煤的元素分析

合集下载

煤的元素分析

煤的元素分析

煤的元素分析2006-10-26 23:26:28 浏览11928次煤的元素分析煤的元素组成,是研究煤的变质程度,计算煤的发热量,估算煤的干馏产物的重要指标,也是工业中以煤作燃料时进行热量计算的基础。

煤中除无机矿物质和水分以外,其余都是有机质。

由于组成煤的基本结构单元是以碳为骨架得多聚芳香环系统,在芳香环周围有碳、氢、氧及少量的氮和硫等原子组成的侧链和官能团。

如羧基(-COOH)、羟基(-OH)和甲氧基(-OCH3)。

说明了煤中有机质主要由碳、氢、氧和氮、硫等元素组成。

煤的变质程度不同,其结构单元不同,元素组成也不同。

碳含量随变质程度的增加而增加,氢、氧含量随变质程度的增加而减少,氮、硫与变质程度则无关系(但硫含量与成煤的古地质环境和条件有关)。

见表30-11。

表30-11 不同变质程度煤的碳、氢、氧、氮、硫含量编号煤的类别 Mad(%) Ad(%) Vdaf(%) Cdaf(%) Hdaf(%) Ndaf(%) Sdaf(%) Odaf(%)1 褐煤 7.24 3.50 42.38 72.23 5.55 2.05 20.172 长焰煤 5.54 1.94 41.89 79.23 5.42 0.93 0.35 14.173 气煤 3.28 1.63 40.49 81.57 5.78 1.96 0.66 10.034 肥煤 1.15 1.29 32.69 88.04 5.52 1.80 0.42 4.225 焦煤 0.95 0.92 21.91 89.26 4.92 1.33 1.51 2.986 瘦煤 1.33 1.06 17.88 90.73 4.82 1.69 0.38 2.387 贫煤 1.08 2.81 13.49 91.31 4.37 1.52 0.78 2.028 无烟煤 4.70 3.18 4.66 96.14 2.71[煤质分析化验常用的符号和基准]1、煤质分析化验项目名称的符号,以国际上广泛采用的符号表示。

煤的元素分析汇总

煤的元素分析汇总

煤的元素分析煤的元素分析包括煤中碳、氢、氧、氮和硫的测定。

由于我国煤质分析标准将硫单独列为一项,所以,这里讲的元素分析,是指煤中碳、氢、氮的测定和氧的计算。

第一节煤中碳、氢、氮和氧的存在形态和测定意义煤由有机物和无机物两部分组成。

无机物主要是矿物质和水;有机物主要由碳、氢、氧、氮、硫等元素组成。

其中碳、氢、氧的总和占有机质的95%以上,其中碳元素占60%~98%,氢元素占0.8~6.6%,氧占1%~30%。

氮含量变化范围不大,一般在0.3~3%之间,而硫元素大约占0.5~3%。

一般来说随着煤化程度的加深,碳元素含量增加,氢、氧元素含量减少,表2-44是我国各种类别煤的元素组成。

表2-44 各种类别煤的元素组成煤中各种元素的赋存形式不尽一致。

煤中碳、氢、氧主要以芳香族结构,脂肪族结构以及脂环族结构存在,目前,一般认为煤是由带脂肪的侧链大芳环和杂环的核所构成,碳是构成这些环的骨架,氢和其它元素结合分布在侧链和桥链上。

少量碳以碳酸盐二氧化碳形式存在,少量氢、氧以结晶水方式存在。

煤中氮,主要由成煤植物中的蛋白质转化而来的,通常为有机氮,其中有些是杂环型。

在泥炭和褐煤中又以蛋白质氮(各种氨基酸及其衍生物)形态存在。

由于在煤的无机组分中也含有少量碳、氢、氧和硫等元素,因此,在了解煤中有机质的元素组成及进行煤炭分类时,应以重液(密度为1.4或1.35)中洗选后的精煤来测定。

煤的工艺用途主要由煤中有机质的性质所决定。

因此,了解煤中有机质的组成是必要的。

在动力工业中,煤的元素组成可用来计算煤的燃烧热,煤中的碳和氢是热量的主要来源。

1g碳完全燃烧生成二氧化碳产生34040J的热量,而1g氢产生的热量为143000J,约为碳的4倍,因此,它们的含量决定了发热量的高低。

氧在煤中以化合态存在,氧本身不燃烧,但加热时容易使有机组分分解成挥发性物质,如:烟煤和褐煤含氧量高,所以生成的挥发性物质多,使着火点降低,但氧的含量高,碳氢的含量降低,发热量降低。

