燃煤电厂汞标准
燃煤电厂汞污染排放监测与控制技术的发展_钟犁

中国电力报/2014年/10月/27日/第006版发电论坛燃煤电厂汞污染排放监测与控制技术的发展华能清洁能源研究院高级工程师钟犁汞是一种剧毒性物质,燃煤烟气中的汞浓度虽然很低,但总量巨大。
据联合国环境规划署2010年的数据,全球人为汞排放总量为1960吨,其中燃煤约占人为总排量的25%。
我国能源总量中煤炭占比近70%,燃煤是我国首要汞排放源,约占1/3。
《火电厂大气污染物排放标准》也规定燃煤电厂汞污染排放标准为30微克/立方米。
掌握燃煤电厂的汞污染控制技术,烟气中汞浓度的准确监测是基础。
然而燃煤电厂烟气中的汞浓度很低,约1~20微克/立方米,与常规污染物一般几十到几百毫克/立方米的排放浓度相比,仅约为后者的万分之一。
因此,燃煤烟气中汞浓度的准确监测难度非常大。
燃煤电厂烟气中的汞有三种形态:固态颗粒汞、气态二价汞、气态元素汞。
由于电厂采用的除尘器具有很高的除尘效率,使得颗粒汞的比例极低,气态二价汞和气态元素汞是烟气中汞的主要形式。
目前国际上采用的燃煤电厂大气汞排放监测方法有三种,分别是安大略法、在线连续监测法和吸附管离线采样法。
综合比较,吸附管离线采样法是一种能够以较低成本,实现对燃煤电厂烟气中汞浓度准确监测的方法,而且操作简单方便,适合推广。
针对此方法不适用于颗粒物浓度较高场合汞排放监测、以及不支持汞形态监测的不足,华能集团清洁能源技术研究院(华能清能院)开展了吸附管离线采样方法的拓展应用研究,结果表明利用吸附管采样法测量烟气总汞时,通过采取防尘、控温等措施,可以保证测量结果的准确性。
利用现有的烟气净化系统,可以实现一定的脱汞效果,但如果希望获得较高的脱汞效率,还需采用专用的脱汞技术。
专用脱汞技术主要包括氧化脱汞技术和吸附脱汞技术。
氧化脱汞技术是通过在煤、烟气、脱硝催化剂中加入氧化性添加剂、催化剂等措施,促使汞的氧化,从而提高脱汞效率,尤其适用于装有湿法烟气脱硫系统的电厂。
该技术具有投资运行成本较低、脱汞效率较高的特点。
燃煤电厂汞的释放研究

燃煤电厂汞的释放研究摘要本文研究了电厂中汞释放规律,常规燃煤电厂装备静电除尘器和湿式烟气脱硫系统。
在锅炉全负荷运行期间,采集了煤矿,煤矿灰,ESP(电除尘器)灰以及除尘后的颗粒进样和出样。
固体中的汞浓度在进行适当的处理和酸解以后用冷蒸汽原子吸收光谱测定法进行测量,气态汞用高锰酸钾和硫酸的混合溶液收集后通过冷蒸汽原子吸收光谱测定法进行测量,该结果用来检测:①汞浓度在发电厂中的相对分布;②用MALT-2计算模型来均衡汞的存在形式;③烟囱排放中的汞浓度。
烟道气中总的汞浓度分别是1.113,0.422 和0.712 ugm3N。
在烟囱排放中超过99.5%的汞以气态形式存在,固体颗粒形式所占的比例是极少的。
汞在ESP,FGD和烟气道中的相对分布分别是从8.3到55.2%,13.3到69.2%和12.2%到44.4%。
结果表明燃烧条件而不是煤中的汞浓度和污染控制设备的效率是煤电厂中影响汞排放的重要因素。
用MALT2程序计算的汞均衡分布情况表明用浓缩机制来解释汞的存在形式对电除尘器中汞的去除效率变化的影响是非常有必要的。
关键词燃煤电厂;释放研究;汞引言燃煤电厂的汞释放规律,对某电厂燃烧的三种形式的煤,含汞量分别为:0.0063,0.0367和0.065 mg/kg。
基于研究结果,本文进行了以下内容的测量:①物料守恒;②汞浓度在发电厂中的相对分布;③汞存在形式的平衡计算;④烟囱排放中的汞浓度。
1 实验方法1.1 取样在锅炉全负荷运行期间,我们采集了进样和出样例如煤矿,粗灰(炉渣,煤渣,空气预热器灰,省煤器灰,引风机灰),ESP(电除尘器)灰,FGD(烟气脱硫)石膏,烟道气,处理水。
1.2 测量固体中的汞浓度检测方法为对样品进行合适的预处理后用冷蒸汽原子吸收光谱测定法进行测定。
总的气态汞在非等速条件下使用高锰酸钾和硫酸的混合溶液在撞击滤尘器中收集。
收集样品中汞浓度用冷蒸汽原子吸收光谱测定法进行检测,检测之后的废液酸解[1]。
燃煤电厂煤中汞含量对烟气中汞排放水平的影响

基金项 目: 江 苏 省环 境 监 测 科 研 基 金 资 助项 目( 1 1 2 0, 1 1 2 I ] 作者简介 : 俞 美香( 1 9 6 6 ~) , 女, 研究员级 高级工 程师 , 本科
从 事 环 境 监 测技 术与 管理 工 作 。
采样 点设 在 各 电厂 脱 硫 出 口, 测 量 数 据 代 表 受 脱
对 9家电厂 的入 炉煤进 行取样 , 送 至实 验室 进
行 ( 汞) 分 析 。取 样 依 据 为 《 工业 固 体 废 物 采 样 制样 技术 规 范 》 ( H J / T 2 0—1 9 9 8 ) , 分 析 采 用 冷 原
子荧 光分 光光 度法 测定 。为获 得烟气 中 P ( 汞) , 将
国燃煤 电 厂 的 汞 排 放 量 占到 大 气 汞 排 放 总 量 的
3 3 . 6 %, 位居各行业之首 , 是继粉尘 、 S O 、 N O x之 后 的第 四大 污 染 物 。 。为 解 析 燃 煤 电 厂 入 炉煤 中 ( 汞) 及 烟气 中 P ( 汞) 的关 系 , 选取 江苏省 境 内
测试 结果见 表 1 。 2 . 1 燃煤 电厂 煤 中 ∞ ( 汞) 测试 结果 分析 江苏 省燃 煤 电 厂 的 燃 煤 来 源 主 要 有 内蒙 、 山 西、 安徽 、 山东 、 江 苏 等省 及 印尼 等 部分 国外 进 口
收 稿 日期 : 2 0 1 4— 0 5— 2 7 ; 修 订 日期 : 2 叭 4—0 6—1 8
第 6卷
第 6期
环 境 监 控 与 预 警
En v i r o n me nt a l Mo n i t o r i n g a nd Fo r e wa r n i ng
燃煤电厂汞排放测试技术

燃煤电厂烟气汞排放测试方法 2.3.3 30A法
采样探头
主控系统
美国采用Hg在线监测系统
26
燃煤电厂烟气汞排放测试方法 2.3.3 30A法
代表性检测设备系统有:IRM-915 在线式烟道气汞分析仪
27
燃煤电厂烟气汞排放测试方法
2.3.3 30A法
适用范围: 地面采样口 烟囱出口处 带有监测平台的采样口 分析对象: 烟道气中Hg2+,+ Hg0或(Hg2++ Hg0 )
8
燃煤电厂烟气汞排放测试方法
烟气汞特点及测试难点
