动态矩阵控制算法(DMC)
动态矩阵算法在水箱液位控制中的应用

动态矩阵算法在水箱液位控制中的应用引言:在工业生产和日常生活中,对于水箱液位控制的控制精度和稳定性要求越来越高。
水箱液位的控制算法起着至关重要的作用。
动态矩阵控制(Dynamic Matrix Control,DMC)算法是一种常用于过程控制的先进控制方法。
本文将探讨动态矩阵算法在水箱液位控制中的应用,包括算法原理、控制系统建模、控制器设计和实验验证等方面。
一、算法原理动态矩阵控制算法是一种模型预测控制(Model Predictive Control,MPC)方法,它基于离散时间多步骤预测模型。
其核心思想是通过对系统动态行为进行建模和预测,计算出最优控制方案,并根据实际反馈信息进行修正,以实现对系统的良好控制效果。
动态矩阵控制算法的基本步骤如下:1.系统建模:根据水箱液位控制过程的特点,建立系统的动态模型。
通常使用一阶惯性模型或一阶延迟模型来描述水箱液位的动态响应。
2.输入输出数据采集:通过传感器采集水箱液位和控制输入的数据,并对其进行离散化处理,使其适用于动态矩阵控制算法。
3.控制器设计:根据系统模型和控制目标,设计最优控制律。
动态矩阵算法主要包括预测模型、目标函数、约束条件等。
4.控制信号计算:基于当前的状态和控制输入的历史记录,使用动态矩阵算法计算出最优的控制信号。
5.控制执行:将计算得到的控制信号应用于实际控制系统中,调节水箱液位,并实时监控液位变化。
6.实时修正:根据实际反馈信息,对控制器中的参数进行修正,以提高控制效果和稳定性。
以上过程循环迭代,以不断调整控制信号,最终实现对水箱液位的精确控制。
二、控制系统建模在水箱液位控制中,我们需要对系统进行建模,以便进行后续的控制器设计和仿真。
通常采用一阶惯性模型或一阶延迟模型来描述水箱液位的动态响应。
一阶惯性模型:首先,假设水箱的液位变化满足一阶惯性动态方程:T * dH(t)/dt = k * (u(t) - H(t))其中,H(t)表示液位,u(t)表示输入控制信号,k表示液位变化的比例系数,T表示液位响应的时间常数。
动态矩阵在网络延迟补偿中的研究

动态矩阵在网络延迟补偿中的研究摘要:在解决网络控制系统延迟问题时还要考虑在信号突变的情况下,会产生较大的延迟现象,从而使整个控制系统不稳定,网络控制系统的性能也会下降。
而解决网络延迟的模型算法要考虑到这种突发的现象,所以本文研究引入动态矩阵补偿算法,对网络延迟进行条件补偿,从而解决网络控制系统中的网络延迟问题。
关键词:补偿;动态矩阵中图分类号:tp393.08动态矩阵控制算法dmc(dynamic matrix control)是一种具有约束、多变量优化的控制算法,一般是基于阶跃响应模型,该算法模型的特点是算法简单、计算量较小、鲁棒性较强等特点,对于网络控制系统的开环渐进稳定和响应滞后等特性都有较好的处理方式,非常适用于解决网络控制系统中存在的网络延迟的问题。
dmc在解决网络控制系统中网络延迟问题时,采用的模型思想是:首先,对延迟模型进行预测。
其次,根据修正值进行校正反馈。
最后,根据修正结果进行滚动优化。
在模型的输入端采集到的样本信号是被控对象的阶跃离散信号,对样本信号进行动态优化,在输出端采集到的是整个dmc优化响应后的预测模型输出序列,具体输出序列如公式(1)所示。
ym(k+1)=y0(k+1)+a△u(k)(1)应满足条件(2):(2)由于整个模型的计算误差和系统性能干扰等影响,输出值需要进行校正反馈验证,验证后实现闭环预测。
经过反馈校正后,输出端输出结果如公式(3)所示:yp(k+1)=ym(k+1)+a0(y(k)-ym(k))(3)可以根据实际情况进行适当的优化取值。
采用dmc模型进行优化,采用的是滚动优化的方式,其优化结果用向量表示为公式(4):j=||yr(k+1)-yp(k+1)||q2+||△u(k)||r2 (4)进行化简得公式(5):△u(k)=(atqa+r)-1atq[yr(k+1)-yp(k+1)] (5)公式(5)中的△u(k)就是在k时刻,经过dmc模型优化后的最优延迟补偿增量。