煤的元素分析[优质PPT]

煤的元素分析[优质PPT]

§2 煤中碳和氢的测定
煤中碳和氢的含量有多种测定方法,其中有 国标GB/T476-2001所规定的元素炉法,即利 比西法,有电力标准高温碳氢测定法;还有红 外吸收法等,每种方法各具特点。其中元素炉 法为经典方法,可用作仲裁分析,也是国内多 数单位实际使用的方法;高温碳氢测定法,较 元素炉法快速,系统结构也较简单,测定结果 与国标法同样可靠;红外吸收法具有技术先进, 测试效率高,结构可靠的特点。
二、煤的燃烧及其条件
煤的燃烧反应
所谓燃烧,就是物质与氧进行反应而产生 光和热的现象,一般情况下是利用其热能。
煤中所含的碳、氢、氧、氮、硫中.能够 燃烧产生热量的实际上为碳、氢、硫三种元素。 前已指出:碳与氢是产生热量的主要来源,而 硫燃烧产生的热量很少。
煤的燃烧条件
煤Байду номын сангаас燃烧反应
所谓燃烧,就是物质与氧进行应应而产生光 和热的现象,一般情况下是利用其热能。煤中 碳、氢、氧、氮、硫中,能够燃烧产生热量的 实际为碳、氢、硫三种元素。
的不同,其元素组成与其特性也就有所差异。 碳、氢、氧三元索构成煤中有机组分的主体,
通常三者含量可达90%以上; 碳含量随煤的变质程度加深而增高;而氢含量
则与此相反。
氧在煤中呈化合态存在。氧的含量随煤的变 质程度加深而减少,
煤中氮一般为有机氮,其含量在各类煤中均不 高;约为0.5~1.5%,其含量的高低大体上随 煤的变质程度加深而减少。
3 锅炉热平衡
锅炉的热平衡,一般指锅炉设备的输入热量 与输出热量及各项热损失之间的平衡。
或者用入炉热量的百分率表示:
锅炉输出热量占输入热量的百分率,就称为锅 炉热效率或简称锅炉效率,即
由(4-5)可知,欲求锅炉效率,则应通过试验,测出锅炉的输出 热量Q1,这种方法称为正平衡法,利用此法所测出的热效率称为 正平衡热效率。

什么是煤的元素分析与工业分析

什么是煤的元素分析与工业分析

1.什么是煤的元素分析与工业分析?答:元素分析法就是研究煤的主要组成成分。

煤的主要组成成分包括碳(C),氢(H),氧(O),氮(N),硫(S),灰分(A),水分(M).其中碳、氢、硫是可燃成分。

硫燃烧后生成SO2及少量SO3,是有害成分。

煤中的水分和灰分也都是有害成分。

通过元素分析可以了解煤的特性及实用价值。

但元素分析法较复杂。

发电厂常用较用简便的工业分析法,可以基本了解煤的燃烧特性。

煤的工业分析是把煤加热到不同温度和保持不同的时间而获得水分,挥发分,固定碳,灰分的百分组成.2.链条锅炉炉拱的作用是什么?答:链条锅炉的炉拱分为前拱和后拱,与炉排一起构成燃烧空间。

