配
选择要点: 1.与辐射信号源和光学系统在光谱特性上匹配。 2.光电转换特性与入射辐射能量匹配。
3.与光谱的调制形式、信号频率和波形匹配, 保证频率不失真的波形输出和良好的时间 响应。
预习
热电偶和热电堆原理与参数; 热敏电阻的原理与参数; 热释电探测器件的原理和参数。
性能比较
频率响应和时间响应:PMT和光电二极管 光电特性: PMT、光电二极管和光电池 灵敏度:PMT、雪崩光电二极管、光敏电
阻、光电三极管
输出电流大:大面积光电池、雪崩光电二 极管、光敏电阻、光电三极管
外加电压低:光电二、三极管,光电池无 外加电压
暗电流小:PMT、光电二极管
长期工作稳定性:光电二极管、光电池、 PMT和光电三极管
4.与输入电路在电特性上匹配,以保证有足够 大的转换系数、线性范围、信噪比、快速 的动态响应

光敏三极管的应用电路

光敏三极管的应用电路

光敏二极管和光敏三极管简介及应用光敏二极管和光敏三极管是光电转换半导体器件,与光敏电阻器相比具有灵敏度高、高频性能好,可靠性好、体积小、使用方便等优。

一、光敏二极管1.结构特点与符号光敏二极管和普通二极管相比虽然都属于单向导电的非线性半导体器件,但在结构上有其特殊的地方。

光敏二极管使用时要反向接入电路中,即正极接电源负极,负极接电源正极。

2. 光电转换原理根据PN结反向特性可知,在一定反向电压范围内,反向电流很小且处于饱和状态。

此时,如果无光照射PN结,则因本征激发产生的电子-空穴对数量有限,反向饱和电流保持不变,在光敏二极管中称为暗电流。

当有光照射PN结时,结内将产生附加的大量电子空穴对(称之为光生载流子),使流过PN结的电流随着光照强度的增加而剧增,此时的反向电流称为光电流。

不同波长的光(兰光、红光、红外光)在光敏二极管的不同区域被吸收形成光电流。

被表面P型扩散层所吸收的主要是波长较短的兰光,在这一区域,因光照产生的光生载流子(电子),一旦漂移到耗尽层界面,就会在结电场作用下,被拉向N区,形成部分光电流;彼长较长的红光,将透过P型层在耗尽层激发出电子一空穴对,这些新生的电子和空穴载流子也会在结电场作用下,分别到达N区和P区,形成光电流。

波长更长的红外光,将透过P型层和耗尽层,直接被N区吸收。

在N区内因光照产生的光生载流子(空穴)一旦漂移到耗尽区界面,就会在结电场作用下被拉向P区,形成光电流。

因此,光照射时,流过PN结的光电流应是三部分光电流之和。

二、光敏三极管光敏三极管和普通三极管的结构相类似。

不同之处是光敏三极管必须有一个对光敏感的PN 结作为感光面,一般用集电结作为受光结,因此,光敏二极管实质上是一种相当于在基极和集电极之间接有光敏二极管的普通二极管。