动态矩阵控制的稀土萃取优化控制平台

动态矩阵控制的稀土萃取优化控制平台董云彪鞍山市自来水总公司动态矩阵控制(dynamicmatrixcontrol,DMC)算法是一种基于对象阶跃响应预测模型、滚动实施并结合反馈校正的优化控制算法,是预测控制算法之一,由卡特勒等于1980年提出。
DMC算法适用于渐进稳定的线性对象。
由于该算法比较简单,计算量比较小,鲁棒性强,近年来已在冶金、石油、化工等工业过程控制中得到十分成功的应用。
工业过程控制通常是由许多互相作用的变量组成的多输入多输出(MIMO)系统,而常规的DMC算法是基于单输入单输出(SISO)系统的。
因此,许多学者自然地将其推广到了多输入多输出(MIMO)系统。
并取得了许多重要的成果:有采用将单变量DMC算法直接推广到多变量系统的MDMC方法;有通过变量之间关联预测设计,建立在解耦基础上的多变量DMC方法等。
余世明等针对多变量有约束的DMC问题,以输出预测值于未来参考轨迹序列误差的绝对值之和作为性能指标,通过线性化处理使其转换化为目的规划问题从而使在线滚动优化变得异常容易,并可充分利用全部操作变量优化系统的动态性能。
查星宇等针对工业现场犹豫条件的限制,很多过程变量所需的检测频率不一样的情况,提出了一种新的多频率多变量DMC算法,并且进一步用DMC方法推导多频多变量系统的预测方程、最优控制律及系统的内膜结构。
牛玉翔等针对高温力学材料试验机加热炉两通道相互耦合的问题,提出了多变量预测前馈补偿解耦DMC算法,并用线性时不变原理把该算法中需求解得2M元线性方程转化为只需求解二元一次方程组问题,使计算量大为减少。
针对实际多变量预测控制算法中存在的离线计算复杂、实时性较差等问题,金福江用大系统关联估计的思想。
提出了基于关联估计的递阶多变量动态矩阵控制算法,并将该算法应用于造纸机中,取得了较好的控制效果。
相对于传统的最优控制,DMC则采用了启发式优化的概念,允许设计者自由地选择优化性能指标的形式以及控制器参数。
第4章 动态矩阵控制_2010

∑ a Δu (k + j − i)
i
+ aN Δu (k + j − N ), ( j = 1, 2,
y0 (k + j k ) =
, n)
(4-4)
上式右端的后二项即为过去输入对输出n步预测值,记为
i = j +1
∑ a Δu (k + j − i) + a
i
N −1
N
2010-2-17
第4章 动态矩阵控制
10
南京信息工程大学信息与控制学院 南京信息工程大学信息与控制学院
2010-2-17
第4章 动态矩阵控制
11
南京信息工程大学信息与控制学院 南京信息工程大学信息与控制学院
2010-2-17
第4章 动态矩阵控制
12
南京信息工程大学信息与控制学院 南京信息工程大学信息与控制学院
14
南京信息工程大学信息与控制学院 南京信息工程大学信息与控制学院
2010-2-17
第4章 动态矩阵控制
四、DMC的主要特征和优点
(一)DMC的主要特征
(1)预测模型采用阶跃响应特性建模; (2)设计过程中固定格式是:用二次型目标函数决定最优 值增量序列,考虑到各种约束条件时,求最优解相当费时; (3)参数调整:用改变二次型目标函数中的权系数阵Q, R来实现。
2
南京信息工程大学信息与控制学院 南京信息工程大学信息与控制学院
2010-2-17
第4章 动态矩阵控制 一、 预测模型
从被控对象的阶跃响应出发,对象动态特性用一 系列动态系数 a1 , a2 , , aN 即单位阶跃响应在采样时刻的 值来描述,p称为模型时域长度,aN是足够接近稳态 值的系数。
DMC算法MATLAB编程及仿真

一、前言工业生产的过程是复杂的,建立起来的模型也是不完善的。
即使是理论非常复杂的现代控制理论,其效果也往往不尽人意,甚至在一些方面还不及传统的PID控制。
20世纪70年代,人们除了加强对生产过程的建模、系统辨识、自适应控制等方面的研究外,开始打破传统的控制思想,试图面向工业开发出一种对各种模型要求低、在线计算方便、控制综合效果好的新型算法。
在这样的背景下,预测控制的一种,也就是动态矩阵控制(DMC)首先在法国的工业控制中得到应用。
