第三章 泄漏与扩散925

合集下载

三氯化磷应急预案演练

三氯化磷应急预案演练

一、演练目的为了提高我公司应对三氯化磷泄漏事故的应急响应能力,检验应急预案的可行性和有效性,增强员工的安全意识和自救互救能力,特组织本次应急预案演练。

二、演练时间2023年X月X日三、演练地点我公司三氯化磷储存仓库及周围区域四、演练组织机构1. 演练领导小组- 组长:公司总经理- 副组长:公司副总经理- 成员:各部门负责人、安全管理人员2. 演练指挥小组- 指挥长:安全管理部门负责人- 副指挥长:生产管理部门负责人- 成员:各部门负责人、应急小组成员3. 应急小组- 抢险救援组:负责事故现场救援、人员疏散等工作- 医疗救护组:负责伤员救治和医疗救护工作- 交通保障组:负责事故现场交通管制和疏导- 通讯联络组:负责现场通讯联络和信息报送- 后勤保障组:负责演练物资保障和现场后勤服务五、演练内容1. 演练情景设定- 三氯化磷储存仓库发生泄漏,泄漏物质扩散至周边区域,造成人员受伤和环境污染。

2. 演练流程(1)事故发现与报告- 储存仓库值班人员发现泄漏,立即报告值班班长。

- 值班班长接到报告后,立即向演练指挥小组报告。

(2)应急响应- 演练指挥小组启动应急预案,成立现场指挥部。

- 各应急小组按照预案要求迅速到达现场,开展救援工作。

(3)现场处置- 抢险救援组对泄漏源进行控制,防止泄漏物质扩散。

- 医疗救护组对受伤人员进行救治,并将伤员送往医院。

- 交通保障组对事故现场进行交通管制,确保救援车辆通行。

- 通讯联络组及时向相关部门和领导汇报事故情况。

(4)善后处理- 演练结束后,各部门对现场进行清理,恢复生产秩序。

- 对受伤人员进行后续治疗和关怀。

- 组织召开事故分析会,总结经验教训,完善应急预案。

六、演练要求1. 各部门、各应急小组成员要高度重视,认真对待本次演练。

2. 演练过程中,要严格遵守操作规程,确保演练安全、有序进行。

3. 各应急小组成员要熟悉自己的职责和任务,确保在紧急情况下能够迅速、有效地开展工作。

基于PHAST软件的LNG接收站泄漏扩散模拟分析

基于PHAST软件的LNG接收站泄漏扩散模拟分析

基于PHAST软件的LNG接收站泄漏扩散模拟分析昃 彬 中海油石化工程有限公司 济南 250101摘要 为了研究液化天然气(LNG)泄漏扩散规律,本文运用PHAST软件,选取某接收站在不同压力状态下的LNG泄漏单元,分析在连续泄漏、瞬时泄漏工况下泄漏扩散的影响因素,有助于为LNG接收站布置、LNG泄漏后应急处置措施的确定及警戒范围的划定等提供依据。

关键词 LNG 泄漏 扩散 PHAST昃彬:工程师。

2014年毕业于中国石油大学(华东)化学工程与技术专业获硕士学位。

主要从事化工工艺系统、安全设计工作。

联系电话:18678653085,E mail:zebin1988@126 com。

近年来,国家非常重视LNG产业的发展,在沿海地区相继规划和建设了多个LNG接收站。

LNG接收站的主要功能包括:LNG的接收、储存和增压气化。

LNG是以甲烷为主要组分的烃类混合物,另外还有少量的乙烷、丙烷、氮等组分,具有火灾爆炸的危险性,另外,还可能引起人员冻伤、窒息。

因此,分析研究LNG的泄漏扩散问题,了解其运动规律,有助于为LNG接收站的布置、LNG泄漏后应急处置措施的确定及警戒范围的划定等提供依据。

LNG泄漏扩散过程较复杂,涉及气液相变、多组分输送、湍流流动、热量传递等动态过程。

目前对LNG泄漏扩散的研究主要集中在泄漏源大小、环境条件(如风速、温度、湿度、大气稳定度)等对泄漏扩散的作用效果上,但针对LNG接收站在不同压力状态下的LNG泄漏、是否能到达地面形成液池,以及集液池收集对扩散的影响研究较少。