烟气中汞的浓度很低,为微克级,甚至纳克级— —高精度
烟气中的汞以不同化学形态存在——需分形态 飞灰对汞具有氧化作用,各形态会相互转化——需
先除飞灰 烟气中的酸性气体(如HCl、SO2)会对监测系统
产生干扰——需抗干扰
9
燃煤电厂烟气汞排放测试方法
采样瓶
采样控制系统及抽气泵 15
燃煤电厂烟气汞排放测试方法 2.3.1 安大略法(OHM)
待测样品
汞分析仪器 16
燃煤电厂烟气汞排放测试方法
2.3.1 安大略法(OHM)
• 结果准确性影响因素:烟气浓度,取样操作程序及设备参 数等
取样位置的选取需特别注意烟 气温度、飞灰浓度及水分的影 响!! • 优点:比较普遍,可分形态测出汞浓度。
安装条件: 电源:220V, 1000W 压缩空气
28
燃煤电厂烟气汞排放测试方法
2.3.3 30A法
主要特点 在线监测 实时结果输出
模块化设计,拆装简易 仪器稳固耐用,可适应恶劣的野外环境 既可以在同一监测点连续监测,也可以快速安装到另一监测点 同一燃煤电厂仅需一台仪器,即可完成对全厂所有烟道气监控 环保检测部门,仅需一台仪器,即可完成辖区内的烟道气监控
燃煤电厂烟气中汞形态及含量的采样分析方法

第1 2 期
煤 气 与 热 力
质汞 停 留在烟 气 中。烟气 从炉 膛 出 口流 向烟 囱出 口
的过程中, 随着烟气流经各换热设备 , 烟气温度逐步
降低 , 烟气 中汞 的形 态 也 发 生变 化 。在 烟气 降 温 过 程中, 烟 气 中的汞 主要 以气 态 汞 ( 气态单质汞、 气 态 二价 汞 ) 及 固态 颗 粒 汞存 在 : 在低于 4 0 0 ℃ 时 烟 气 中汞 以 H g C 1 为主 , 高于 6 0 0℃ 时 以气 态 单 质 汞 为 主, 4 0 0~6 0 0 o C二者 共 存 ; 固态 颗 粒 汞 是 易 被 吸 附 在 飞灰 或残炭 表 面的那 部分 汞 , 易被 除尘器 脱除 。
瓶 吸 收气态 二价 汞 、 气 态单 质汞 。样 品经 消解后 , 由
流 量计 、 孔板 流 量计 等 组 成 。化 学 试 剂 瓶组 由 8个 装 有不 同试 剂 的吸 收瓶 组 成 , 用 于 收 集 不 同形 态 的 汞 。恒 温采 样枪 从 烟气 流 中等 速 采样 , 固态颗 粒 汞 先 由滤桶 加 热 箱 中 的 石 英 纤 维 滤 纸 ( 被 加 热 器 加 热) 捕集 , 烟 气 再 依 次 经 过 8个 试 剂 瓶 。气 态 二 价 汞 由 3个装 有 K C 1 水溶 液 ( 浓度 为 1 m o l / L ) 的试 剂 瓶 收集 , 气 态单 质 汞 由 1 个装有 H N O 体 积 分 数 为 0 . 0 5 、 H O : 体 积分 数 为 0 . 1的水 溶 液 的试剂 瓶 与 3 个 装有 K Mn O 质量 浓度 为 4 0 L 、 H s O 体 积分 数 为0 . 1的水溶 液 的试剂 瓶 收集 , 最 后 由装 有 干燥 剂
200MW燃煤电厂汞分布特征

200MW燃煤电厂汞分布特征1引言我国已成为世界最大的煤炭消费国,2012年煤炭占我国一次能源消费总量的68.5%。
煤中汞的平均含量在0.15-0.22μg/g,利用储量权值方法计算得到中国煤碳中汞的平均值为0.188μg/g。
煤炭燃烧对我国大气汞排放贡献最大,根据田贺忠等的研究,2007年我国大气中由于燃煤排放的汞为306吨。
燃煤电厂是最大的煤炭消耗行业,目前消费了50%左右的煤炭。
根据2014年国家发改委、环保部以及国家能源局下发了关于《煤电节能减排升级与改造行动计划(2014-2020年)》,到2020年在力争使煤炭占一次能源消费比重下降到62%以内的前提下,电煤占煤炭消费比重要提高到60%以上。
如果燃煤电厂不采取技术措施,汞排放及其污染将是相当严重的问题。
汞随着烟气排放到大气中是燃煤电厂汞的主要排放方式。
2011年中国颁布的《火电厂大气污染物排放标准》(GB 13223-2011)中也汞排放提出了明确的限制要求,其中燃煤锅炉汞及其化合物的排放限值为0.03mg/m3。
对汞的总排放的估算基于我国煤中汞含量。
煤炭在燃煤电厂利用过程中,电厂的烟气污染物控制设施对控制汞排放具有一定的作用,例如,催化脱硝技术能够促进气相元素汞(Hg0)向二价汞(Hg2+)的转化,静电除尘器能够捕获部分颗粒汞,湿法脱硫能够吸收可溶的二价汞。
具体到实际的电厂,不同电厂由于采用的燃烧污染物控制技术不同,汞在电厂中的分布和排放具有很大的区别。
因此针对具体的电厂开展汞污染监测具有现实意义。
2取样及测试方法本文针对某200MW燃煤电厂开展了汞监测,该机组锅炉为煤粉炉,污染物脱除装置包括静电除尘器(ESP)及石灰石-石膏湿法烟气脱硫塔(WFGD)。
该机组气体采样利用美国EPA Method 30B方法通过Apex Instruments采样仪采样,固体、液体通过手动采样取得。
所得样品在实验室通过Lumex915汞分析仪分析。
在燃煤电厂锅炉稳定负荷运行条件下,对现场进行固体样品采集,固态样品采样包括煤粉、底渣、除尘器飞灰以及石灰石和脱硫产物石膏,取样点布置如图1所示。
燃煤电厂汞测定和干法烟气脱硫脱汞技术

4结论
对固体样品和烟气中汞的采样和分析方法大都采用美国ASTM标准方法。 我国对燃煤电厂锅炉烟气中汞排放控制技术的研究才刚刚起步,活性炭喷射吸咐汞的 技术去除汞的效率高,但投资及运行费用高,很难实现二I:业化。目前国内外主要的研究方 向是采用现有的污染物控制技术实现对汞蒸汽的去除。 研究吸收剂的性质和烟气条件对脱汞效率影响的规律,开发高效烟气脱汞技术装置; 研究载汞吸收剂的环境稳定性,为脱汞吸收剂的资源化利用提供理论依据,是燃煤汞排放 控制技术二[业化的重要研究方向。
Appendix
K(原Method 324)的采
样原理对烟气中的总汞进行采样。图7所示的是汞分析仪,采用原子吸收的原理对固体、 气体样品中的汞进行测定。
表5各成分中汞的含量分析结果
通过对220 t/h锅炉干法烟气脱硫除尘系统对烟气中的汞去除效果进行分析,锅炉负荷 为188 t/h,出口的烟气温度为139.9℃,烟气量为234000—236000 Nm3/h,脱硫除尘后烟气 的温度为76—79℃。锅炉采用混煤燃烧形式,煤种1汞的含量为0.06 mg/kg,煤种2汞的 含量为0.12 mg/kg。表5是各种固体成分分析以及烟气中汞浓度测定结果,分析结果表明, 采用该干法烟气脱硫技术可去除烟气中98.6%左右的汞。
