动态矩阵控制算法(DMC)
动态矩阵算法在水箱液位控制中的应用

动态矩阵算法在水箱液位控制中的应用引言:在工业生产和日常生活中,对于水箱液位控制的控制精度和稳定性要求越来越高。
水箱液位的控制算法起着至关重要的作用。
动态矩阵控制(Dynamic Matrix Control,DMC)算法是一种常用于过程控制的先进控制方法。
本文将探讨动态矩阵算法在水箱液位控制中的应用,包括算法原理、控制系统建模、控制器设计和实验验证等方面。
一、算法原理动态矩阵控制算法是一种模型预测控制(Model Predictive Control,MPC)方法,它基于离散时间多步骤预测模型。
其核心思想是通过对系统动态行为进行建模和预测,计算出最优控制方案,并根据实际反馈信息进行修正,以实现对系统的良好控制效果。
动态矩阵控制算法的基本步骤如下:1.系统建模:根据水箱液位控制过程的特点,建立系统的动态模型。
通常使用一阶惯性模型或一阶延迟模型来描述水箱液位的动态响应。
2.输入输出数据采集:通过传感器采集水箱液位和控制输入的数据,并对其进行离散化处理,使其适用于动态矩阵控制算法。
3.控制器设计:根据系统模型和控制目标,设计最优控制律。
动态矩阵算法主要包括预测模型、目标函数、约束条件等。
4.控制信号计算:基于当前的状态和控制输入的历史记录,使用动态矩阵算法计算出最优的控制信号。
5.控制执行:将计算得到的控制信号应用于实际控制系统中,调节水箱液位,并实时监控液位变化。
6.实时修正:根据实际反馈信息,对控制器中的参数进行修正,以提高控制效果和稳定性。
以上过程循环迭代,以不断调整控制信号,最终实现对水箱液位的精确控制。
二、控制系统建模在水箱液位控制中,我们需要对系统进行建模,以便进行后续的控制器设计和仿真。
通常采用一阶惯性模型或一阶延迟模型来描述水箱液位的动态响应。
一阶惯性模型:首先,假设水箱的液位变化满足一阶惯性动态方程:T * dH(t)/dt = k * (u(t) - H(t))其中,H(t)表示液位,u(t)表示输入控制信号,k表示液位变化的比例系数,T表示液位响应的时间常数。
动态矩阵在网络延迟补偿中的研究

动态矩阵在网络延迟补偿中的研究摘要:在解决网络控制系统延迟问题时还要考虑在信号突变的情况下,会产生较大的延迟现象,从而使整个控制系统不稳定,网络控制系统的性能也会下降。
而解决网络延迟的模型算法要考虑到这种突发的现象,所以本文研究引入动态矩阵补偿算法,对网络延迟进行条件补偿,从而解决网络控制系统中的网络延迟问题。
关键词:补偿;动态矩阵中图分类号:tp393.08动态矩阵控制算法dmc(dynamic matrix control)是一种具有约束、多变量优化的控制算法,一般是基于阶跃响应模型,该算法模型的特点是算法简单、计算量较小、鲁棒性较强等特点,对于网络控制系统的开环渐进稳定和响应滞后等特性都有较好的处理方式,非常适用于解决网络控制系统中存在的网络延迟的问题。
dmc在解决网络控制系统中网络延迟问题时,采用的模型思想是:首先,对延迟模型进行预测。
其次,根据修正值进行校正反馈。
最后,根据修正结果进行滚动优化。
在模型的输入端采集到的样本信号是被控对象的阶跃离散信号,对样本信号进行动态优化,在输出端采集到的是整个dmc优化响应后的预测模型输出序列,具体输出序列如公式(1)所示。
ym(k+1)=y0(k+1)+a△u(k)(1)应满足条件(2):(2)由于整个模型的计算误差和系统性能干扰等影响,输出值需要进行校正反馈验证,验证后实现闭环预测。
经过反馈校正后,输出端输出结果如公式(3)所示:yp(k+1)=ym(k+1)+a0(y(k)-ym(k))(3)可以根据实际情况进行适当的优化取值。
采用dmc模型进行优化,采用的是滚动优化的方式,其优化结果用向量表示为公式(4):j=||yr(k+1)-yp(k+1)||q2+||△u(k)||r2 (4)进行化简得公式(5):△u(k)=(atqa+r)-1atq[yr(k+1)-yp(k+1)] (5)公式(5)中的△u(k)就是在k时刻,经过dmc模型优化后的最优延迟补偿增量。
动态矩阵控制的稀土萃取优化控制平台

动态矩阵控制的稀土萃取优化控制平台董云彪鞍山市自来水总公司动态矩阵控制(dynamicmatrixcontrol,DMC)算法是一种基于对象阶跃响应预测模型、滚动实施并结合反馈校正的优化控制算法,是预测控制算法之一,由卡特勒等于1980年提出。
DMC算法适用于渐进稳定的线性对象。
由于该算法比较简单,计算量比较小,鲁棒性强,近年来已在冶金、石油、化工等工业过程控制中得到十分成功的应用。