由DNV开发的工艺危险源分析软件工具(ProcessHazardAnalysisSoftwareTool,简称PHAST软件),是基于自有UDM(UniversalDispersionModel)以及内嵌经验计算公式组成扩散计算模型的二维模拟软件[1]。

本文运用PHAST8 0版本,以某LNG接收站为模拟分析对象,选取在不同压力状态下的LNG泄漏单元,对泄漏扩散进行模拟研究,较全面地分析在连续泄漏、瞬时泄漏工况下,泄漏扩散的影响因素。

液氨泄漏事故扩散模拟

液氨泄漏事故扩散模拟

液氨泄漏事故扩散模拟第一篇:液氨泄漏事故扩散模拟液氨泄漏事故扩散模拟摘要:系统对比了高斯多烟团模式与SLAB模型模拟液氨储罐泄漏后的氨气扩散特征。

结果表明,两种模型的模拟结果存在较为明显差异。

在模拟设定条件下,事故发生点下风向60~2000 m范围内,SLAB模型得到的最高浓度高于多烟团模式,前者是后者的1.01~35.2倍,且差别随距离增大而增大。

事故发生点下风向600 m以内,SLAB 模型模拟得到的横向影响距离大于多烟团模式;而在下风向600 m以外,多烟团模式模拟得到的横向距离大于SLAB模型,差距随下风向距离增加而增大。

下风向同一地点,SLAB模型得到的氨气最高浓度出现时间较多烟团模式较早,SLAB模型计算得到的氨气烟团出现到消散时间也较多烟团模式更短。

上述结果可为化学品泄漏导致突发环境事件的预防和应急中模型选择提供参考。

关键词:液氨泄漏扩散模拟多烟团模型 SLAB模型中图分类号:X937 文献标识码:A 文章编号:1674-098X (2017)03(b)-0024-05Diffusion Simulation of Liquid Ammonia LeakageComparison of the Multi-puff Model and SLAB ModelWu Weinan1 Yang Ping2(1.Solid waste Management Center in Liaoning Provine,Shenyang Liaoning,110161,China;2.Panjin Liaoning Fried Dough Sticks as for as sludge Treatment and Utillzation co.,LTD,Panjing Liaoing,124218,China)Abstract:Simulation results of diffusion after liquid ammonia leakage calculated by the Gaussian multi-puff model and SLAB model were systematically compared.Results showed that there were obvious differences between the two models.Under the setting conditions,the round maximumammonia concentrations simulated by the SLAB model were higher than those by the multi-puff model within 60 to 2000 m downstream the resource.And the former was 1.01 to 35.2 times that of the latter,and the difference increased with increasing distance.Higher cross-affected distances were found by SLAB model within 600 m downstream the resource,while cross-affected distances simulated by the multi-puff model were higher outside 600 m downstream,and the differences between the two models increases with the distances.In the same location downwind,the highest concentration of ammonia came earlier in SLAB model,while the time period from appearance and dissipation was shorter in multi-puff model.These results may provide a reference on diffusion model selection for prevention and response of environmental emergencies caused by chemical releases.Key Words:Liquid ammonia;Leakage;Diffusion simulation;Multi-plume model;SLAB model近年来,突发性环境事件频发。

《金属学基础原理》典型题例

《金属学基础原理》典型题例

《金属学原理》典型题例晶体结构章节1. 纯铁在912 C由bcc结构转变为fee结构,体积减少1.06%,根据fee形态的原子半径计算bee形态的原子半径。

它们的相对变化为多少?如果假定转变前后原子半径不便,计算转变后的体积变化。

这些结果说明了什么?2. 铜的相对原子质量为63.55,密度为8.96g/cm3,计算铜的点阵常数和原子半径。

测得Au的摩尔分数为40%的Cu-Au固溶体,点阵常数a=0.3795nm,密度为14.213g/em3,计算说明他是什么类型的固溶体。

3. Fe-Mn-C合金中,Mn和C的质量分数为12.3%及1.34%,它是面心立方固溶体,测得点阵常数a=0.3642nm,合金密度为7.83g/em3,计算说明它是什么类型的固溶体。

4标出具有下列密勒指数的晶面和晶向:①立方晶系(421), (123), (130),[211],[311];②六方晶系(2111), (1101), (3212), [2111], [1213]。