因此预测控制不是某种统一理论的产物,而是在工业实践中逐渐发展起来的。
预测控制中比较常见的三种算法是模型算法控制(MAC),动态矩阵控制(DMC)以及广义预测控制。
本篇所采用的是动态矩阵控制,其采用增量算法,因此在消除稳态余差方面非常有效。
二、控制系统设计方案2.1 控制系统方案设计图动态矩阵控制是基于系统阶跃响应模型的算法,隶属于预测控制的范畴。
它的原理结构图如下图(1)所示:图(1) 预测控制原理结构图上图就是预测控制原理结构图,从图中我们可以看到,预测控制的主要特点。
即建立预测模型;采用滚动优化策略,采用模型误差反馈矫正。
这也是预测控制的本质所在。
下面将对这三个特点一一说明。
2.2 预测控制基本原理1、预测模型:预测模型的功能是根据对象历史信息和未来输入对对象输出进行预测,它是被控对象的准确模型。
这里只强调模型的功能而不强调其结构形式。
因此,预测模型可以是状态方程、传递函数等传统的参数模型,对于线性稳定对象,阶跃响应、脉冲响应这类非参数模型也可以作为预测模型使用。
预测模型具有展示系统未来动态行为的功能,这样,就可以利用预测模型来预测未来时刻被控对象的输出变化及被控变量与其给定值的偏差,作为控制作用的依据,使之适应动态系统所具有的因果性的特点,得到比常规控制更好的控制效果。
2、滚动优化:预测控制是一种优化控制算法,它是通过某一性能指标的最优来确定未来的控制作用。
这一性能指标涉及到系统未来的行为。
动态矩阵控制算法

动态矩阵控制算法
动态矩阵控制算法是一种用于控制系统的先进控制算法,它采用了矩阵的表示和演化方法。
其主要思想是将系统的状态和控制输入表示为矩阵,通过矩阵运算和演化来实现对系统的控制。
动态矩阵控制算法的核心思想是通过不断更新和演化控制矩阵来适应系统的变化。
它根据系统的反馈信息和目标要求,利用矩阵运算和优化算法来计算出最优的控制矩阵。
然后将该控制矩阵应用于系统中,以实现对系统的控制。
动态矩阵控制算法具有以下特点:
1. 矩阵表示:将系统的状态和控制输入表示为矩阵,方便进行矩阵运算和演化。
2. 自适应性:通过不断更新和演化控制矩阵,能够适应系统的变化和环境的变化。
3. 优化算法:利用优化算法来求解最优的控制矩阵,以满足系统的要求。
4. 实时性:动态矩阵控制算法能够在实时性要求较高的控制系统中应用,实现对系统的准确控制。
除了以上特点,动态矩阵控制算法还可以根据具体的系统和应用场景进行扩展和改进。
它在工业自动化、机器人控制、智能交通等领域具有广泛的应用前景。
预测控制中动态矩阵控制DMC算法研究及仿真

安徽大学本科毕业论文(设计)(内封面)题目:预测控制中动态矩阵控制DMC算法研究学生姓名:张汪兵学号:P4*******院(系):电子科学与技术学院专业:自动化入学时间:2006年9月导师姓名:张倩职称/学位:硕士导师所在单位:安徽大学电子科学与技术学院预测控制中动态矩阵控制DMC算法研究及仿真摘要:动态矩阵控制(dynamic matrix control, DMC)算法是一种基于对象阶跃响应预测模型、滚动实施并结合反馈校正的优化控制算法,是预测控制算法之一。
本文阐述了预测控制的产生、发展及应用,进一步介绍动态矩阵控制算法的产生和现状,就当前动态矩阵控制算法在实际工业控制领域中发展应用现状以及今后可能的研究发展方向作了分析。
并对动态矩阵控制的算法作了推导,在理论依据方面给予证明。
可是在实际工业控制领域中,大多数被控对象都是多变量的,本文通过对该算法作了有约束、多变量两方面的改进,使该算法实际应用性更强。
文章还对该算法进行了 matlab 仿真,并对仿真结果进行分析研究,予以验证。
关键词:预测,动态矩阵控制,模型,反馈矫正,有约束,多变量。