前拱(辐射拱):位于炉排的前部,主要起引燃作用。

吸收来自火焰和高温烟气的辐射热,并辐射到新煤上,使之升温、着火。

后拱: 位于炉排后部,主要作用是引导高温烟气,属对流型炉拱。

后拱具体作用如下:1)引燃:从引燃看,前拱是主要的;后拱通过前拱起作用,是辅助的。

2)混合:后拱输送富氧的烟气至前拱区,使之与那里的可燃气体相混合。

前拱一般短,后拱的输气路程较长。

后拱烟气的流动速度高,所产生的扰动混合大。

从混合上看,后拱的作用是主要的。

3)保温促燃:后拱可有效地防止炉排面向炉膛上部放热,能有效地提高炉排后部的炉温,起保温促燃作用。

3.什么是自然水循环?自然水循环是怎样形成的?答:依靠下降管中的水和上升管中的汽水混合物之间的密度差进行的水循环,称为自然水循环。

在自然循环锅炉中,下降管一般在炉外不受热,而上升管是在炉内受热,水在上升管中吸收热量后,逐渐成为汽水混合物,其密度减小。

这样,下降管与上升管工质之间就产生了密度差,密度差所产生的压差作为推动力,推动工质在循环回路中流动。

这种循环流动,没有依靠外力,只靠工质本身状态变化后所产生的密度差,作为推动工质循环流动的动力,所以称为自然水循环。

4.简述自然水循环的工作过程。

答:自然循环回路由上升管、下降管、汽包和下集箱组成。

煤的分析基包括

煤的分析基包括

煤的分析基包括
煤的分析基本包括以下几个方面:
元素分析:对煤样中的主要元素进行分析,包括碳(C)、氢(H)、氮(N)、硫(S)以及灰分、水分等。

组分分析:将煤样按照不同组分进行分离和分析,如挥发分、固定碳、可燃物质等。

物理性质测试:包括煤的密度、孔隙度、粒度分布等物理特性的测定。

热值测试:确定煤样的热值,即单位质量煤所含热能的大小。

燃烧性能测试:对煤样进行燃烧实验,了解其燃烧特性、燃烧行为、燃尽性等相关指标。

煤的矿物组成鉴定:通过显微镜观察煤体中的矿物颗粒和有机质形态,判断煤的类型和质量等信息。

这些分析可以帮助人们了解煤样的组成、热值、燃烧性能以及适用领域等重要指标,为煤炭资源的合理开发和利用提供依据。

需要指出的是,请确保煤炭分析工作符合国家相关标准和规定。

煤的元素分析

煤的元素分析

煤的元素分析煤的元素分析包括煤中碳、氢、氧、氮和硫的测定。

由于我国煤质分析标准将硫单独列为一项,所以,这里讲的元素分析,是指煤中碳、氢、氮的测定和氧的计算。

第一节煤中碳、氢、氮和氧的存在形态和测定意义煤由有机物和无机物两部分组成。

无机物主要是矿物质和水;有机物主要由碳、氢、氧、氮、硫等元素组成。

其中碳、氢、氧的总和占有机质的95%以上,其中碳元素占60%~98%,氢元素占0.8~6.6%,氧占1%~30%。

氮含量变化范围不大,一般在0.3~3%之间,而硫元素大约占0.5~3%。

一般来说随着煤化程度的加深,碳元素含量增加,氢、氧元素含量减少,表2-44是我国各种类别煤的元素组成。

表2-44 各种类别煤的元素组成煤中各种元素的赋存形式不尽一致。

煤中碳、氢、氧主要以芳香族结构,脂肪族结构以及脂环族结构存在,目前,一般认为煤是由带脂肪的侧链大芳环和杂环的核所构成,碳是构成这些环的骨架,氢和其它元素结合分布在侧链和桥链上。

少量碳以碳酸盐二氧化碳形式存在,少量氢、氧以结晶水方式存在。

煤中氮,主要由成煤植物中的蛋白质转化而来的,通常为有机氮,其中有些是杂环型。

在泥炭和褐煤中又以蛋白质氮(各种氨基酸及其衍生物)形态存在。

由于在煤的无机组分中也含有少量碳、氢、氧和硫等元素,因此,在了解煤中有机质的元素组成及进行煤炭分类时,应以重液(密度为1.4或1.35)中洗选后的精煤来测定。

煤的工艺用途主要由煤中有机质的性质所决定。

因此,了解煤中有机质的组成是必要的。

在动力工业中,煤的元素组成可用来计算煤的燃烧热,煤中的碳和氢是热量的主要来源。

1g碳完全燃烧生成二氧化碳产生34040J的热量,而1g氢产生的热量为143000J,约为碳的4倍,因此,它们的含量决定了发热量的高低。

氧在煤中以化合态存在,氧本身不燃烧,但加热时容易使有机组分分解成挥发性物质,如:烟煤和褐煤含氧量高,所以生成的挥发性物质多,使着火点降低,但氧的含量高,碳氢的含量降低,发热量降低。