5已知纯钛有两种同素异构体:低温稳定的密排六方结构Ti和高温稳定的体心立方结构Ti,其同素异构转变温度为8825C,计算纯钛在室温(20T)和900r 时晶体中(112)和(001)的晶面间距(已知a a20C=0.2951 nm, c?0C=0.4679 nm, 900 Ca B =0.3307nm)。

6试计算面心立方晶体的(100), (110), (111)等晶面的面间距和面致密度,并指出面间距最大的面。

7 Mn的同素异构体有一为立方结构,其晶格常数为a为0.632nm, p为7.26g/em3, r 为0.112nm,问Mn晶胞中有几个原子,其致密度为多少?8①按晶体的钢球模型,若球的直径不变,当Fe从fee转变为bee时,计算其体积膨胀多少?②经X射线衍射测定,在912C, a Fe的a=0.2892nm, 丫Fe的a=0.3633nm,计算从丫Fe转变为a-Fe时,其体积膨胀为多少?与①相比,说明其产生差异的原因。

半导体工艺与制造技术习题答案(第三章)

半导体工艺与制造技术习题答案(第三章)
4.从原子扩散的角度举例说明氧化增强扩散和氧化阻滞扩散的机理。
氧化增强扩散机理:硅氧化时,在 Si-SiO2 界面附近产生了大量的间隙 Si 原子,过剩的间 隙 Si 原子可以和替位 B 相互作用,从而使原来处于替位的 B 变为间隙 B。当间隙 B 的近邻 晶格没有空位时,间隙 B 就以间隙方式运动;如果间隙 B 的近邻晶格出现空位时,间隙 B 又可以进入空位变为替位 B。这样,杂质 B 就以替位-间隙交替的方式运动,其扩散速度比 单纯的替位式扩散要快。 氧化阻滞扩散 机理: 用锑代替硼的扩散实验表明,氧化区正下方锑的扩散结深小于保护区 下方的扩散结深,说明在氧化过程中锑的扩散被阻滞。这是因为控制锑扩散的主要机制是空
3.杂质原子的扩散方式有几种?它们各自发生的条件是什么?
答:杂质原子的扩散方式主要有替位式和间隙式两大类。其中替位式分为交换式和空位式。 交换式是由于相邻两原子有足够高的能量,互相交换位置;空位式是由于有晶格空位,相邻 原子能够移动过来。间隙式分为挤出机制和 Frank-Turnbull 机制,挤出机制中,杂质原子踢 出晶格位置上的原子,进入晶格位置;Frank-Turnbull 机制中,杂质原子以间隙的方式进行 扩散运动,遇到空位可被俘获,成为替位杂质。
菲克第二定律表达式为:
针对不同边界条件求出该方程的解,可得出杂质浓度 C 的分布,即 C 与 x,t 的关系。
6.分别写出恒定表面源扩散和有限表面源扩散的边界条件、初始条件、扩散杂质 的分布函数,简述这两种扩散的特点。
答:(1)恒定表面源扩散 边界条件: 初始条件: 扩散杂质的分布函数,服从余误差分布
特点: 杂质分布形式:表面杂质浓度 Cs;时间、温度与扩进杂质总量; 结深:温度、时间与结深; 杂质浓度梯度:Cs 越大或 D 越小的杂质,扩散后的浓度梯度将越大。