工业过程控制通常是由许多互相作用的变量组成的多输入多输出(MIMO)系统,而常规的DMC算法是基于单输入单输出(SISO)系统的。
因此,许多学者自然地将其推广到了多输入多输出(MIMO)系统。
并取得了许多重要的成果:有采用将单变量DMC算法直接推广到多变量系统的MDMC方法;有通过变量之间关联预测设计,建立在解耦基础上的多变量DMC方法等。
余世明等针对多变量有约束的DMC问题,以输出预测值于未来参考轨迹序列误差的绝对值之和作为性能指标,通过线性化处理使其转换化为目的规划问题从而使在线滚动优化变得异常容易,并可充分利用全部操作变量优化系统的动态性能。
查星宇等针对工业现场犹豫条件的限制,很多过程变量所需的检测频率不一样的情况,提出了一种新的多频率多变量DMC算法,并且进一步用DMC方法推导多频多变量系统的预测方程、最优控制律及系统的内膜结构。
牛玉翔等针对高温力学材料试验机加热炉两通道相互耦合的问题,提出了多变量预测前馈补偿解耦DMC算法,并用线性时不变原理把该算法中需求解得2M元线性方程转化为只需求解二元一次方程组问题,使计算量大为减少。
针对实际多变量预测控制算法中存在的离线计算复杂、实时性较差等问题,金福江用大系统关联估计的思想。
提出了基于关联估计的递阶多变量动态矩阵控制算法,并将该算法应用于造纸机中,取得了较好的控制效果。
相对于传统的最优控制,DMC则采用了启发式优化的概念,允许设计者自由地选择优化性能指标的形式以及控制器参数。
第4章 动态矩阵控制_2010

∑ a Δu (k + j − i)
i
+ aN Δu (k + j − N ), ( j = 1, 2,
y0 (k + j k ) =
, n)
(4-4)
上式右端的后二项即为过去输入对输出n步预测值,记为
i = j +1
∑ a Δu (k + j − i) + a
i
N −1
N
2010-2-17
第4章 动态矩阵控制
10
南京信息工程大学信息与控制学院 南京信息工程大学信息与控制学院
2010-2-17
第4章 动态矩阵控制
11
南京信息工程大学信息与控制学院 南京信息工程大学信息与控制学院
2010-2-17
第4章 动态矩阵控制
12
南京信息工程大学信息与控制学院 南京信息工程大学信息与控制学院
14
南京信息工程大学信息与控制学院 南京信息工程大学信息与控制学院
2010-2-17
第4章 动态矩阵控制
四、DMC的主要特征和优点
(一)DMC的主要特征
(1)预测模型采用阶跃响应特性建模; (2)设计过程中固定格式是:用二次型目标函数决定最优 值增量序列,考虑到各种约束条件时,求最优解相当费时; (3)参数调整:用改变二次型目标函数中的权系数阵Q, R来实现。
2
南京信息工程大学信息与控制学院 南京信息工程大学信息与控制学院
2010-2-17
第4章 动态矩阵控制 一、 预测模型
从被控对象的阶跃响应出发,对象动态特性用一 系列动态系数 a1 , a2 , , aN 即单位阶跃响应在采样时刻的 值来描述,p称为模型时域长度,aN是足够接近稳态 值的系数。
预测控制中动态矩阵控制DMC算法研究及仿真

安徽大学本科毕业论文(设计)(内封面)题目:预测控制中动态矩阵控制DMC算法研究学生姓名:张汪兵学号:P4*******院(系):电子科学与技术学院专业:自动化入学时间:2006年9月导师姓名:张倩职称/学位:硕士导师所在单位:安徽大学电子科学与技术学院预测控制中动态矩阵控制DMC算法研究及仿真摘要:动态矩阵控制(dynamic matrix control, DMC)算法是一种基于对象阶跃响应预测模型、滚动实施并结合反馈校正的优化控制算法,是预测控制算法之一。
本文阐述了预测控制的产生、发展及应用,进一步介绍动态矩阵控制算法的产生和现状,就当前动态矩阵控制算法在实际工业控制领域中发展应用现状以及今后可能的研究发展方向作了分析。
并对动态矩阵控制的算法作了推导,在理论依据方面给予证明。
可是在实际工业控制领域中,大多数被控对象都是多变量的,本文通过对该算法作了有约束、多变量两方面的改进,使该算法实际应用性更强。
文章还对该算法进行了 matlab 仿真,并对仿真结果进行分析研究,予以验证。
关键词:预测,动态矩阵控制,模型,反馈矫正,有约束,多变量。