煤的元素组成和元素分析

煤的元素组成和元素分析

煤的元素组成和元素分析煤的组成以有机质为主体,煤的工艺用途,比如炼焦、气化等,主要是由煤中有机质的性质决定的。

另外,还含有水、灰等无机质。

有机质主要由碳、氢、氧、氮、硫5种元素组成。

测定其中的有机物含量及其官能团主要通过测定煤中这这五种元素的质量分数来确定。

有机质的元素组成与煤的成因类型、煤岩组成及煤化程度有关,是煤质研究的重要内容。

可以计算发热量、产生的化学品等。

由于在煤的无机质也含有少量碳、氢、氧等,所以在了解煤的有机质元素组成及煤的分类时,应以洗选后的精煤,即干燥无水无灰基daf指标为准。

7.1 碳碳当然是煤的主要组成部分。

泥煤:50-60%(质量分数),褐煤:60-77%,烟煤:74-92%,无烟煤:90-98%。

大于98%,超级无烟煤。

7.2 氢氢是第二重要的元素。

可燃,含量不高,但发热量大。

氢含量与成煤物质有关。

煤化程度越深,氢含量越低。

7.3 氧煤中氧的变化较大,煤化程度越深,氧含量越低。

煤中以上三种元素占有机质95以上。

7.4 氮煤中的氮含量比较少,它主要来自成煤物质中的蛋白质,多在质量分数0.8—1.8%的范围内变化。

燃烧时会变成N2、NH3、HCN等。

7.5 硫煤中的硫分为有机硫和无机硫,有时有少量元素硫。

无机硫又分为硫化物硫和硫酸盐硫。

硫化物硫即黄铁矿、白铁矿等。

当煤中全硫大于1%时,多数情况是硫化物硫,洗选后有不同程度的降低。

硫酸盐硫主要存在形式是石膏。

我国煤中硫酸盐硫含量较低,大部分小于0.1%。

有机硫主要来自成煤物质中的蛋白质。

组成复杂,主要有硫醚、硫醇、硫酮、噻吩类杂环物等组成。

有机硫与有机质紧密结合,分布均匀,很难清除。

一般在低硫煤中,往往以有机硫为主,经过洗选后,精煤的全硫含量反而增高。

在评价煤种时,必须测定全硫St含量,并以干燥基(分析基)ad表示,为St,ad。

如果煤中硫含量太高(1.5—2.0%),则要测定硫的形态以便根据不同的硫形式确定不同脱硫方法。

煤炭硫分分级标准(G B/T 15224.2 -94)。

煤的元素分析

煤的元素分析

3 锅炉热平衡
锅炉的热平衡,一般指锅炉设备的输入热量 与输出热量及各项热损失之间的平衡。
或者用入炉热量的百分率表示:
锅炉输出热量占输入热量的百分率,就称为锅 炉热效率或简称锅炉效率,即
由(4-5)可知,欲求锅炉效率,则应通过试验,测出锅炉的输出 热量Q1,这种方法称为正平衡法,利用此法所测出的热效率称为 正平衡热效率。
由表可看出.随着煤的变质程度加深.其挥发份含量减少.煤中氧含 量也减少,而燃烧时所需理论空气量则相应增大。
若实际空气量少于理论空气,结果就会产生 未燃物、煤烟及应该燃烧的可燃气体排到大气 中去,另一方面,若把多于理论空气量的空气 送入燃烧室也是不经济的。
从热能经济观点来看,供给燃料燃烧的空气量 是十分重要的。
生成的二氧化碳和水分别用不同的吸收剂 吸收,根据吸收剂的增重,就可计算出煤中
碳和氢的含量。
为确保煤样燃烧完全.就必须满足其完全
燃烧的条件。因此,要求维持一定的燃烧温度
800度,控制一定的氧气流(120mL/min), 称取适量的煤粉试样(小于0.2mm,称0.2g) 以及充分的燃烧时间(一般不少于20min)。 同时,为防止燃烧不完全而产生一氧化碳,要
硫含量在元素组成中所占比例不大。通常在 0.5%~5%范围内,其中可燃硫参加燃烧,并 释放出少量的热量。
煤中硫按其存在形态划分,可分为有机硫及 无机硫两大类。而根据其燃烧特性划分,则可 分为可燃硫及不可燃硫两大类。-切有机硫化 物、无机硫化物及元素硫均属可燃硫;煤烧后 残留于灰中的硫均以硫酸盐形式存在。
在吸收系统中,在其末端还连接一个装有浓硫酸的气泡汁, 一方面它可以大体指示氧气流流速;另一方面.又可阻止空气中 的水分进入吸收系统。
二氧化碳吸收 瓶
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤的元素分析煤的元素分析包括煤中碳、氢、氧、氮和硫的测定。