第7章 化学品泄露与扩散模型 - 2

第7章 化学品泄露与扩散模型 - 2

100
向运动较小。
0
图7-9 昼间和夜间空气温度随高度的变化,
-1
1
3
5
7
9
11
温度梯度影响空气的垂直运动
温度 摄氏度
7. 3 扩散方式及扩散模型
7.3.1 扩散方式及其影响因素 稳定度划分:不稳定、中性和稳定 划分标准:对地面加热速度与地面散热速度相对快慢 (1)加热速度>地面散热速度 地面附近的空气温度比高处的空气温度高,地表附近空气的密度小,上层空 气密度大,密度小的空气在这种浮力作用下上升,导致大气不稳定。[晴天上 午9、10点后,肉眼会观测到地表升腾;春秋早晨水雾消散]。F浮>F重 (2)加热速度=散热速度。热量对大气扰动很小,但很难长久保持。F浮=F重 (3)加热速度<散热速度。地面附近的温度比高处空气的温度低,地表附近 空气密度大于高处空气的密度。F浮<F重。重力影响抑制了大气机械湍流。
• 求解液体蒸发比例,有:
fv mv / m 1 exp Cp (T0 Tb ) / Hv
(7-60) (7-61)
7.2.3 液体闪蒸
【例7-6】闪蒸计算 • 1 kg饱和水储存在温度为177°C的容器中,容器破裂,压力下降到
1atm,计算水的蒸发比例。 • 解:
• 对于100◦C下的液体水: Cp=4.2 kJ/(kg·◦C ); △Hv=2252.2 kJ/kg
预测的Ma1 式子左边的值
0.20 -8.48
0.25 -0.007
• 根据最近一次预测的Ma1值计算结果接近于零,因此由式(728):
7.2.2 气体或蒸气泄露
• 由式(7-35)和式(7-36)得:
7.2.2 气体或蒸气泄露
• 为确保是塞流,管道出口处的压力必须小于340kPa,由式(7-38) 计算单位面积质量流量:

材料科学基础习题库第章扩散

材料科学基础习题库第章扩散

第四章--扩散1.在恒定源条件下820℃时,钢经1小时的渗碳,可得到一定厚度的外表渗碳层,假设在同样条件下.要得到两倍厚度的渗碳层需要几个小时?2.在不稳定扩散条件下800℃时,在钢中渗碳100分钟可得到合适厚度的渗碳层,假设在1000℃时要得到同样厚度的渗碳层,需要多少时间〔D0=2.4×10-12m2/sec:D1000℃=3×10-11m2/sec〕? 4.在制造硅半导体器体中,常使硼扩散到硅单品中,假设在1600K 温度下.保持硼在硅单品外表的浓度恒定(恒定源半无限扩散),要求距外表10-3cm深度处硼的浓度是外表浓度的一半,问需要多长时间〔已知D1600℃=8×10-12cm2/sec;当5.02=Dtxerfc时,5.02≈Dtx〕?5.Zn2+在ZnS中扩散时,563℃时的扩散系数为3×10-14cm2/sec;450℃时的扩散系数为1.0×10-14cm2/sec,求:1〕扩散的活化能和D0;2〕750℃时的扩散系数。

6.实验册的不同温度下碳在钛中的扩散系数分别为2×10-9cm2/s(736℃)、5×10-9cm2/s(782℃)、1.3×10-8cm2/s(838℃)。

a)请判断该实验结果是否符合)exp(0RTGDD∆-=,b)请计算扩散活化能〔J/mol℃〕,并求出在500℃时的扩散系数。

7.在某种材料中,某种粒子的晶界扩散系数与体积扩散系数分别为Dgb=2.00×10-10exp 〔-19100/T 〕和Dv=1.00×10-4exp(-38200/T),是求晶界扩散系数和温度扩散系数分别在什么温度范围内占优势?8. 能否说扩散定律实际上只要一个,而不是两个?9. 要想在800℃下使通过α-Fe 箔的氢气通气量为2×10-8mol/(m 2·s),铁箔两侧氢浓度分别为3×10-6mol/m 3和8×10-8 mol/m 3,假设D=2.2×10-6m 2/s,试确定:〔1〕 所需浓度梯度;〔2〕 所需铁箔厚度。