Forecast for control of Dynamic Matrix Control DMCalgorithmAbstractDynamic Matrix Control (dynamic matrix control, DMC) algorithm is a step response based on the object prediction model, and rolling implementation and optimization of the feedback correction control algorithm, is one of predictive control algorithms. This paper describes the control forecast the rise, development and application of further information on Dynamic Matrix Control algorithm and the formation of the status quo on the current dynamic matrix control algorithm in the actual control in the field of industrial development and possible future application of the research and development direction of an analysis. Dynamic Matrix Control and the algorithm is derived, in terms of the theoretical basis for that. But in practice in the field of industrial control, the majority of objects are charged with multiple variables, the paper through the binding of the algorithm, two more variables in the promotion and improvement of the algorithm so that a more practical application. The article also has the algorithm matlab simulation, and analysis of simulation results to be verified.Key words: forecasting; dynamic matrix control; model; feedback correction; binding; multivariable第一章. 绪论1.1预测控制的产生预测控制的产生,并不是理论发展的需要,而首先是工业实践向控制提出的挑战。
dmc控制算法

dmc控制算法DMC控制算法是一种常用的控制方法,它在工业自动化领域中广泛应用。
DMC即Dynamic Matrix Control,它是一种基于模型的预测控制算法。
本文将介绍DMC控制算法的原理和应用。
DMC控制算法的基本原理是通过建立系统的数学模型,预测未来一段时间内的系统输出,并根据预测结果调整控制器的输出,使系统的实际输出与期望输出尽可能接近。
DMC算法的关键在于建立准确的系统模型和优化权重矩阵。
在DMC算法中,首先需要建立系统的数学模型。
这可以通过系统的输入和输出数据进行辨识来实现。
根据辨识得到的模型,可以预测未来一段时间内的系统输出。
预测的准确性直接影响控制的效果。
在预测的基础上,DMC算法通过优化权重矩阵来调整控制器的输出。
权重矩阵中的权重值反映了控制器对于不同因素的重视程度。
通过调整权重矩阵,可以使控制器更加关注系统输出与期望输出之间的偏差,从而实现更好的控制效果。
DMC算法的优点是可以有效地处理系统的时变性和非线性。
通过建立系统模型和预测未来输出,可以对系统的变化做出及时的响应。
此外,DMC算法还可以根据不同的控制要求进行灵活调整,使控制器更加适应不同的工况。
DMC控制算法在许多领域都得到了广泛应用。
例如,在化工工艺中,DMC算法可以用于控制反应器的温度、压力等参数,实现反应过程的精确控制。
在电力系统中,DMC算法可以用于控制发电机的输出,使电网的电压和频率保持稳定。
在机械制造中,DMC算法可以用于控制机床的位置和速度,实现精密加工。
DMC控制算法是一种基于模型的预测控制算法,通过建立系统模型和预测未来输出来调整控制器的输出,实现系统的精确控制。
DMC 算法具有灵活性和适应性强的特点,并在工业自动化领域中得到了广泛应用。