—426_一
p
任德贻,许德伟等.煤中汞及其对环境的影响.环境科学进展,1999.7(3)1:100—1
04
H陋陋
1{J
彭苏萍,陈昌和.燃煤飞灰对锅炉烟道气中Hgo的吸附特性.环境科学.2003.24(6):59—62 郝吉明,吴烨等.中国燃煤汞排放清单的初步建立.环境科学2005 26(2):34—39
燃煤电厂汞测定和干法烟气脱硫脱汞技术
张
凡 王 凡
煤化工重金属对人体的危害标准

煤化工重金属对人体的危害标准
煤化工生产过程中会产生大量的重金属污染物,例如铅、镉、汞等,这些重金属对人体健康产生非常严重的危害。
因此,国家制定了煤化工重金属污染物排放标准,以保障公众的健康安全。
根据《煤化工污染物排放标准》(GB31571-2015),在煤化工生产过程中排放的铅、镉、汞等重金属污染物应该控制在一定的范围内。
其中,铅的排放标准为每立方米烟气中不得超过0.5毫克,镉的排放标准为每立方米烟气中不得超过0.05毫克,汞的排放标准为每立方
米烟气中不得超过0.05毫克。
除了控制排放,我们还需要注意煤化工重金属对人体健康的影响。
长期暴露在重金属污染环境中,会导致各种健康问题,例如铅中毒、镉中毒等。
这些问题可能会引起贫血、神经系统损伤、免疫系统障碍等疾病,甚至会对生殖系统和智力发育造成影响。
因此,我们应该加强对煤化工重金属污染的监管和控制,减少其对人体健康的影响。
同时,公众也应该增强自我保护意识,减少接触重金属污染物的机会,保障自身健康和安全。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
POWER PLANT MERCURY AND AIR TOXICS STANDARDSOverview of Proposed Rule and Impacts发电厂汞和大气有毒物排放标准提议法案及影响综述ACTIONOn March 16, 2011, the Environmental Protection Agency (EPA) proposed the first national standard to reduce mercury and other toxic air pollution from coal and oil-fired power plants. This document provides an overview of the benefits of the proposed clean air standards and highlights key facts and impacts associated with them.情景2011年3月16日美国环保部提出了第一个燃煤燃油电厂汞及其他有毒大气污染物排放控制国家标准。
本本件提出了该大气清洁法提案的益处和他们相关的突出关键事实及与影响。
BACKGROUNDThis proposed rule is developed under section 112 of the Clean Air Act (CAA), provisions that set standards to reduce air pollution from coal- and oil-fired power plants.Most notably, this proposal sets technology-based emissions limitation standards for mercury and other toxic air pollutants, reflecting levels achieved by the best-performing sources currently in operation.Existing sources have up to four years to comply with these standards; all existing sources must comply in three years, but individual sources can obtain an additional year iftechnology cannot otherwise be installed in time.The regulations issued today are under a Consent Decree of the D.C. Court of Appeals requiring EPA to issue a proposal by this date, and a final rule in November 2011.POWER PLANT EMISSIONS.There are about 1,350 coal and oil-fired units at 525 power plants that emit harmfulpollutants including mercury, arsenic, other toxic metals, acid gases, and organic air toxics including dioxin..In 1990, three industry sectors made up approximately two-thirds of total U.S. mercury emissions: medical waste incinerators, municipal waste combustors, and power plants. Twoof those sectors are now subject to standards and have reduced their mercury emissions bymore than 95 percent. In addition, mercury standards for other industries, such as cement production and steel manufacturing, have reduced mercury emissions from a wide range of sources..Power plants are the dominant