多孔介质扩散培训资料

多孔介质扩散培训资料
第十九页,共21页。
多孔介质中的微孔(wēi kǒnɡ)扩散
M-S微孔扩散系数与温度(wēndù)满足:阿 赫尼斯(Ar-rhenius)关系式。 以沸石为例介绍M-S 微孔扩散系的影响因 素及计算方法。
第二十页,共21页。
Thank you for your attention!
第二十一页,共21页。
组分的表面化学位
第十六页,共21页。
多孔介质(jièzhì)中的微孔扩散
概念模型的建立(jiànlì):
假设存在N个吸附的分 子组成沿分子沿表面扩 散,分子从一个吸附位 跳跃到另一个吸附位, 我们可以将空的吸附位 看成是第N+1个虚拟 (xūnǐ)组分。
第十七页,共21页。
多孔介质中的微孔(wēi kǒnɡ)扩散
Stefan扩散方程。
把孔壁考虑成空间分布 均匀的巨大(jùdà)分子 ,(尘 dust),这些 分子被当作混合物中的 一个虚拟组分。
第九页,共21页。
尘气模型(móxíng)(The dust gas model)
用M-S方程描述尘气模型时,需要(xūyào)作以前的假设: (a)“尘”浓度C`n+1是空间均匀的; (b)“尘”是不可移动的,即N`n+1=0; (c)“尘”的分子量M`n+1`→∞。 对于理想体系,无外场力作用下,前N个组分的M-S方
第五页,共21页。
Knudsen 扩 散
d
λ>=10d
λ
分子平均自由程远大于分子孔径(kǒngjìng)时,分 子与壁面的相互碰撞变得重要,这种机理占主导 地位。
第六页,共21页。
过渡区扩散
d~λ
d
λ
孔道直径(zhíjìng)与分子平自由程相 当,分子与分子之间的碰撞及分子与 壁面的碰撞等同重要
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Qm qs A H y
3-71
式中Qm——质量沸腾速率,kg/s; • qg-——地面向液池的热量传递,由式(370)确定 • A———液池面积,m2; • ΔHv————液池中液体的汽化热,J/kg。
无锡海力士气体泄漏
• 1984年,印度博帕尔市(Bhopal)美国联合 碳化物(Union Carbide)属下的农药厂发生 了严重的毒气泄漏事故,一夜之间有40多 吨异氰酸甲酯溢出,造成20000多人丧 生,这是迄今为止世界上发生的最惨重的 化学工业事故。
容器内流速忽略, 不考虑摩擦损失和 液位变化
考虑到因惯性引起的截面收缩及摩擦引起的速度减小,引入孔流系数C0。 C0=实际流量/理论流量
C0约为1
薄壁小孔C0约0.61 厚壁小孔或孔外伸有一段短 管C0约0.81
通常情况下C0难以求取,为保持足够的安全余量,可取1.
• 流出系数Co为: • ①对于锋利的小孔和雷诺数大于30 000, Co近似取0.61; • ②对于圆滑的喷嘴,流出系数可近似取l; ③对于与容器连接的短管(即长度与直径 之比小于3),流出系数近似取0. 81; • ④当流出系数不知道或不能确定时,取1.0 以使计算结果最大化。
经常用水作为参照物质,其传质系数为0. 83 cm/s。
• 对于液池中的液体沸腾,沸腾速率受周围环境与 池中液体间的热量传递的限制,沸腾初始阶段, 通常由来自地面的热量传递控制,来自地面的热 量传递,由如下简单的一维热量传递方程模拟:
• • • • • • • •
qs
ks (Tg T ) (as t )
• 如图3~2所示 为物料的物理 状态是怎样影 响泄漏过程 的。对于存储 于储罐内的气 体或蒸气,裂 缝导致气体或 蒸气泄漏出 来,对于液 体,储罐内液 面以下的裂缝 导致液体泄漏 出来。
• 如果液体存储压力大于其大气环境下沸点所 对应的压力,那么液面以下的裂缝,将导致 泄漏的液体的一部分闪蒸为蒸气,由于液体 的闪蒸,可能会形成小液滴或雾滴,并可能 随风而扩散开来。液面以上的蒸气空间的裂 缝能够导致蒸气流,或气液两相流的泄漏, 这主要取决于物质的物理特性。
(2)大气稳定度。大气稳定度与空气的垂直 混合有关。白天,空气温速下降,促使了 • 空气的垂直运动;夜 晚,空气温度随高度 的增加下 • 降不多,导致较少的 垂直运动。白天和夜 晚的温度变化如图3-9 所示,有时也会发生 相反的现象。相反情 况下,温度随着高度 的增加而增加,导致 最低限度的垂直运
• 对于自由扩散泄漏,假设可以忽略潜能的变化, 没有轴功,则质量流量的表达式为:
Qm C0 Ap0 2M p 2 / p ( 1) / ( ) ( ) RgT0 1 p0 p0
• • p0——容器内介质压力(绝压),Pa; • p——环境压力(下游压力),Pa; • γ——气体的绝热指数(热容比)
3-23
(势能变化忽略)
定义孔流系数: 泄漏后密度发生变化 可压缩流体

