物联网应用中各种无线连接技术对比
物联网中的智能无线通信技术介绍

物联网中的智能无线通信技术介绍随着技术的不断发展,物联网也逐渐成为人们日常生活中不可或缺的一部分。
物联网可以将各种物品连接到互联网上,实现数据的传输和交换,从而使生活更加便捷和智能化。
而在物联网中,智能无线通信技术也扮演着非常重要的角色。
本文将为大家介绍一些物联网中常用的智能无线通信技术。
一、蓝牙技术蓝牙技术是一种短距离无线通信技术,其射程一般不超过10米。
蓝牙技术可以实现设备之间的数据传输和通信,是最常见的物联网通信技术之一。
目前,蓝牙技术在智能家居、智能健康、汽车智能化等领域得到了广泛应用。
二、ZigBee技术ZigBee技术是一种低功耗、低速率的无线通信技术。
它适用于各种低成本、低功耗的设备,可以满足短距离、低速率、低功耗的无线通信需求。
在物联网中,ZigBee技术被广泛用于智能家居、智能建筑、智能能源等领域。
三、RFID技术RFID技术(Radio Frequency Identification)是一种非接触式识别技术。
它通过接收和识别无线电信号中存储的信息,来完成对物品的识别和跟踪。
在物联网中,RFID技术也广泛用于各种场景,如物流、仓储、农业、医疗等领域。
四、NB-IoT技术NB-IoT技术(Narrow Band Internet of Things)是一种专门用于物联网的窄带通信技术。
它的优势在于低功耗、长距离、宽覆盖、高可靠性等方面。
NB-IoT技术可以用于智能家居、智能水电表、智能停车场等领域。
五、LoRaWAN技术LoRaWAN技术是一种广域低功耗无线通信技术,其网络结构为星型网络,可用于低速率、低功耗的物联网场景。
LoRaWAN技术适用于智能城市、智能环保、智能农业等领域。
总之,在物联网中,智能无线通信技术具有非常重要的作用,它的应用涵盖了各个领域。
上述五种技术都是当前物联网中常用的技术,各有优缺点,需要根据实际情况来选择。
未来,随着技术的不断迭代和创新,各种新的物联网技术也将不断涌现。
物联网建设中的短距离无线通信技术

物联网建设中的短距离无线通信技术物联网的概念是指通过无线网络将各种设备连接起来,实现设备之间的互联和数据交换。
在物联网建设中,短距离无线通信技术起着至关重要的作用。
短距离无线通信技术指的是在近距离范围内进行无线通信的技术,其通信距离通常在几十米到几百米之间。
本文将介绍几种常见的物联网建设中使用的短距离无线通信技术。
一、蓝牙技术蓝牙技术是一种短距离无线通信技术,具有低功耗、低成本和短距离通信等特点。
蓝牙技术广泛应用于手机、电脑、音频设备、医疗设备等领域。
在物联网中,蓝牙技术常用于设备之间的数据传输和控制。
通过蓝牙技术可以将温度传感器、湿度传感器等设备连接到物联网中,并通过手机或电脑进行数据监测和设备控制。
二、Wi-Fi技术Wi-Fi技术是一种用于无线局域网的技术,具有高速、大容量和覆盖范围广等特点。
在物联网建设中,Wi-Fi技术常用于家庭和办公场所等小范围的无线通信。
通过Wi-Fi技术,可以将各种设备连接到一个无线网络中,实现设备之间的互联和互操作。
在家庭中可以通过Wi-Fi将智能电视、智能音响、智能灯具等设备连接到一起,并实现语音控制和智能家居的功能。
三、ZigBee技术ZigBee技术是一种低速、低功耗的无线通信技术,适用于对通信速率和功耗要求不高的场景。
在物联网建设中,ZigBee技术主要用于传感器网络和自动化控制等领域。
通过ZigBee技术,可以实现设备之间的短距离通信和数据传输,适用于物联网中大量传感器节点的应用场景。