未来,随着控制技术的不断发展和完善,DMC算法将进一步提升自身的性能和应用范围,为工业自动化带来更大的价值。
动态矩阵控制(DMC)的简单理解及其示例

动态矩阵控制(DMC )的简单理解及其⽰例⽂章结构前⾔在模型预测控制的课程当中接触到了动态矩阵控制(DMC)算法,虽然不会在以后继续深⼊,但它控制、预测和校正的思想还是可圈可点的。
本⽂将简要概述DMC的基本原理和控制流程,尽量做到省去复杂的数学公式⽽理解DMC。
但由于接触不深且实⼒有限,本⽂的表述可能会有⼀些不准确或者错误,因此仅供参考,同时欢迎⼤家指正。
DMC 的基本思想动态矩阵控制(DMC)是在上世纪80年代提出的⼀种典型的模型预测控制(MPC)⽅法。
虽然在今天它已经不再是MPC的研究关注点,但其思想却⾮常值得借鉴,因此⼏乎所有的模型预测控制教材都把DMC作为⼀部分来讲解。
概括来说,DMC的特点主要有:1. 控制与系统的数学模型⽆关,仅需获取系统的阶跃响应序列,⽅法适⽤于稳定的系统;2. 系统的动态特性中具有纯滞后或⾮最⼩相位特性都不影响算法的直接应⽤。
也就是说,使⽤DMC⽆需知道被控对象的数学模型,只需要获取被控对象的阶跃响应序列即可实现控制效果,但需要被控对象是渐进稳定的。
同时,即使被控对象有⼀定的纯滞后特性,或者是⾮最⼩相位的(对象传递函数的零点存在于S域右半平⾯)都不影响DMC的使⽤。
从上⾯的特性可以,DMC的应⽤范围是⽐较⼴泛的。
接下来就简单地谈⼀谈DMC的三要素,既预测模型、滚动优化和反馈校正。
预测模型DMC的使⽤需要建⽴在预测模型的基础上。
简单来说就是,DMC控制器希望通过已有信息构造未来若⼲时刻的系统输⼊并预测系统的输出。
那么要如何实现呢?可⾏的⽅案之⼀是使⽤系统的阶跃响应序列。
由线性时不变(LTI)系统具备的⽐例叠加性质可知,在已知从0开始的系统N个采样点上的阶跃响应序列的情况下,系统在k时刻对未来P个时刻的输出预测可由系统在k时刻的输出预测初值与M个连续的输⼊增量序列及由阶跃响应序列组成的动态矩阵A计算得到,其计算表达式如下:其中N称为截断步长,P称为预测步长,M称为控制步长,它们三者之间的⼤⼩关系⼀般为N > P > M > 0。
动态矩阵控制算法(DMC) PPT课件

注意:
k k
y%0 (k N | k) y%0 (k N 1| k) L y%0 ( | k)
k+N
20
输出预测 (2) – 零状态响应
k时刻:控制有一增量△v(k),计算未来时刻的输出值
y%i (k i | k) y%0 (k i | k) ai u (k )
i 1,L , N
因此,k 时刻优化性能指标(惩罚跟踪误差与调节幅度):
P
M
min J (k) qi w(k i) y%M (k i | k)2 rju2 (k j 1)
i 1
j 1
其中 qi , rj 为权系数,分别表示对跟踪误差及控制量变化的抑制。
25
优化问题 (1)
无约束优化问题:
P
M
min J (k) qi w(k i) y%M (k i | k)2 rju2 (k j 1)
27
无约束优化问题求解 (1)
思路:代入预测方程,对控制向量求导
P
M
min J (k) qi w(k i) y%M (k i | k)2 rju2 (k j 1)
i 1
j 1
s.t. y%M (k i | k) y%0(k i | k)
min( i1
M
,i
)
ai
j
1
u(k
线性叠加原理
21
输出预测 (3) – 输出预测值
在 M 个连续的控制增量作用 u(k),L , u(k M 1) 下, 未来各时刻的输出值为:
y%M (k i | k) y%0 (k i | k)
min( j 1
M
,i
)
ai
j
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 滚动时域优化 • 反馈校正
16
DMC - 预测模型
输入
预测模型
输出
如何根据当前已知信息和假设未来输入预测系统未来输出? 阶跃响应 + 比例叠加原理 输出预测
17
DMC - 预测模型
阶跃响应 + 比例叠加原理 输出预测
模型预测值:自由项(零输入响应) + 强迫项(零状态响 应)
18
阶跃响应采样
u = {u (0) 0 0 L} u = {0 1 0 L} u = {0 u (1) 0 L}
u = {0 L 0 u (k ) 0 L} y = {L 0 h0u (k ) h1u (k ) h2u (k ) L} u = {u (0) u (1) L u (k ) L L}
y := { y (k )} = ?