由于我国煤质分析标准将硫单独列为一项,所以,这里讲的元素分析,是指煤中碳、氢、氮的测定和氧的计算。

第一节煤中碳、氢、氮和氧的存在形态和测定意义煤由有机物和无机物两部分组成。

无机物主要是矿物质和水;有机物主要由碳、氢、氧、氮、硫等元素组成。

其中碳、氢、氧的总和占有机质的95%以上,其中碳元素占60%~98%,氢元素占0.8~6.6%,氧占1%~30%。

氮含量变化范围不大,一般在0.3~3%之间,而硫元素大约占0.5~3%。

一般来说随着煤化程度的加深,碳元素含量增加,氢、氧元素含量减少,表2-44是我国各种类别煤的元素组成。

表2-44 各种类别煤的元素组成煤中各种元素的赋存形式不尽一致。

煤中碳、氢、氧主要以芳香族结构,脂肪族结构以及脂环族结构存在,目前,一般认为煤是由带脂肪的侧链大芳环和杂环的核所构成,碳是构成这些环的骨架,氢和其它元素结合分布在侧链和桥链上。

少量碳以碳酸盐二氧化碳形式存在,少量氢、氧以结晶水方式存在。

煤中氮,主要由成煤植物中的蛋白质转化而来的,通常为有机氮,其中有些是杂环型。

在泥炭和褐煤中又以蛋白质氮(各种氨基酸及其衍生物)形态存在。

由于在煤的无机组分中也含有少量碳、氢、氧和硫等元素,因此,在了解煤中有机质的元素组成及进行煤炭分类时,应以重液(密度为1.4或1.35)中洗选后的精煤来测定。

煤的工艺用途主要由煤中有机质的性质所决定。

因此,了解煤中有机质的组成是必要的。

在动力工业中,煤的元素组成可用来计算煤的燃烧热,煤中的碳和氢是热量的主要来源。

1g碳完全燃烧生成二氧化碳产生34040J的热量,而1g氢产生的热量为143000J,约为碳的4倍,因此,它们的含量决定了发热量的高低。

氧在煤中以化合态存在,氧本身不燃烧,但加热时容易使有机组分分解成挥发性物质,如:烟煤和褐煤含氧量高,所以生成的挥发性物质多,使着火点降低,但氧的含量高,碳氢的含量降低,发热量降低。

氮燃烧时,大部分以游离态随烟气排出,从燃烧的角度来说,氮为无用元素,约有20%~40%在燃烧中变为NO x,随烟气排入大气,增加污染。

硫分为可燃硫和不可燃硫,其中可燃硫参与燃烧,释放少量的热量,但其氧化产物为二氧化硫和三氧化硫,既腐蚀锅炉设备,同时,排到大气也污染环境,此外,煤中黄铁矿硫增高,还使灰熔融性降低,促使锅炉结渣发生,因此,硫和氮均为有害元素。

煤中碳、氢、氧是其有机质的主要组分,反映煤的变质程度。

煤中碳含量随着煤的煤化程度的加深而增加,所以,常称煤的煤化程度为煤的碳化程度,煤中氢含量则随煤的煤化程度的加深而减少,煤中氧的含量也随煤的煤化程度的加深而显著降低。

因此,人们很早就以煤的元素组成作为煤炭科学分类的指标之一。

如,中国煤分类国家标准GB5751中,就以干燥无灰基氢作为划分无烟煤小类的指标。

此外,煤的元素组成可用来计算理论燃烧温度和燃烧产物的组成、燃烧理论烟气量、过量空气系数及热平衡等,估算和预测煤的低温干馏产物和褐煤蜡产率。

因此,元素分析在锅炉设计和运行中有十分重要的意义。

第二节 煤中碳氢的测定(常规法)一、煤中碳、氢测定的基本原理1、测定原理(1) 燃烧吸收重量法煤样在氧气流中燃烧,煤中的碳生成二氧化碳,氢生成水。

生成的二氧化碳和水分分别被二氧化碳吸收剂和吸水剂吸收。

根据吸收剂的增重,计算煤中碳和氢的含量。

对CO 2和H 2O 的吸收反应如下:2NaOH+CO 2→Na 2CO 3+H 2OCaCl 2 + 2H 2O =CaCl 2·2H 2OCaCl 2·2H 2O +4H 2O =CaCl 2·6H 2O(2)半自动测碳氢将一定量的煤样放在瓷舟内,推至800℃的石英管中燃烧分解,用净化的氧气为载气,吹进高锰酸银热解产物进行催化氧化,使煤中氢转化为水,碳转化为二氧化碳。