四、NFC技术NFC技术(Near Field Communication,近场通信)是一种短距离无线通信技术,适用于设备之间的近距离通信和数据交换。
NFC技术通常用于移动支付、智能门锁等场景。
在物联网中,NFC技术可以用于设备之间的身份认证、数据传输和设备配对等功能。
在智能家居中,可以使用NFC技术实现门锁解锁、电器开关等功能。
短距离无线通信技术在物联网建设中起着重要的作用。
智能物联网领域的两大无线数据传输通信模块技术对比:zigbee与蓝牙

两大智能物联网领域无线数据传输模块技术对比:Zigbee与蓝牙Zigbee通信协议和蓝牙无线协议都是广泛应用于物联网(I。
T)行业的本地通信,选择合适的协议时,需要具体考虑一下两个不同无线数据通信协议的优势与缺点。
在某些情况下,一种协议比另一种更适合,尽管有时正确的解决方案是同时实现这两种协议,以利用它们的组合优势,正如我们将在本文中讨论的那样。
为了更好地理解这些物联网协议选项,让我们看看Zigbee的优势和限制,然后是三种不同的蓝牙“风格”:经典蓝牙、低功耗蓝牙BLE和蓝牙BT Mesho这将有助于解释权衡并展示每种协议的一些用例,以便您可以为您的物联网应用选择最佳协议一一无论是智能城市、工业物联网、数字标牌或其他连接技术用例。
Zigbee技术在物联网中的应用Zigbee是一种具有低成本效益、低功耗、低带宽的无线网状网络的开放全球标准,由 Zigbee 联盟中的一个公司开发的无线通信技术。
Zigbee协议允许通过中间节点组成的网状网络将信息传递到远处的节点,从而实现长距离数据传输。
信息在到达目的地的途中“跳” 过中间的无线电节点。
Zigbee的2. 4 GHz频率范围可以在全球范围内实现,无需许可证可以免费试用改频段。
Zigbee协仪的优点:ZigbeemeSh网络自动配置(自组网),如果节点被禁用或删除(自愈合),它将动态重新配置以修复自己。
作为一个标准的无线数据通信协议,Zigbee技术在家庭自动化和工业物联网中获得广泛接受。
由于大多数手机、平板电脑和电脑都不能使用Zigbee技术应用,物联网关也需要与它们进行通信。
所以必须要详细的进行配置,以确保节点加入网络能够正常通信,并与以太网网关通信。
Zigbee技术与蓝牙技术在智物联网领域的使用案例家庭自动化是Zigbee的诞生地,但商业和工业用例也同样突出,包括智能能源、照明、医疗设备系统、工厂自动化、市政路灯和零售监控系统。
其中智能城市路灯照明是一个很好的例子,说明了网格网络的发展趋势,Zigbee非常适合这种网络,因为它能够实现远程管理大型设备网络等关键功能。
十大无线网络技术对比

十大无线网络技术对比目前,无线网络连接技术按照传输距离远近可分为短距离无线连接技术和长距离无线连接技术。
下面分别列举了各自的5种主要技术,包括蓝牙,Wi-Fi,NFC,ZigBee,UWB以及GPRS,5G,NB-IoT,LoRa,全球卫星导航系统等。
互联网行业发展到今天,人们生活的便利度已经被极大的提高。
在家有Wi-Fi,出门有4G,定位有GPS等等,似乎网络已经成为继衣食住行之后的又一重要组成部分,覆盖生活的方方面面,但在万物互联时代,网络连接技术需要进一步迭代。
物联网架构一般被分为感知层、网络层、平台层和应用层,其中网络层处于物联网生态系统的枢纽位置,在物联网设备连接方面扮演着举足轻重的作用。
物联网的最终目标仍然是服务于人,因此,具有更高便携性的无线网络连接技术得到了更广泛的关注。
在互联网时代已经发展出一大批无线网络技术,面向万物互联,无线网络连接技术得到了更好的发展。
物联网解决方案供应商云里物里科技目前,无线网络连接技术按照传输距离远近可分为短距离无线连接技术和长距离无线连接技术。