Forecast for control of Dynamic Matrix Control DMCalgorithmAbstractDynamic Matrix Control (dynamic matrix control, DMC) algorithm is a step response based on the object prediction model, and rolling implementation and optimization of the feedback correction control algorithm, is one of predictive control algorithms. This paper describes the control forecast the rise, development and application of further information on Dynamic Matrix Control algorithm and the formation of the status quo on the current dynamic matrix control algorithm in the actual control in the field of industrial development and possible future application of the research and development direction of an analysis. Dynamic Matrix Control and the algorithm is derived, in terms of the theoretical basis for that. But in practice in the field of industrial control, the majority of objects are charged with multiple variables, the paper through the binding of the algorithm, two more variables in the promotion and improvement of the algorithm so that a more practical application. The article also has the algorithm matlab simulation, and analysis of simulation results to be verified.Key words: forecasting; dynamic matrix control; model; feedback correction; binding; multivariable第一章. 绪论1.1预测控制的产生预测控制的产生,并不是理论发展的需要,而首先是工业实践向控制提出的挑战。
基于MATLAB多变量DMC算法的仿真技术研究

基于MATLAB多变量DMC算法的仿真技术研究摘要:利用MATLAB开发系统的仿真程序,以试验室的CSTR模型为研究对象,用动态矩阵控制算法建立仿真模型,实现多输入多输出系统的控制,绘制出调节曲线,分析各个参数对系统性能的影响。
结果表明,该控制算法得到较好的控制效果。
关键词:机理建模动态矩阵控制(DMC) CSTR系统过程控制在工业生产中广泛应用着各种反应器,连续搅拌反应是非常重要的反应过程,能代表许多反应系统的特性。
同时,连续搅拌反应器(CSTR)模型比其他连续反应器类型简单。
控制系统大多为多变量控制,各被控量与输出量之间有紧密的联系,而且被动对象有较大的时间滞后,PID算法不能达到控制要求。
1 连续搅拌反应器及其数学模型1.1 CSTR过程分析用连续搅拌反应器实现冷热水混合,Q1、Q2、T1、T2分别为热水和冷水的流量及温度。
温度、液位具有较强的耦合性,冷水、热水分别流入冷热水的水槽,进入混和器进行混合。
控制进水电磁阀的开度,调节温度和液位。
1.2 机理建模建模是基于以下假设:(1)1号容器和2号容器中的液体为同种液体;(2)3号容器中的冷热液体混合均匀。
根据物料守恒定律(见式1):根据能量守衡定律:3号容器中液体单位时间内热量的变化率应等于1号容器和2号容器单位时间内带入的热量,减去3号容器流出液体带走的热量,见式(5):2 动态矩阵控制动态矩阵控制(DMC)是预测控制的一种。