将燃烧分解生成的水和二氧化碳载过铂—五氧化二磷电解池。

电解池与仪器之间组成一电化学分析系统。

未进样时电解池内阻很大,正负极之间呈开路状态,无电流流过;当含有水分的气体通过电解池时,水被五氧化二磷吸收生成偏磷酸,电解池内阻减小,启动电解,其电解电流大于50mA 。

电解生成的氧气和氢气随载气流排出,而五氧化二磷得以再生复原。

随着电解反应的进行,偏磷酸越来越少,电解电流也随之下降。

当下降到5mA 终点电流时,终点控制器动作,切断电解电源,电解终止。

这段时间内的电流与时间的积分值,即为电解所耗用的电量。

根据法拉第电解定律可以计算出氢的质量W (g )。

水被电解池吸收后,二氧化碳随载气流吹进装碱石棉的U 形吸收管,被碱石棉吸收生成碳酸钠和水,然后根据吸收剂碱石棉的增量即可计算出碳的含量。

2、碳、氢测定中的干扰因素及其排除方法 由燃烧反应可知,煤燃烧时,除生成二氧化碳和水以外,还有硫的氧化物,22232222800C O CO H O SO SO CL NO N ο+↑++↑+↑+↑+↑+↑煤催化剂氮的氧化物,氯等生成,这些酸性氧化物和氯若不除去,将全部被二氧化碳吸收剂—碱石棉吸收,使得碳测值偏高。

为排除这些干扰因素,一般采取以下措施:(1)三节炉法中,在燃烧管内用铬酸铅脱硫,以银丝卷脱氯:4PbCrO 4+4SO 2−−→−℃6004PbSO 4+2Cr 2O 3+O 24PbCrO 4+4SO 3−−→−℃6004PbSO 4+2Cr 2O 3+3O 22Ag +Cl 2−−→−℃1802AgCl(2)二节炉及半自动测碳氢法中,用高锰酸银的热分解产物脱除硫和氯;2Ag +SO 2+O 2−−→−℃500Ag 2SO 4 4Ag +2SO 3+O 2−−→−℃5002Ag 2SO 4 2Ag +Cl 2−−→−℃5002AgCl 在燃烧管外部和粒状二氧化锰除去氮的氧化物,在氧气流中燃烧时,在有催化剂存在情况下,煤中20~60%的氮生成氮的氧化物,若不除掉,会使碳测值偏高0.1~0.5%。

反应方程:22322 ()MnO NO Mn NO +→二、三节炉法碳、氢测定装置碳、氢测定装置分为三部分:氧气净化系统,燃烧装置、吸收系统。

整个装置的系统图见图2-54。

第一部分是氧气净化系统,脱除氧气中的二氧化碳和水;1—气体干燥塔; 2—流量计; 3—橡皮塞; 4—铜丝卷; 5—燃烧舟; 6—燃烧管; 7—氧化铜; 8—铬酸铅; 9—银丝卷; 10—吸水U 型管; 11—除氮氧化物U 型管; 12—吸收二氧化碳U 型管; 13—空U 型管; 14—气泡计;15—三节电炉及控制装置图2-54 三节炉碳、氢测定仪第二部分是燃烧装置,煤样在燃烧装置中完全燃烧,煤样中碳、氢生成二氧化碳和水,硫、氯等元素对测定的干扰在燃烧管内脱除;第三部分是吸收系统,用来吸收煤燃烧生成的二氧化碳和水。

根据吸收系统各自的增重,来计算煤中碳、氢的含量。

在吸水管和二氧化碳吸收管之间,连接一个装有二氧化锰和氯化钙的U 形管,用来除氮。

1、氧气净化系统氧气净化系统的作用,是除去氧气中的二氧化碳和水。

氧气净化系统由一个内装40%氢氧化钠(或氢氧化钾)溶液的鹅头洗气瓶、一个下部装碱石棉、上部装氯化钙(或过氯酸镁)的气体干燥塔和一个全部装氯化钙(或过氯酸镁)的气体干燥塔组成。