下面分别列举了各自的5种主要技术,包括蓝牙,Wi-Fi,NFC,ZigBee,UWB以及GPRS,5G,NB-IoT,LoRa,全球卫星导航系统等。
下面就随着物联网解决方案供应商云里物里科技一起来了解下这十大无线网络技术的优缺点。
一、短距离无线连接1.蓝牙蓝牙(Bluetooth)是一种无线技术标准,可实现固定设备、移动设备和楼宇个人域网之间的短距离数据交换(使用2.4—2.485GHz的ISM波段的UHF无线电波)。
蓝牙可连接多个设备,克服了数据同步的难题。
从音频传输、图文传输、视频传输,再到以低功耗为主打的物联网传输,蓝牙应用的场景也越来越广。
前两代蓝牙技术都是技术的塑形阶段,将蓝牙技术发展成为一种可靠、安全、实用的传输通信技术。
随着3G时代的到来,蓝牙技术也迈入高速率传输的第三代。
第三代蓝牙技术传输速率高达24Mbps,核心是使用AMP技术,允许蓝牙协议栈针对任一任务动态地选择正确射频。
物联网技术与传统无线技术的数据传输效率比较分析

物联网技术与传统无线技术的数据传输效率比较分析随着物联网技术的发展和普及,越来越多的智能设备和传感器被接入这个庞大的网络中。
这些设备和传感器不仅需要收集和处理大量的数据,还需要将这些数据传输到云端进行分析和存储。
传统无线技术如Wi-Fi、4G、蓝牙等都可以用于物联网数据传输,但它们和物联网技术相比存在哪些优缺点呢?本文将对这些技术的数据传输效率进行比较分析。
一、物联网技术的数据传输效率物联网技术是一种面向物品的互联网技术,具有低成本、低功耗、低延迟、广覆盖等特点。
物联网技术主要有三种通信技术:低功耗广域网(LPWAN)、近场通信(NFC)和无线射频识别(RFID)。
1. LPWANLPWAN是一种新型的无线通信技术,其主要特点是通信距离远、功耗低、传输速率慢。
目前LPWAN技术主要有LoRaWAN和NB-IoT两种。
LoRaWAN技术是一种低速率的有损压缩数字调制技术,采用扩频技术并在传输通道中添加前向纠错码,实现了远距离的通信,但传输速率较慢,一般在1kbps-50kbps之间。
在城市环境下,LoRaWAN技术覆盖范围可以达到2-5公里,在农村和山区可以达到10公里以上。
NB-IoT技术是一种窄带物联网技术,相对于4G技术的宽带模式,NB-IoT技术采用窄带调制和前向纠错技术,传输速率较慢,一般在50kbps以下。
但是NB-IoT技术支持广域覆盖,可以在室内、室外、地下等各种环境下使用,覆盖范围广。
总的来说,由于LPWAN技术的功耗低、传输距离远,适用于需要实现长距离低速数据传输的场景,如智能仓储、物流等,但传输速率较慢,不适合需要高速传输的场景。
2. NFC技术NFC技术主要用于近距离数据传输,通信距离一般在10厘米以内。
NFC技术采用了两种主要的工作模式:点对点模式和读写器模式。
点对点模式的通信速率较慢,一般在106kbps或212kbps,而读写器模式的通信速率可以达到424kbps。
NFC技术的缺点是通信距离短,只适用于需要近距离通信的场景,如门禁、支付等。
物联网中各种网络技术

物联网中各种网络技术随着科技的不断发展,物联网(Internet of Things,IoT)作为一个热门领域,各种网络技术也得到了广泛应用和发展。
本文将介绍物联网中常见的各种网络技术,并探讨其特点、应用和未来发展趋势。
一、传统的网络技术1. 以太网(Ethernet)是最早应用于物联网的一种网络技术。
它基于有线连接,传输速度快,可通过交换机和路由器连接各种设备。
以太网适用于需要高带宽和稳定连接的场景,如智能家居和工业自动化系统。
2. Wi-Fi是一种无线局域网技术,通过无线接入点实现设备之间的连接。