其结构及符号如图Z0130所示。

三、光敏二极管的两种工作状态光敏二极管又称光电二极管,它是一种光电转换器件,其基本原理是光照到P-N结上时,吸收光能并转变为电能。

光电三极管

光电三极管


硅的峰值波长为 900nm,锗的峰值波长为 锗 1500nm 。由于锗管的暗 电流比硅管大,因此锗管 的性能较差。故在可见光 或探测赤热状态物体时, 一般选用硅管;但对红外 入射光 线进行探测时,则采用锗管 16000 较合适。 λ/nm
光电三极管的主要特性——伏安特性
光电三极管的伏安特性曲线如图所示。光电三极管在不同 的照度下的伏安特性,就像一般晶体管在不同的基极电流时的 输出特性一样。因此,只要将入射光照在发射极 e与基极b之间 的PN结附近,所产生的光电流看作基极电流,就可将光敏三极 管看作一般的晶体管。光电三极管能把光信号变成电信号,而 且输出的电信号较大。
I/mA
6 4 2
2500lx 2000lx 1500lx
1000lx
500lx
伏安特性
0
20 40
U/V
60
80
光电三极管的主要特性——光照特性
光电三极管的光照特性如图所示。它给出了光敏三极管的 输出电流 I 和照度之间的关系。它们之间呈现了近似线性关系。 当光照足够大(几klx)时,会出现饱和现象,从而使光电三极管 既可作线性转换元件,也可作开关元件。
发射极接地之晶体管的情形也一样,电流 以晶体管之电流放大率(hfe)被放大而成为 流至外部端子之光电流(Ic),为便于了解 起见,请参照左图所示。
光电二极管的工作原理
为了提高光电三极管的频率响应、增益和减小 体积。将光电二极管、三极管制作在一个硅片上构 成集成器件。
达林顿 光电三极管
光电三极管的主要特性——光谱特性
光电三极管的应用
1.亮通光电控制电路 当有光线照射于 光电器件上时,使继 电器有足够的电流而
动作,这种电路称为
亮通光电控制电路, 也叫明通控制电路。 最简单的亮通电路如 图所示。

光耦开关典型应用电路

光耦开关典型应用电路

光耦开关在电子设备中的应用1. 应用背景光耦开关是一种能够实现电气信号与光信号之间转换的器件。

它由发光二极管(LED)和光敏三极管(光敏电阻)组成,通过控制LED的亮灭状态来实现对输出电路的开关控制。

由于光耦开关具有隔离电路的作用,能够有效地解决电路之间的电气隔离问题,因此在电子设备中得到了广泛的应用。

2. 应用过程光耦开关的典型应用电路如下图所示:该电路由光耦开关、负载电阻、输入电压源和输出负载组成。

当输入电压源施加在光耦开关的输入端时,如果输入电压大于光耦开关的触发电压,LED会被点亮,产生光信号。

光信号被光敏电阻接收后,会引起电阻值的变化,从而改变输出电路的电流或电压。

光耦开关的典型应用场景包括: 1. 电气隔离:光耦开关能够实现输入电路与输出电路之间的电气隔离,避免输入信号对输出电路产生干扰或损坏。

2. 开关控制:光耦开关可以作为一个开关,用来控制输出电路的开关状态。

当输入信号满足一定条件时,光耦开关会将输出电路连接或断开。

3. 信号传输:光耦开关可以将输入信号转换为光信号进行传输,光信号具有抗干扰能力强、传输距离远等优点,适用于长距离信号传输场景。

3. 应用效果光耦开关在电子设备中的应用具有以下效果: 1. 电气隔离效果:光耦开关能够实现输入信号与输出信号之间的电气隔离,有效地避免了输入信号对输出电路的干扰,提高了电子设备的稳定性和可靠性。

2. 信号传输效果:光耦开关将输入信号转换为光信号进行传输,光信号具有抗干扰能力强、传输距离远等优点,可以有效地解决长距离信号传输的问题。

3. 开关控制效果:光耦开关可以作为一个开关,用来控制输出电路的开关状态。

通过控制输入信号的变化,可以实现对输出电路的精确控制。

4. 光耦开关的其他应用除了上述典型应用场景外,光耦开关还可以在以下方面得到应用: 1. 电源控制:光耦开关可以用来控制电源的开关,实现对电源的远程控制和管理,提高电源的效率和可靠性。