连接的顺序,沿氧气流入方向依次为:(1)鹅头洗气瓶;(2)下部装碱石棉、上部装氯化钙的气体干燥塔;(3)装有氯化钙的气体干燥塔。

在两个气体干燥塔之间,装有一个量程为150ml/min 的氧气流量计。

2、燃烧装置燃烧装置分为两个部分:燃烧管和加热装置(包括测温和控温装置)。

a 、燃烧管用三节炉法测煤中碳、氢时,燃烧管内填充有线状氧化铜、铬酸铅、银丝卷。

其中氧化铜的作用,是使在氧气流中未能完全燃烧的物质进一步氧化为二氧化碳和水。

其填充见图2-55。

二节炉法中,燃烧管内填充有高锰酸银的热分解产物。

其填充见图2-56。

应该注意,装有氧化铜的这段燃烧管,加热不得超过900℃,装铬酸铅这段1—橡皮塞;2—铜丝卷;3、5—铜丝布圆垫;4—高锰酸铅热解物图2-56 二节炉燃烧管填充物1、2、4、6—铜丝卷;3—氧化铜;5—铬酸铅;7—银丝卷图2-55 三节炉法燃烧管填充物管子加热不得超过600℃。

否则,会使填充物熔化粘结,堵塞燃烧管,铬酸铅表面的硫酸铅也由于温度过高,分解出三氧化硫,不能保证脱硫效果。

b、加热装置碳氢仪的加热装置是三节(或二节)管式电炉(单管或双管),每个电炉有各自的测温和控温装置。

由于试验方法有三节炉法和二节炉法,故电炉亦有三节炉和二节炉。

3、吸收系统吸收系统主要是由装有吸水剂(氯化钙或过氯酸镁)和二氧化碳吸收剂(碱石棉)的U形管组成,见图2-57、图2-58。

其作用是吸收燃烧产物——水和二氧化碳。

图2-57 吸水U型管图2-58 吸二氧化碳U型管(或除氮U型管)在这个系统中,吸水管和二氧化碳吸收管之间,连接内装二氧化锰和氯化钙(或过氯酸镁)的除氮U形管。

在该系统中,用作吸水剂的氯化钙,可能含有碱性物质。

因而使用前,应先以二氧化碳饱和,并除去过剩的二氧化碳,以免CO2在吸水管中被吸收,确保测定值的准确,不致发生氢高、碳低的现象。

二、煤中碳、氢的测定步骤1、空白试验空白,是指燃烧舟中只放催化剂,不放煤样而按照规定的试验步骤操作时,吸收管的增重值。

在氢的测定中,应减掉空白值。

空白,主要是由盛煤样的瓷舟表面和催化剂吸附空气中一定量的水分;氧气不纯等因素造成的。

吸附空气中水分造成的空白,应在氢测定结果中减掉。

空白试验步骤:通电升温,并按通氧气。

将第一节炉往返移动几次。

将新装好的吸收系统和装置连接,并检查系统是否漏气,若不漏气即以120ml/min 的流速通氧气20分钟左右。

取下吸收系统(并装上另一套),用绒布擦净,在天平旁放置10分钟左右称重。

这时,各U 形管的质量,是与试验装置内的压力达到平衡的初始质量。

当第一、二节炉温升到800℃,第三节炉温升到600℃,并保持各自温度后,开始做空白试验。

空白试验时,瓷舟内只装与正式试验相当量的催化剂。

空白试验时间为25分钟。

分析步骤与碳、氢测定操作步骤相同。

重复相同的空白试验,直至吸水管空白值的差值不超过0.0010g 。

除氮管和二氧花碳吸收管最后一次质量变化不超过0.0005g 时为止,取两次空白值的平均值作为当天空白值。

2、煤中碳、氢测定的分析步骤(1)将第一、二节炉温控制在800±10℃,第三节炉温控制在600±10℃,并使第一节炉紧靠第二节炉。

(2)在预先灼烧过的舟中称取粒度小于0.2mm 的空气干燥分析煤样0.2g (称准到0.0002g )并均匀铺平,在煤样上盖一层三氧化二铬。

可把舟暂存入专用的磨口玻璃管或不加干燥剂的干燥器中。

相关文档
最新文档