Wi-Fi具有灵活性和易用性,适用于需要无线连接的场景,如智能手机、平板电脑和智能穿戴设备。
3. Zigbee是一种低功耗、短距离的无线通信技术,适用于物联网中大规模设备的连接。
Zigbee的特点是低能耗和自组网能力,适合用于家庭自动化和智能楼宇系统。
二、新兴的网络技术1. LoRaWAN(Long Range Wide Area Network)是一种远距离、低功耗的无线通信技术。
LoRaWAN适用于覆盖范围广、设备数量庞大的场景,如智能城市和农业物联网。
2. NB-IoT(Narrow Band Internet of Things)是一种专为物联网设计的窄带无线通信技术。
NB-IoT具有覆盖范围广、连接密度高和低功耗的特点,适用于物联网中的传感器和小型设备。
3. 5G是第五代移动通信技术,具有高带宽、低延迟和大容量的特点。
5G将为物联网提供更快的数据传输速度和更稳定的连接,为物联网应用带来更大的可能性。
三、网络技术的应用1. 智能家居是物联网中一个重要的应用领域。
通过各种网络技术,家庭中的设备可以相互连接和交互,实现自动化控制和智能化管理。
2. 工业物联网是将各种传感器、设备和工业系统连接起来,实现生产过程的数字化和智能化。
网络技术在工业物联网中起到关键作用,提高了生产效率和质量。
3. 智能交通是利用物联网技术实现交通系统智能化的重要领域。
物联网中的几种无线通信技术(20111122)

物联网中的几种无线通信技术(20221122)第7讲几种常用的无线网络通信技术随着轻型移动设备的与日剧增,其数量已经远远超过了固定设备。
由于有线网络连接在空间上的局限性,如何将这些移动设备、高速地联入互联网中呢?无线通信技术在其中起到了至关重要的作用。
无线通信技术消除了有线网络对接入设备的位置限制,同时也节省了光线、电缆等有线信号传输设施的本钱。
这就意味着人们可以以相对低廉的价格且非常方便地在餐厅、教学楼、机场等有无线信号覆盖的区域上网浏览和获取信息。
IT界许多人都认为将来移动通信网络将全面打败现在的互联网。
本讲主要介绍无线网络的分类和几种无线通信技术。
7.1 无线网络简介无线网络包含了一系列的无线通信协议。
例如WiFi〔Wireless Fidelity〕、3G、ZigBee协议等。
为了更加准确区别不同协议的特性,首先要了解一些组成无线网络的根本元素。
1. 无线网络用户无线网络用户是指具备无线通信能力,并可将无线通信信号转化为有效信息的终端设备。
如,装有WiFi无线模块的台式机、笔记本电脑或者是PDA〔个人数字数理〕、装有3G通信模块的手机和装有CC2420无线通信模块的传感器。
2. 无线连接无线接入是指无线网络用户与基站或者无线网络用户之间用以传输数据的通路。
相对于优先网络中的电缆、光缆、同轴电缆等物理连接介质,无线连接主要通过无线电波、光波作为传输载体。
不同无线连接技术提供不同的数据传输速率和传输距离。
3. 基站基站的职责是将一些无线网络用户连接到更大的网络中〔校园网、互联网、电话网〕。
无线网络用户通过基站接收和发送数据包,基站将用户的数据包发给它所属的上层网络,并将上层网络的数据包转发给指定的无线网络用户。
根据不同的无线连接协议,相应基站的名称和覆盖的范围是不同的。
例如,WiFi的基站被称为接入点〔AP〕,它的覆盖范围为几十米;蜂窝电话网的基站被称为蜂窝塔,在城市中它的覆盖范围为几千米,而在空旷的平地中其覆盖范围可达几十千米。
物联网中的几种短距离无线传输技术