29
无约束优化问题求解 (3)
% min J (k ) = wP (k ) − yPM (k )
2 Q
+ ΔU M
2 R
(1) (2)
s .t .
% % y PM ( k ) = y P0 ( k ) + A Δ u M ( k )
将式(2)代入式(1)可得:
% min J ( k ) = wP ( k ) − y P0 ( k ) − AΔU M ( k )
% min J (k ) = ∑ qi [ w(k + i ) − yM (k + i | k )] + ∑ rj Δu 2 (k + j − 1)
2 i =1 j =1
P
M
其中 q i , r j 为权系数,分别表示对跟踪误差及控制量变化的抑 制。
25
优化问题 (1)
无约束优化问题:
% min J ( k ) = ∑ qi [ w( k + i ) − yM ( k + i | k ) ] + ∑ rj Δu 2 ( k + j − 1)
k
y(k)
y (1) L y (k ) L L}
y(k) = ∑hu(k −i) i
i=0
系统可由hi 唯一确定
11
预备知识
LTI 系统的描述(2)
System
u(k)
u = 1(k ) = {1 1 1 L}
y(k)
y = {a(k )} = {a0 a1 a2 L}
系统能否由a(k)唯一确定?换言之,a(k) 是否足以 描述系统?
min( M ,i )
ai − j +1 × Δu (k + j − 1)
求优化变量:ΔU M (k ) = [ Δu (k ),L , Δu (k + M − 1) ]T
27
无约束优化问题求解 (1)
思路:代入预测方程,对控制向量求导
% min J ( k ) = ∑ qi [ w( k + i ) − yM ( k + i | k ) ] + ∑ rj Δu 2 ( k + j − 1)
预备知识
y(0) = hu(0) 0 y(1) = hu(1) +hu(0) 0 1 y(2) = hu(2) +hu(1) +hu(0) 0 1 2 y(k) = hu(k) +hu(k −1) +L+hu(0) = ∑hu(k −i) 0 1 k i
i=0 k
y(k) = ∑hu(k −i) = ∑hk−iu(i) i
• 反馈校正
23
DMC - 滚动时域优化
24
优化目标函数
每一时刻,确定从该时刻起的 M 个控制增量 Δu ( k ),L , Δu ( k + M − 1) 使得被控对象在其作用下:
% 未来 P 个时刻: yM (k + i | k ) → w(k + i )
Δu → 0
因此,k 时刻优化性能指标(惩罚跟踪误差与调节幅度):
System
u(k) y(k)
h1 h2 L}
u (k ) = δ (k ) = {1 0 0 L} y (k ) := h(k ) = {h0
系统能否由h(k)唯一确定?换言之,h(k) 是否足以描述 系统?