emitters of mercury (50 percent), acid gases (over 50 percent)and many toxic metals (over 25 percent) in the United States. Despite the availability ofproven control technologies, and the more than 20 years since the 1990 CAA Amendments passed, there are still no existing federal standards that require power plants to limit their emissions of toxic air pollutants like mercury, arsenic and metals.These standards are long overdue. In 2000, after years of study, EPA issued a scientific and lega l determination that it was ―appropriate and necessary‖ to control mercury emissions from power plants. The prior administration finalized a rule to cut mercury pollution from power plants but the D.C. Circuit struck the rule down as illegal and required EPA to develop standards that follow the law and the science in order to protect human health and the environment.1.While newer, and a significant percentage of older, power plants already control their emissions of mercury, heavy metals, and acid gases, about half of the current electric generating units (EGUs) still do not have advanced pollution control equipment.EMISSION REDUCTIONS RESULTING FROM COMPLIANCE WITH THE PROPOSED STANDARDSThe proposed rule establishes emission standards for mercury, acid gases (hydrochloric acid, or HCl, as a surrogate), and non-mercury metallic toxic pollutants (total particulate matter (PM) as a surrogate with alternative surrogate of total metal air toxics), and each year would:oPrevent 91 percent of the mercury in coal burned in power plants from being emitted tothe air;oReduce acid gas emissions from power plans by 91 percent; andoReduce sulfur dioxide (SO2) emissions from power plants by 55 percent.HEALTH BENEFITS OF THE PROPOSED STANDARDS.By updating safeguards under the Clean Air Act to reduce mercury, acid gases, and otherlife-threatening pollution in our air, EPA is acting to protect our health and our families from the illnesses—and premature deaths—linked to these pollutants..Uncontrolled releases of toxic air pollutants like mercury from power plants damage children’s developing brains, reducing their IQ and their ability to learn..They cause a range of dangerous health problems in adults as well, including cancer, heart disease and premature death. Mercury and many of the other air toxics also pollute our nation’s lakes, streams, and rivers. Fish advisories have been issued across the US as a resultof mercury contamination..The proposed standards will have direct benefits to neighborhoods near power plants as well as neighborhoods hundreds of miles away from the nearest power plant..Each year the standards will prevent serious illnesses and health problems for thousands of