• 对于许多安全性研究,都需要通过小孔流出蒸气 的最大流量。引起最大流速的压力比为:

pckoked 2 /( 1) ( ) p0 1
3-24
• 塞压pchoked是导致孔洞或管道流动流量最大 的下游最大压力。当下游压为小于pchoked 时,①在绝大多数情况下,在洞口处流体的 流速是声速;②通过降低下游压力,不能进 一步增加其流速及质量流量。这种类型的流 动称为塞流、临界流或声速流。
sat
3-62
式中A----释放面积,m2; Co-----流出系数,无量纲; Pf-----液体密度,kg/m3; p-储罐内压力,Pa; psat——闪蒸液体处于周围温度情况下的饱 和蒸气压,Pa。

对储存在其饱和蒸气压下的液体,p一 psat,式(假设动能占支配地位, 忽略潜能的影响,那么质量流量为:

如果泄漏的流程长度大于10 cm(通过 管道或厚壁容器),那么就能达到平衡闪蒸 条件,且流动是塞流,可假设塞压与闪蒸液 体的饱和蒸气压相等,结果仅适用于储存在 高于其饱和蒸气压环境下的液体,在此假设 下,质量流量由下式给出:
• • • • • •
Qm AC 0 2 f ( p p )
• 二、通过管道泄漏 • 气体经管道流动的模型有绝热法和等湿法。 绝热情形适用于气体快速流经绝热管道,等 温法适用于气体以恒定不变的温度流经非绝 热管道,真实气体流动介于绝热和等温之 间。
第四节液体闪蒸

闪蒸就是高压的饱和液体进入比较低压 的容器中后由于压力的突然降低使这些饱和 液体变成一部分的容器压力下的饱和蒸气和 饱和液。 • 存储温度高于其通常沸点温度的受压液 体,由于闪蒸会存在很多问题,如果储罐、 管道或其他盛装设备出现孔洞,部分液体会 闪蒸为蒸气,有时会发生爆炸。
• 对于锋利的孔,雷诺数大于30 000时,流出 系数Co取常数0.61,然而,对于塞流,流出 系数随下游压力的下降而增加。对这些流动 和C0不确定的情况,推荐使用保守值1.0。 • 各种气体的热容比y的值在表3-3中给出。
• 例3-2 装有氮气的储罐上有一个2.54 mm 的小孔,储罐内的压力为1 378 kPa,温 度为26.7℃,计算通过该孔的液体质量流 量。
Qm