DMC算法以系统的的阶跃响应模型作为内部模型,适用于渐进稳定的线性对象。
对于非线性对象,可以在工作点处线性化,包括模型预测控制、滚动优化和反馈校正等技术方法。
2.1 控制器设计温度和液位具有较强的耦合性,而且有较长的时间滞后。
因此,对温度和液位的控制通常采用DMC预测控制算法,得到的控制量不直接加到控制对象上,而是把由液位偏差经DMC算法得到的控制量作为控制注入水的流量,把由温度偏差经DMC算法得到的控制量作为控制注入水量的参考值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A是由阶跃响应系数 ai 组成的 P M 矩阵,称为动态矩阵。 性能指标写成向量形式:min J (k ) wP (k ) yP (k ) Q U M
M
2
2 R
其中 wP (k ) w(k 1)
w(k P)
T
Q diag (q1,
, qP ), R diag (r1,
10
预备知识
u(k)
u {u(0) u(1)
System
u( k ) y { y(0)
k
y(k)
}
y(1)
y(k )
}
y(k ) hu i (k i )
i 0
系统可由hi 唯一确定
11
预备知识
LTI 系统的描述(2)
u(k)
u 1(k ) {1 1 1
System
k
k
i
hi u (0) hi u (1)
i 0 k i 0
k
k 1
h0 u (k )
系统可由 a(k)唯一确定.
ak i u (i ) ai u (k i )
i 0 i 0
14
k
主要内容
• DMC算法
– 预测模型 – 滚动优化 – 反馈校正
2 i 1 j 1 P M
s.t. yM (k i | k ) y0 (k i | k ) i 1
min( M ,i )
ai j 1 u (k j 1)
min( M ,i ) J (k ) qi w(k i) ( y0 (k i | k ) i 1 ai j 1 u (k j 1)) rj u 2 (k j 1) i 1 j 1
3
预备知识
信号
0.35 0.3 0.25 0.2
连续信号 x(t)
0.15 0.1 0.05 0 -0.05 -0.1 -0.15
0
0.5
1
1.5
2
2.5
3
3.5
4
0.35
离散信号 x(k)
0.3 0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1 -0.15
0
0.5
1
• 单变量DMC算法设计 • DMC参数设计
15
动态矩阵控制
• 预测模型
– 输入输出模型 – 假设未来输入预测未来输出
• 滚动时域优化 • 反馈校正
16
DMC - 预测模型
输入
预测模型
输出
如何根据当前已知信息和假设未来输入预测系统未来输出? 阶跃响应 + 比例叠加原理 输出预测
17
DMC - 预测模型
J (k ) wP (k ) yP0 (k ) AU M (k ) U M
Q 2 2 R
J (k ) wP (k ) yP0 (k ) AU M (k ) Q wP (k ) yP0 (k ) AU M (k ) U M T RU M
i 0 k
} }
}
y {h0u(0) hu } 1 (0) h2u(0) y {0 h0u(1) hu } 1 (1) h2u(1)
y { } 0 h0u(k ) hu 1 (k ) h2u(k ) }
y : { y(k )} ?
k
y(k ) hu i (k i )
i 0
2 i 1 j 1 P M
s.t. yM (k i | k ) y0 (k i | k ) i 1
min( M ,i )
ai j 1 u (k j 1)
求优化变量:U M ( k ) u ( k ), , u (k M 1)
T
26
7
预备知识
LTI 系统的描述(1)
u(k)
System
y(k)
h1 h2 }
u(k ) (k ) {1 0 0
} y(k ) : h(k ) {h0
系统能否由h(k)唯一确定?换言之,h(k) 是否足以描述 系统?