Americans, including: up to 17,000 premature deaths, 11,000 heart attacks, 120,000 asthma attacks, 12,200 hospital and emergency room visits, 4,500 cases of chronic bronchitis, and5.1 million restricted activity days..The value of the air quality improvements totals $59 billion to $140 billion each year. That means that for every dollar spent to reduce this pollution, Americans get $5-13 in healthbenefits..The benefits are widely distributed and are especially important to minority and low income populations who are disproportionately impacted by asthma and other debilitating health conditions.INVESTMENTS THAT KEEP PEOPLE WORKING AND CREATE JOBS.Each year, 850,000 missed work or ―sick‖ days will be avoided, enhancing productivity, lowering health care costs for American families..Money spent on pollution control at power plants creates high-quality American jobs in manufacturing steel, cement and other materials needed to build pollution control equipment, in creating and assembling pollution control equipment, in installing the equipment at power plants, and operating and maintaining the equipment once it is installed..EPA estimates this proposed rule will provide employment for thousands by supporting 31,000 short-term construction jobs and 9,000 long-term utility jobs.2.The standards will maintain fuel diversity:oCoal-fired generation becomes much cleaner with little effect on its role as the major generator of U.S. electric power.oEPA’s modeling shows that plants totaling less than 10 GW of the nation’s coal-fired capacity (not generation) are expected to retire by 2015 rather than invest in control technologies, which represents about a 2 percent decrease in coal-fired generation.The plants that are expected to retire are primarily the smaller, less efficient andhigher polluting units that are not used much.REGULATORY CERTAINTY AND A LEVEL PLAYING FIELD FOR CLEANER ENERGY SOURCES.These updated and long overdue Clean Air Act standards will provide regulatory certainty, opening up opportunities for investment..These proposed standards will result in the upgrading of existing controls (in particular PM controls like electrostatic precipitators or ESPs) and the installation of good engineering controls (including dry sorbent injection or DSI) – all of which is achievable by the 2015 compliance timeline..History has shown that power plants can install controls well within the timeframes required by the Clean Air Act. From 2001 to 2003, 150 GW of new generation was built; from 2008 to 2010, about 20 GW of scrubbers was installed each year. The proposed standards will level the playing field so that all power plants will have to limit their emissions of mercury as plants in