光敏三极管经典电路

光敏三极管经典电路

光敏三极管经典电路
光敏三极管是一种常用于光电传感器中的元件,其内部结构与普通三极管类似,但其基区和集电区之间存在一层光敏材料,使其可以对光线的变化做出响应。

光敏三极管经典电路是指将光敏三极管与其他元件组合起来,用于测量光线的强度或检测光线的存在。

其中最常见的电路是基本放大电路和比较电路。

基本放大电路使用光敏三极管作为信号源,将其连接到一个共射极放大器中,通过调节电路的增益和偏置来达到期望的电压输出。

这种电路通常用于光电传感器和光电开关中,可以精确地测量光线的强度并作出响应。

比较电路则是将两个光敏三极管连接到一个比较器中,通过比较两个光敏三极管的电压信号来检测光线的存在与否。

这种电路常用于光电门和自动光控制系统中,可以实现对光线的自动检测和控制。

光敏三极管经典电路具有结构简单、响应速度快、稳定可靠等优点,在光电传感器、自动控制、光学通信等领域得到广泛应用。

- 1 -。

光电阻、光敏二极管、光敏三极管电路符号

光电阻、光敏二极管和光敏三极管是电子领域中常见的光敏元件,它们在光控制电路中起着重要的作用。

光电阻又称光敏电阻,是一种导电材料,它的电阻值随光强度的变化而变化。

光敏二极管和光敏三极管则是半导体器件,它们能够将光信号转换成电信号。

在本文中,我们将一起来探讨这三种光敏元件的电路符号及其应用。

1. 光电阻的电路符号是一个类似变阻器的图案,但在其中还有一个箭头指向光敏元件,表示这是一个受光控制的电阻元件。

光电阻常用于光敏电路中,如光控开关、光敏控制器等。

当光照强度增加时,光电阻的电阻值减小;当光照强度减小时,光电阻的电阻值增加。

这种特性使得光电阻在光控制电路中具有很大的应用空间。

2. 光敏二极管的电路符号类似于普通二极管,但在箭头处有一个光线的符号,表示这是一个受光控制的二极管。

光敏二极管是一种能够将光信号转换成电信号的器件,它的工作原理是基于内部光电效应。

当有光照射到光敏二极管时,它的导通电阻会明显减小,从而使得电路中的电流增大。

光敏二极管常用于光电传感器、光电开关等领域。

3. 光敏三极管的电路符号也类似于普通三极管,但在箭头处同样有一个光线的符号,表示这是一种受光控制的三极管。

光敏三极管也是一种能够将光信号转换成电信号的器件,它具有较高的光敏度和响应速度。

在实际电路中,光敏三极管常用于光电开关、光电传感器、光控制器等领域。

在实际应用中,光电阻、光敏二极管和光敏三极管常常需要与其他元件配合使用,以构成完整的光控制电路。

可以将光敏元件与运算放大器、比较器等元件结合起来,实现光控制电路对环境光强度的监测和控制。

光敏元件还可以与单片机或其他数字电路相连,实现数字化的光控制功能。

总结回顾:通过本文的介绍,我们了解了光电阻、光敏二极管和光敏三极管的电路符号及其应用。

在现代电子技术中,光敏元件在光控制领域有着广泛的应用,它们为光控制电路的设计和实现提供了重要的支持。

希望本文能够帮助您更全面、深刻和灵活地理解光敏元件及其在电子领域中的作用。

实验三 光电三极管特性测试及其变换电路

实验三光电三极管特性测试及其变换电路实验目的、学习掌握光电三极管的工作原理2、学习掌握光电三杨管的基本特性掌掘光电三极管特性测试的方法4、了解光电三极管的基本应用二、实验内容1、光电三极管光电流测试实验2、光电三极管伏安特性测试实验3、光电三极管光电特性测试实验4、光电三极管时间特性测试实验5、光电三极管光谱特性测试实验三、实验仪器1、光电器件和光电技术综合设计平台1台2、光源驱动模块1个3、负载模块1个1、光通路组件1套5、光电三极管及封装组件1套6、2#迭插头对(红色,50cm) 10根7、2#迭插头对(黑色,50cm) 10根8、示波器1台四、实验原理光电三极管与光电二极管的工作原理基本相同,工作原理都是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程。