RgTL
3-65


式中
psat——液体温度下纯液体的饱和蒸气压,
p-位于液体上方静止空气中的蒸气分压,
Pa
Pa
• • • Qm——蒸发速率,kg/s; M一易挥发物质的相对分子质量; K-面积A的传质系数,m/S;
• • • •
对大多数惰况,psat 》p,式(3-65)可简化 为:
用式(3-67)确定所研究物质的传质系数K 与某种参考物质的传质系数Ko的比值:
第三章 泄漏与扩散
本章学习目标
• 1.了解化工企业中的常见泄漏源。 • 2.熟悉液体、气体和蒸气泄漏的泄漏速率计 算方法。 • 3.掌握液体闪蒸率及两相泄漏速率的计算方 法。 • 4.掌握液体蒸发(沸腾)速率的计算方法。 • 5.熟悉扩散模式及扩散影响因素。 • 6.熟悉高斯模型及扩散系数的计算方法。 • 7.了解重气云扩散的计算方法。 • 8.了解释放动量和浮力对扩散行为的影响。
例3-1
• 下午1点,工厂的操作人员注意到输送苯的管道
中的压力降低了。压力被立即回复为690kPa。下 午2:30,管道上发现了一个直径为6.35mm的小孔
并立即进行了修补。
• 请估算流出来的苯的总质量。苯的比重为0.8794。
例3-1
• 解:下午1点观察到的压力降低是管道上出现 小孔的象征。假设小孔在下午 1点到2:30之间, 即90分钟内,一直存在。小孔的面积为
1/ 2
3-70
式中qs——来自地面的热通量,W/II12; ks——土壤的热导率,W/(m.k); Tg------土壤温度,K; T-------液池温度,K; as——土壤的热扩散率,1112/s; t--------溢出后的时间,s。
• 假设所有的热量都用于液体的沸腾,则沸 腾速率的计算如下: • • •
第一节 常见的泄漏源
• 泄漏机理可分为大面积泄漏和小孔泄漏。 • 大面积泄漏是指在短时间内有大量的 物料泄漏出来,储罐的超压爆炸就属于大面 积泄漏。 • 小孔泄漏是指物料通过小孔以非常慢 的速率持续泄漏,上游的条件并不因此而立 即受到影响,故通常假设上游压力不变。
• 如图3-1所示 为化工厂中常 见的小孔泄漏 的情况。对于 这些泄漏,物 质从储罐和管 道上的孔洞和 裂纹以及法 兰、阀门和泵 体的裂缝或严 重破坏、断裂 的管道中泄漏 出来。

大气稳定度划分三种稳定类型:不稳 定、中性和稳定。对于不稳定的大气情 况,太阳对地面的加热要比热量散失得 快,因此,地面附近的空气温度比高处的 空气温度高,这在上午的早些时候可能会 被观测到,这导致了大气不稳定,因为较 低密度的空气位于较高密度空气的下面, 这种浮力的影响增强了大气的机械湍流。 对于中性稳定度,地面上方的空气暖和, 风速增加,减少了输入的太阳能或日光照 射的影响,
3.14 6.3510 5 3 . 17 10 A 4 4 苯的密度为: 0.8794 1000 879.4
2
d

3 2

Qm AC 0 2 Pg
3.17105 0.61 2 879.4 1 6.9 105
674kg / s
二、通过储罐上的孔洞泄漏

气体和蒸气的泄漏,可分为滞流和自由 扩散泄漏。 • 对滞流泄漏,气体通过孔流出,摩擦损 失很大,很少一部分来自气体压力的内能会 转化为动能, • 对自由扩散泄漏,大多数压力能转化为 动能,过程通常假设为等熵。滞流泄漏的源 模型,需要有关孔洞物理结构的详细信息, 在这里不予考虑,自由扩散泄漏源模型仅仅 需要孔洞直径。
• 对于中性稳定度,地面上方的空气暖和,风 速增加,减少了输入的太阳能或日光照射的 影响,空气的温度差不影响大气的机械湍 流。对于稳定的大气情况,太阳加热地面的 速度没有地面的冷却速度快,因此地面附近 的温度比高处空气的温度低,这种情况是稳 定的,因为较高密度的空气位于较低密度空 气的下面,浮力的影响抑制了机械湍流。
• 对于空气泄漏到大气环境(pchoked =101.3 kPa),如 果上游压力比101. 3/0. 528=191.9 kPa大,则通 过孔洞时流动将被遏止,流量达到最大化。在过 程工业中,产生塞流的情况很常见。 • 把式(3-24)代入式(3-23),可确定最大流量: • M 2 ( 1) /( 1) • (Qm )choked C0 Ap0 RgT0 ( 1) (3-25) • 式中M -----泄漏气体或蒸气的相对分子质量; • To ------漏源的温度,k; • Rg——理想气体常数。
• • • • • A-------小孔面积 • T-------初始温度 • Cp------液体的热容 • ΔHv------液体的蒸发热 • vfg-----液体的比容,m3/kg. • 在闪蒸蒸气喷射时会形成一些小液滴,这些 小液滴很容易就被风带走,离开泄漏发生
相关文档
最新文档