物联网中的几种短距离无线传输技术(总7页)-本页仅作为预览文档封面,使用时请删除本页-短距离无线通信场指的是 100m 以内的通信,主要技术包括 Wifi、紫蜂(Zigbee)、蓝牙技术(Bluetooth)、超宽带技术(Ultra-wideband ,UWB)、射频识别技术(Radio Frequency IDentification ,RFID)以及近场通信(Near Field Communication,NFC)等类型。
低功耗、微型化是用户对当前无线通信产品尤其是便携产品的强烈要求,作为无线通信技术重要分支的短距离无线通信技术正逐步引起越来越广泛的关注。
各国也相应地制定短距离通信技术标准,特别是RFID 和 NFC 在物联网、移动支付和手机识别方面的应用标准,例如主要的 RFID 相关规范有欧美的 EPC 规范、日本的 UID(Ubiquitous ID)规范和 ISO 18000 系列标准。
中国政府也高度重视短距离通信的发展,制定了一系列的政策来扶持短距离通信产业。
例如科技部、工信部联合 14 部委制订的《中国 RFID 发展策略白皮书》等。
此外,包括诺基亚、英特尔、IBM、东芝、华为、中兴和联想等众多企业也积极参与到短距离无线通信中各技术的研究中。
1、Wi-Fi技术Wi-Fi(Wireless Fidelity,无线高保真)是一种无线通信协议(),Wi-Fi的传输速率最高可达11Mb/s,虽然在数据安全性方面比蓝牙技术要差一些,但在无线电波的覆盖范围方面却略胜一筹,可达100 m左右。
Wi-Fi是以太网的一种无线扩展,理论上只要用户位于一个接入点四周的一定区域内,就能以最高约11Mb/s的速率接入互联网。
实际上,如果有多个用户同时通过一个点接入,带宽将被多个用户分享,Wi-Fi的连接速度会降低到只有几百kb/s,另外,Wi-Fi的信号一般不受墙壁阻隔的影响,但在建筑物内的有效传输距离要小于户外。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物联网应用中各种无线连接技术对比
关键字:无线传感器无线通信无线连接解决方案
据预测,到2020年将有大约500亿个采用无线通信方式的装置。
据来自GSM联盟的数据,其中移动手持和个人计算机仅占1/4,其余的是采用非用户交互方式与其他机器通信的自主互连装置。
当前我们的互联网正在快速发展成为无线装置互连的万维网- 物联网(IoT)。
无线连接装置的可选方式有很多,最流行的包括Wi-Fi、Bluetooth、ZigBee和基于sub-GH z技术的解决方案。
每种解决方案都有优缺点,在这个互连的世界里,以上无线技术将会共存(如图1所示)。
然而,物联网的重要驱动力之一是低功耗无线传感器的出现,从智能电表到传输系统、从安全系统到楼宇自动化,传感器越来越广泛的用于各类应用中。
对于无线传感器来说,可扩展性、范围、休眠电流和可靠性等属性至关重要。
虽然某些终端节点所需数据传输速率相对较低,但是大规模网络中的实时报告汇聚意味着“大数据(big data)”。
图1 物联网中多种无线技术共存
为了更好的服务最终用户,公共事业公司和市政局开始扩展智能计量系统,以解决实时数据不断增长的问题。
公共事业公司通过智能电表,能够更频繁和更有效的查看客户的能源消耗信息,同时也能快速识别、隔离,以及解决电力失效等问题。
消费者也能通过互连来获取相关信息。
室内网络设备均能实时报告其状态和能耗,并且还能响应公共事业公司发出的信息。
采用智能能源和智能家居系统,消费者将更加方便和高效,例如,在电费最低的时候控制激活洗碗机,或是适时提醒用户需要添加洗涤剂。
同样的,在铁路运输网络中,无线传感器能可用于远程监视广阔的轨道网络,技术人员能提前识别维护需求,以降低人工轨道巡视的成本和迟延。
无线传感器网络的核心需求
可扩展性对于无线传感器网络环境至关重要。