光敏三极管有两个PN结,因而可以获得电流增益,它比光敏二极管具有更高的灵敏度。

其结构如图3-1 (a)所示。

当光敏三极管按图3-1 (b) 所示的电路连接时,它的集电结反向偏置,发射结正向偏置,无光照时仅有很小的穿透电流流过,当光线通过透明窗口照射集电结时,和光敏二极管的情况相似,将使流过集电结的反向电流增大,这就造成基区中正电荷的空穴的积累,发射区中的多数载流子(电子)将大量注人基区,由于基区很薄,只有一小部分从发射区注入的电子与基区的空穴复合,而大部分电子将穿过基区流向与电源正极相接的集电极,形成集电极电流。

这个过程与普通三极管的电流放大作用相似,它使集电极电流是原始光电流的(1+B )倍。

这样集电极电流将随入射光照度的改变而更加明显地变化。

在光敏二极管的基础上,为了获得内增益,就利用了晶体三极管的电流放大作用,用Ge 或Si单晶体制造NPN或PNP型光敏三极管。

其结构使用电路及等效电路如图4所示。

光敏三极管可以等效一个光电二极管与另一个-般晶体管基极和集电极并联:集电极基极产生的电流,输入到三极管的基极再放大。

光电三极管

三极管放大时管子内部的工作原理1、发射区向基区发射电子电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。

同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。

2、基区中电子的扩散与复合电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流Ic。

也有很小一部分电子(因为基区很薄)与基区的空穴复合,扩散的电子流与复合电子流之比例决定了三极管的放大能力。

3、集电区收集电子由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。

另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。

硅光电三极管是用N型硅单晶做成N—P—N结构的。

管芯基区面积做得较大,发射区面积却做得较小,入射光线主要被基区吸收。

与光电二极管一样,入射光在基区中激发出电子与空穴。

在基区漂移场的作用下,电子被拉向集电区,而空穴被积聚在靠近发射区的一边。

由于空穴的积累而引起发射区势垒的降低,其结果相当于在发射区两端加上一个正向电压,从而引起了倍率为β+1(相当于三极管共发射极电路中的电流增益)的电子注入,这就是硅光电三极管的工作原理。

光敏三极管(光电三极管)基础知识什么叫光敏三极管以接受光的信号而将其变换为电气信号为目的而制成之晶体管称为光敏三极管,也叫光电三极管,英文名是Photo Transister。

光敏三极管的原理及作用光敏三极管一般在基极开放状态使用(外部导线有两条线的情形比较多),而将电压施加至射极、集极之两个端子,以便将逆偏压施至集极接合部。

光敏三极管

红外线光电传感器 OPTO INTERRUPTER
透射式光电传感器是将砷化镓红外发光管和硅光敏三极管等,以相对的方向装在中间带槽的支架上。当槽内无物体时,砷化镓发光管发出的光直接照在硅光敏三极管的窗口上,从而产生一定大的电流输出,当有物体经过槽内时则挡住光线,光敏管无输出,以此可识别物体的有无。适用于光电控制、光电计量等电路中,可检测物体的有无、运动方向、转速等方面。
目前的光电三极管是采用硅材料制作而成的。这是由于硅元件较锗元件有小得多的暗电流和较小的温度系数。硅光电三极管是用N型硅单晶做成N—P—N结构的。管芯基区面积做得较大,发射区面积却做得较小,入射光线主要被基区吸收。与光电二极管一样,入射光在基区中激发出电子与空穴。在基区漂移场的作用下,电子被拉向集电区,而空穴被积聚在靠近发射区的一边。由于空穴的积累而引起发射区势垒的降低,其结果相当于在发射区两端加上一个正向电压,从而引起了倍率为β+1(相当于三极管共发射极电路中的电流增益)的电子注入,这就是硅光电三极管的工作原理。
常见的硅光电三极管有金属壳封装的,也有环氧平头式的,还有微型的。怎样识别其管脚呢?
对于金属壳封装的,金属下面有一个凸块,与凸块最近的那只脚为发射极e。如果该管仅有两只脚,那么剩下的那条脚则是光电三极管的集电极c;假若该管有三只脚,那么与e脚最近的则是基极b,离e脚远者则是集电极c。对环氧平头式、微型光电三极管的管脚识别方法是这样的:由于这两种管子的两只脚不一样,所以识别最容易——长脚为发射极e,短脚为集电极C 。
光电IC
光电IC是把受光元件和信号处理电路集成在一个芯片中的器件。有的检出入射光的有无而以“L”和“H”二值输出数字信号,也有的输出与入射光量成比例的模拟信号。广泛应用于光量测定、检测可视信息和位置信息的传感器及光通信接收器等方面光电集成电路传感器爱外界杂散光的影响小,即使在移动环镜下也可以稳定工作,因此十分适合打印机、复印机等办公设备使用。其中PDIC集成了内置放大器,用于激光探测器中,具有很小的噪声,适用于CD/VCD/DVD光头。复位芯片具有电压比较机能,用以CPU的复位,在复位电路设计上具有卓越的性价比。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光敏二极管和光敏三极管简介及应用
光敏二极管和光敏三极管是光电转换半导体器件,与光敏电阻器相比具有灵敏度高、高频性能好,可靠性好、体积小、使用方便等优。