some states already do. Installing these widely-available controls will help modernize the aging fleet of uncontrolled power plants, most of which are over 30 years old and many of which are over 50 years old..EPA modeling indicates that these proposed standards will result in relatively small changes in the average retail price of electricity, primarily due to increased demand for natural gas- keeping electricity prices below 1990 levels..This translates into a 1.3 percent increase in residential natural gas prices and a consumer electricity price increase of approximately $3-4 per month..In addition to the proposed standards for toxic air pollutants, EGUs are the subject of other rulemakings, addressing the interstate transport of emissions contributing to ozone and particulate matter air quality problems, coal combustion wastes, cooling water control requirements and greenhouse gas emissions. To the full extent that the agency’s legal obligations permit, EPA plans to take into account the combined effects of these upcomingactions on the industry in its decision-making process, and to approach these rulemakings in ways that allow the industry to make practical, integrated compliance decisions that minimize costs while still achieving the fundamentally important public health and environmental benefits intended under the Clean Air Act.COMPLIANCE PLANNING, SYSTEM RELIABILITY AND LOW COST ELECTRICITY.EPA, FERC and DOE will work with entities whose responsibility is to ensure an affordable, reliable supply of electricity, including State Utility Commissions, Regional Transmission Organizations (RTOs), the National Electric Reliability Council (NERC) to share information and encourage them to begin planning for compliance and reliability as early as possible.3.Early planning and actions to spur or support early planning by power companies, utility regulators and system operators can do much to ensure orderly, affordable compliance with the standards..EPA modeling indicates that including energy efficiency investments that achieve moderate levels of energy demand reduction in compliance strategies will:oCut substantially total emissions control costs for the power sector;oLower the incremental cost of the standards by more than half in 2020;oLower consumer bills; andoReduce emissions of air pollutants beyond what the standards would achieve,especially on high electricity demand days when air quality is most threatened.KEY FEATURES OF THE PROPOSED RULE.Emissions standards set under the toxics program are federal air pollution limits that individual facilities must meet by a set date. EPA must set emission standards for existing sources in the category that are at least as