8
预备知识 System
u(k)
u = δ (k ) := {1 0 0 L}
y(k)
y = {h(k )} = {h0 y = {0 h0 h1 h1 h2 L} y = {h0u (0) h1u (0) h2u (0) L} h2 L} y = {0 h0u (1) h1u (1) h2u (1) L}
A是由阶跃响应系数 ai 组成的 P × M 矩阵,称为动态矩阵。
% 性能指标写成向量形式:min J (k ) = wP (k ) − yP (k ) + ΔU M Q
M
2
2 R
其中 wP (k) = [ w(k +1) L w(k + P)]
T
Q = diag (q1 ,L , qP ), R = diag (r1 ,L , rM )
Lecture 2 动态矩阵控制算法 (DMC)
回顾- 预测控制基本原理
• 三个基本原理 预测模型 滚动优化 反馈校正
2
回顾- 预测控制基本原理
• 预测模型
输入
预测模型
输出
- 模型表达:输入(包括操作变量和可测扰动)输出之间 的定量关系 - 模型结构:无限制、阶跃/脉冲响应、传递函数、状态方 程等 - 模型功能:根据当前已知信息和假设未来输入预测系统 未来输出 - 模型作用:作为不同控制策略下比较控制效果的基础
20
输出预测 (2) – 零状态响应
k时刻:控制有一增量△v(k),计算未来时刻的输出值
% yi (k + i | k ) = % y0 (k + i | k ) + ai Δu (k ) i = 1,L , N
线性叠加原理
21ห้องสมุดไป่ตู้
输出预测 (3) – 输出预测值
在 M 个连续的控制增量作用 Δu (k ),L , Δu (k + M − 1) 下, 未来各时刻的输出值为:
2 Q
+ ΔU M
2 R
由极值必要条件 dJ (k ) d ΔU M (k ) = 0 可得:
% ΔU M ( k ) = ( AT QA + R ) −1 AT Q ⎡ wP ( k ) − yP0 ( k ) ⎤ ⎣ ⎦
i =0 k i =0
k
k −1
系统可由 a(k)唯一确定.
= ∑ ak −i Δu (i ) =∑ ai Δu (k − i )
i =0 i =0
14
k
主要内容
• DMC算法
– 预测模型 – 滚动优化 – 反馈校正
• 单变量DMC算法设计 • DMC参数设计
15
动态矩阵控制
• 预测模型
– 输入输出模型 – 假设未来输入预测未来输出
i=0 i=0
k
k
hi = a (i ) − a (i − 1) = ai − ai −1
y (k ) = ∑ hk −i u (i ) = ∑ hk −i ∑ Δu ( j )
i =0 i =0 j =0
k
k
i
= ∑ hi Δu (0) + ∑ hi Δu (1) + L + h0 Δu (k )
12
预备知识 System
u(k)
y(k)
a1 a2 L}
u = 1(k ) = {1 1 1 L} y = {a (k )} = {a0
k k
a(k) = ∑hu(k −i) = ∑hi hi = a(i) −a(i −1) = ai −ai−1 i
i=0 i=0
系统可由 a(k)唯一确定.
13
T
19
输出预测 (1) - 零输入响应
• 在 k 时刻,假设控制作用保持不变时,对未来N % 个时刻的输出有初始预测值 y0 (k + i | k ) i = 1, 2,L , N
k k
k+N
注意:
% % % y0 (k + N | k ) = y0 (k + N + 1| k ) = L = y0 (∞ | k )
3
预备知识
信号
0.35 0.3 0.25 0.2
连续信号 x(t)
0.15 0.1 0.05 0 -0.05 -0.1 -0.15 0 0.5 1 1.5 2 2.5 3 3.5 4
0.35
离散信号 x(k)
0.3 0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1 -0.15
i=0 k
y ={hu(0) hu(0) hu(0) L } 0 1 2 y ={0 hu(1) hu(1) hu(1) L } 0 1 2
y := { y (k )} = ?
k
y(k) = ∑hu(k −i) i
i=0
10
预备知识 System
u(k)
u = {u (0) u (1) L u (k ) L L} y = { y (0)
% % yM (k + i | k ) = y0 (k + i | k ) + ∑ j =1
min( M ,i )
ai − j +1 × Δu (k + j − 1), i = 1,L , N
22
预测控制基本原理
• 预测模型 • 滚动时域优化
– 以滚动方式对未来有限时域进行优化 – 在线计算并实现当前控制作用