一、光敏二极管
1.结构特点与符号
光敏二极管和普通二极管相比虽然都属于单向导电的非线性半导体器件,但在结构上有其特殊的地方。

光敏二极管使用时要反向接入电路中,即正极接电源负极,负极接电源正极。

2. 光电转换原理
根据PN结反向特性可知,在一定反向电压范围内,反向电流很小且处于饱和状态。

此时,如果无光照射PN结,则因本征激发产生的电子-空穴对数量有限,反向饱和电流保持不变,在光敏二极管中称为暗电流。

当有光照射PN结时,结内将产生附加的大量电子空穴对(称之为光生载流子),使流过PN结的电流随着光照强度的增加而剧增,此时的反向电流称为光电流。

不同波长的光(兰光、红光、红外光)在光敏二极管的不同区域被吸收形成光电流。

被表面P型扩散层所吸收的主要是波长较短的兰光,在这一区域,因光照产生的光生载流子(电子),一旦漂移到耗尽层界面,
就会在结电场作用下,被拉向N区,形成部分光电流;彼长较长的红光,将透过P型层在耗尽层激发出电子一空穴对,这些新生的电子和空穴载流子也会在结电场作用下,分别到达N区和P区,形成光电流。

波长更长的红外光,将透过P型层和耗尽层,直接被N区吸收。

在N区内因光照产生的光生载流子(空穴)一旦漂移到耗尽区界面,就会在结电场作用下被拉向P区,形成光电流。

因此,光照射时,流过PN结的光电流应是三部分光电流之和。

二、光敏三极管
光敏三极管和普通三极管的结构相类似。

不同之处是光敏三极管必须有一个对光敏感的PN 结作为感光面,一般用集电结作为受光结,因此,光敏二极管实质上是一种相当于在基极和集电极之间接有光敏二极管的普通二极管。

其结构及符号如图Z0130所示。

三、光敏二极管的两种工作状态
光敏二极管又称光电二极管,它是一种光电转换器件,其基本原理是光照到P-N结上时,吸收光能并转变为电能。

它具有两种工作状态:
(1)当光敏二极管加上反向电压时,管子中的反向电流随着光照强度的改变而改变,光照强度越大,反向电流越大,大多数都工作在这种状态。

(2)光敏二极管上不加电压,利用P-N结在受光照时产生正向电压的原理,把它用作微型光电池。

这种工作状态,一般作光电检测器。

光敏二极管分有P-N结型、PIN结型、雪崩型和肖特基结型,其中用得最多的是P-N结型,
价格便宜。

光信号放大和开关电路
光敏三极管应用电路实例
实例1:光信号放大电路
图1光敏三极管应用电路-光信号放大电路实例2:光控开关电路
图2光敏三极管应用电路-光控开关电路
实例3:光控开关电路
图3光敏三极管应用电路-光控开关电路
光敏三极管3DU5的暗电阻(无光照射时的电阻)大于1兆欧,光电阻(有光照射时的电阻)约为2千欧。