8
预备知识
u(k)
u (k ) : {1 0 0 u {u(0) 0 0 u {0 1 0 u {0 u(1) 0
P
2
M
dJ (k ) d u j (k ) 0
U M (k ) u (k ), , u (k M 1)
T
28
无约束优化问题求解 (2)
首先,写出预测模型向量形式:
yPM (k ) yP0 (k ) AuM (k )
yM (k 1| k ) y ( k ) P 其中 M yM ( k P | k ) y0 (k 1| k ) yP0 (k ) y0 (k P | k ) a1 A aM aP a1 aP M 1 0
min J (k ) qi w(k i) yM (k i | k ) rj u 2 (k j 1)
2 i 1 j 1
P
M
其中 qi , rj 为权系数,分别表示对跟踪误差及控制量变化的抑制。
25
优化问题 (1)
无约束优化问题:
min J (k ) qi w(k i) yM (k i | k ) rj u 2 (k j 1)
, aN 称为模型向量,N为建模时域
T
• 对于渐近稳定对象,N步之后对象稳定,即 aN as a
19
输出预测 (1) - 零输入响应
• 在 k 时刻,假设控制作用保持不变时,对未来N 个时刻的输出有初始预测值 y0 (k i | k ) i 1, 2, , N
k k
k+N
阶跃响应 + 比例叠加原理 输出预测
模型预测值:自由项(零输入响应) + 强迫项(零状态响应)
18
阶跃响应采样
1,1,1,
=
0, a1, a2 , a3 ,
,
• 测量对象单位阶跃响应的采样值 ai a(iT ) i 1, 2, T为采样周期 • 对象动态信息可近似为有限集合 a1, a2 , , aN • 向量 a a1 ,
, rM )
29
无约束优化问题求解 (3)
min J (k ) wP (k ) yPM (k ) U M
Q 2 2 R
(1) (2)
s.t.
yPM (k ) yP0 (k ) AuM (k )
将式(2)代入式(1)可得:
min J (k ) wP (k ) yP0 (k ) AU M (k )
优化问题 (2)
约束优化问题:
min J (k ) qi w(k i) yM (k i | k ) rj u 2 (k j 1)
2 i 1 j 1 P M
s.t. yM (k i | k ) y0 (k i | k ) i 1 yi min yM (k i | k ) yi max u j min u (k j 1) u j max
注意:
y0 (k N | k ) y0 (k N 1| k )
y0 ( | k )
20
输出预测 (2) – 零状态响应
k时刻:控制有一增量△v(k),计算未来时刻的输出值
yi (k i | k ) y0 ( k i | k ) ai u (k ) i 1, ,N
,N
22
预测控制基本原理
• 预测模型 • 滚动时域优化
– 以滚动方式对未来有限时域进行优化
– 在线计算并实现当前控制作用
• 反馈校正
23
DMC - 滚动时域优化
24
优化目标函数
每一时刻,确定从该时刻起的 M 个控制增量 u(k ), , u(k M 1) 使得被控对象在其作用下: 未来 P 个时刻: yM (k i | k ) w(k i) u 0 因此,k 时刻优化性能指标(惩罚跟踪误差与调节幅度):
1.5
2
2.5
3
3.5
4
4
预备知识
系统
输入 x(t) 或 x(k) 输出 y(t) 或 y(k)
x(t)
System
y(t)
5
预备知识
动态系统描述 常微分方程 传递函数 脉冲响应 阶跃响应 频率响应 状态方程 等
6
预备知识
系统特性
线性 齐次 时不变
2 Q
U M
2 R
由极值必要条件 dJ (k ) d UM (k ) 0 可得:
U M (k ) ( AT QA R ) 1 AT Q wP (k ) y P0 (k )
获得 u(k ),
, u(k M 1) 的最优值。
30
无约束优化问题求解 (4)
i 0 i 0
系统可由 a(k)唯一确定.
13
预备知识
y (0) h0u (0) y (1) h0u (1) h1u (0) y (2) h0u (2) h1u (1) h2u (0) y (k ) h0u (k ) h1u (k 1) hk u (0) hiu (k i)
线性叠加原理
21
输出预测 (3) – 输出预测值
在 M 个连续的控制增量作用 u(k ), , u(k M 1) 下, 未来各时刻的输出值为:
yM (k i | k ) y0 (k i | k ) j 1