stringent as the emission reductions achieved by the average of the top 12 percent best controlled sources. EPA must establish standards for all listed hazardous air pollutants (HAPs) emitted from each industry category..The proposed rule sets standards – based on the best-performing controls currently in operation – for all HAPs emitted by coal and oil-fired EGUs with a capacity of 25 megawatts or greater. All regulated EGUs are considered major. EPA did not identify any size, design or engineering distinction between major and area sources in this category.EPA is proposing to subcategorize:oA certain class of coal-fired boilers located at mine mouths that are generallydesigned to burn lignite coal. The mercury limit in this subcategory is based on“beyond the floor‖ emission reduction op portunities because EPA analysis shows that better controls are widely available and affordable.oSolid and liquid oil units because even though petroleum coke is derived from oil, itis a solid fuel and cannot be burned in a liquid oil-fired boiler..EPA is not proposing less-stringent alternative standards (called ―health-based emissions limits‖ or HBEL), which the Administrator has the discretion to consider if she determines that an HBEL will mandate reductions sufficient to protect individuals most exposed to toxicpollutants. The many HAPs EGUs emit in high amounts negate the basis for adopting this less stringent approach..EPA is not proposing a separate subcategory for coal refuse units (aka ―waste coal‖) because our analysis did not indicate that such subcategorization was necessary or warranted..EPA is providing flexibility by allowing facility-wide averaging for all HAPs emissions from existing units within the same subcategory. This will allow equivalent, less costly way of achieving emissions standards..The proposed rule takes advantage of state-of-the-art high quality monitoring:oCEMs for numeric standards (mercury, HCl or SO2, and PM)oEmissions testing, parameter monitoring, and fuel analyses allowed for metals andacid gases; sorbant traps allowed for mercuryoThirty day averaging period to accommodates process variability and, coupled with CEMS, facilitates compliance.The proposed standards will establish achievable numerical emission limits for mercury, PM (as the surrogate for non-mercury metals, with options for measuring the metals) and4hydrogen chloride (as the surrogate for acid gases with an option for measuring SO2, or the individual acid gases).oRecords of work practice standards are proposed for organic HAP emissions to ensure proper combustion which prevents formation of organic HAPs, and in recognition of current low levels of emissions near detection limits.5。