开关管3DK7和3DK9共同作为光敏三极管3DU5的负载。

当3DU5上有光照射时,它被导通,从而在开关管3DK7的基极上产生信号,使3DK7处于工作状态;3DK7则给3DK9基极上加一信号使3DK9进入工作状态,并输出约25毫安的电流,使继电器K通电工作,即它的常闭触点断开,常开触点导通。

当光敏管3DU5上无光照射时,电路被断开,3DK7、3DK9均不工作,也无电流输出,继电器不动作,即常闭触点导通,常开触点断开。

因此通过有无光照射到光敏管3DU5上即可控制继电器的工作状态,从而控制与继电器连接的工作电路。

实例4:光控语音报警电路
图4光敏三极管应用电路-光控语音报警电路
它由光控三极管和35语音集成电路两部分组成。

图中光敏三极管VT1和晶体三极管VT2,电阻R1、R2、R3和电容C1、C2等构成光控开关电路。

语音集成电路IC及三极管VT3、电阻R4、R5等构成语音放大电路。

平常在光源照射下,VT1呈低阻状态,VT2饱和导通,IC触发端3脚得不到正触发脉冲而不工作,扬声器无声。

当VT1被物体遮挡时,便产生一负脉冲电压,并通过C1耦合到VT2的基极,导致VT2进入截止状态,IC获得一正触发脉冲而工作,输出音频信号通过VT3放大,推动扬声器发出声响。

声响内容可根据不同场合选择不同的语音电路来产生,例如高压电网或配电房等场所,可选用“高压重地,禁止人内”、“有电危险,请勿靠近”等语音集成电路
实例5:红外接收机电路
由一只能对调幅的红外敏感的光敏三极管VT1和一个三级高增益音频放大器组成的,该接收机的输出阻抗可以与当前的低阻头戴式耳机相匹配,接收效果好,使用方便,如下图五所示。

图5光敏三极管应用电路-红外接收机电路
实例6:红外检测器
红外检测器主要用于检测红外遥控发射装置是否正常工作。

红外检测器的电路如图所示。

当红外遥控发射装置发出的红外光照射到光敏三极管VT1时,其内阻减小,驱动VT2导通,使发光二极管VD1随着人射光的节奏被点亮。

由于发光二极管VD1的亮度取决于照射到光敏三极管VT1的红外光的强度,因此,根据发光二极管VD1的发光亮度,可以估计出红外发射装置上的电池是否还可以继续使用。

图6光敏三极管应用电路-红外检测电路
实例7:烟雾报警器
烟雾报警器由红外发光管、光敏三极管构成的串联反馈感光电路,半导体管开关电路及集成报警电路等组成,如图所示。

当被监视的环境洁净无烟雾时,红外发光二极管VD1以预先调好的起始电流发光。

该红外光被光敏三极管VT1接收后其内阻减小,使得VD1和VT1 串联电路中的电流增大,红外发光二极管VD1的发光强度相应增大,光敏三极管内阻进一步减小。

如此循环便形成了强烈的正反馈过程,直至使串联感光电路中的电流达到最大值,在R1上产生的压降经VD2使VT2导通,VT3 截止,报警电路不工作。

当被监视的环境中烟雾急骤增加时,空气中的透光性恶化,此时光敏三极管VT1接收到的光通量减小,其内阻增大,串联感光电路中的电流也随之减小,发光二极管VD1的发光强度也随之减弱。

如此循环便形成了负反馈的过程,使串联感光电路中的电流直至减小到起始电流值,R1上的电压也降到1.2V ,使VT2截止,VT3 导通,报警电路工作,发出报警信号。

C1是为防止短暂烟雾的干扰而设置的。

图7光敏三极管应用电路-烟雾报警电路。

相关文档
最新文档