某些传感器仅每秒进行一次状态更新,并且每次仅传输几个字节信息,但单个建筑物可能有数万个节点。
举个例子,美国拉斯维加斯的A ria酒店,部署7万多个采用ZigBee网状网络通信的节点,以便控制照明、空调和建筑物周围的许多其他服务。
在多数应用中,传感器需要安装在无法连接主电源或只能电池供电的位置。
因此,可靠的网络架构要求有能力处理大量汇聚的数据,但传感器节点自身必须低功耗。
可靠性、可扩展性和电源效率的组合,明确界定无线传感器节点能够采用的通信技术需求。
系统集成商不仅要考虑所选拓扑结构和无线协议的优缺点,也要考虑无线技术本身固有的物理属性。
混凝土墙和多径衰落对于任何无线系统来说都是不利的,但也有办法减轻影响。
为了解决这个问题,不同国家有不同的法规来管理无线电频谱和可用的频率范围。
其中2.4GHz已成为无需授权的全球频段,因此无线系统的设计能够服务于全球所有主要市场。
例如Wi-Fi是基于2.4GHz频段的通信技术,其擅长在两节点之间快速传输大量数据,但同时消耗能量高,并且在星型配置中,每个AP限制在不超过15-32个客户端。
Bluetoot h是另一种2.4GHz技术,其针对便携式设备,主要作为点对点的解决方案,仅支持几个节点。
ZigBee与Bluetooth和Wi-Fi共享相同的无线频谱,但仅用于满足低功耗无线传感器节点的特殊需求。
表1汇总目前的无线网络技术核心特性和能力。
表1 无线网络技术和标准的比较
ZigBee:无线网状网络的优化解决方案
ZigBee基于全球标准,是一个开放的无线网状网络技术。
与传统的网络架构不同,例如星型和点对点,网状网络采用最低成本节点为建筑物内的所有位置提供可靠覆盖(参见图2
中网络拓扑结构选项对比)。
ZigBee采用动态、自主的路由协议,基于AODV(Ad Hoc On-demand Distance Vector)的路由技术。
在AODV中,当一个节点需要连接时,他将广播一条路由请求报文,其他节点在路由表中查找,如果有到达目标节点的路由,则向源节
点反馈,源节点挑选一条可靠、跳数最小的路线,并存储信息到本地路由表以便用于未来所需,如果一条路由线路失败,节点能够简单的选择另一条替代路由线路。
如果源和目的地之间的最短线路由于墙壁或多径干扰而被阻塞,ZigBee能够自适应的找到一条更长但可用的路由线路。
图2 - 网络拓扑结构比较
例如,基于Silicon Labs EM35x Ember ZigBee SoC和EmberZNet PRO协议栈的无线传感器网络,可提供自配置和自修复的网状网络连通性,能够扩展连接单一网络中的数百或数千节点。
“ZigBee认证产品”的快速开发得益于Ember AppBuilder,其隐藏协议栈细节,聚焦ZAP(ZigBee Application Profiles)实现的开发工具。
通过图形化界面,开发人员能够快速选择应用所需的属性,然后由AppBuilder自动生成所需代码。
为发挥ZigBee网络灵活性的最大优势,需要高效的调试工具。
网状网络的复杂性使传统网络分析工具(例如Packet sniffer)使用起来更加困难。
事实上,由于包可能穿越多跳到达目的地,许多中间传输超出分析仪的应用范围。
对于这个问题,目前唯一的解决方案是采用Silicon Labs桌面网络分析仪(Desktop Network Analyzer),此款分析工具功能强大,能够在图形化界面内展示网络中每个包收发的全貌,并且内置协议分析和可视化跟踪引擎,开发人员可以协调网络通信和装置的任务。
在某些情况下,网状网络并不是合适的选择,因为节点密度太低,因此无法提供有效的故障转移支持。
例如,公路或铁路网络拓扑结构需要沿着狭长路径宽间距部署节点。
同样,校园的外部设施对于采用网状网络来说过于稀疏。
在这些环境中,星型拓扑结构结合可跨越更远距离,因而更可靠,更合适。
ub-GHz:长距离和低功耗通信的理想选择
无线传播与频率成反比,在低功耗、长距离通信或穿墙能力上,sub-GHz射频更有优势。
对于许多应用,433MHz成为2.4GHz的全球替代品(但日本不允许其用于无线应用)。
基于868MHz和915MHz的设计可用于美国和欧洲市场。
有许多可用的无需授权或需要授权的频段,对于系统集成商来说,既可选择在某些特定区域进行性能优化,或者配合公共事业公司在广阔区域设计系统。
在这种多样化中,与2.4GHz频段相比,sub-GHz频段频谱干扰更少。
干扰较少的频段能提高网络的整体性能,减少传输中的重传次数。
第三方和基于标准的网络协议栈可用于sub-GHz射频,但许多厂商仍选择专用解决方案来针对其特定需求。
许多无线协议面临着一个问题,接口要不断激活“监听”网络中通信。
数据发射比数据接收消耗更多的能量,但是发射是短暂的,并且有长时间间隔,因此长期平均能耗通常更低。
在许多无线协议中,接收器不知道消息何时到来。
因此不得不保持监听以便不丢失任何数据,因此即使没有消息,接收器也不能完全关闭能耗。
这种情形将限制节点的电池自主权,需要对电池定期更换或充电。
Sub-GHz收发器,例如Silicon Labs Si446x EZRadioPRO IC,支持从119MHz-1050MH z的频率范围,最大146dB的链路预算,以及休眠模式下仅需50nA电流消耗。
为了减轻多径衰落的影响,EZRadioPRO芯片支持双天线,并在芯片内集成天线分集逻辑算法。
通过采用跳频和时钟同步技术相结合的方法,系统集成商能够在协调器和终节点之间实现跨越数公里的sub-GHz网络,同时终节点采用单电池可运行十年以上。
由此系统集成商能够采用少量协调器即能可靠覆盖特定区域,并且把终节点放置在主电源无法连接的地方。
无线共存和云
在无线网络世界中,没有一种“万能”的解决方案。
在大规模、低功耗网络中,不能仅选择无线网络中的某一种形式。
Sub-GHz和ZigBee无线网络可以很好的共存,因为他们采用不同的无线电频谱,并且具有独特的属性。
例如,在校园中,2.4GHz ZigBee适用于室内自动化系统,而sub-GHz用于户外灯控。
可靠有效的收集数据能力当然是最重要的,但是为了真正激发网络潜能,实现所有实时信息的数据分析、可视化,以及对移动服务的访问,则需要连接到云。
大规模网络通常利用回程系统,把每个子网中收集的信息转换成当前大多数世界信息的中间媒介- 互联网协议(IP)。
在每个收集点,把接收到的数据转换成适合在标准IP帧中传输的格式。
大多数情况下,使用在传感器网络中的网络协议头将剥离并进行包分析。
然后,回程系统能够把含有源和目的信息的原始数据装配成IP包,而无需维护传感器网络的系统开销。
接下来,IP包采用与其他互联网数据包一样的方式进行路由,从而服务提供商可通过云的服务,来分析和可视化信息,并且消费者也可以通过平板电脑、笔记本或手机来管理和操作数据。
这是令人激动的时代!无线技术和低功耗操作的发展带给我们诸多便捷,我们可以测量、监视和控制我们的环境,而以前是无法想象的。
现实中无线技术的使用多种多样,污水管理和森林火灾探测一类的应用可能仍然处于起步阶段,而智能电表、安全和楼宇自动化等应用已经为商家和消费者带来效率和便利性。
由于不同的技术各有优势,ZigBee协议和sub-GHz RF系统为实现高可扩展和可靠性的低功耗无线传感器网络提供理想的解决方案。
发展正在加速,而我们看到的物联网才刚刚开始。