第三章 煤的工业分析和元素分析修改
煤的工业分析与元素分析

加强与其他领域的交叉研究与应用
与环境科学的交叉
将煤质分析技术与环境科学相结合,研究煤燃烧、煤化工等过程 中排放物的成分与污染特性。
与地球科学的交叉
将煤质分析技术应用于地质勘探、古生物研究等领域,研究煤炭 资源的形成与演化。
与信息科学的交叉
借助信息技术手段,实现煤质数据的数字化、信息化管理,提高 数据利用效率和信息共享水平。
挥发分分析是评估煤热解特性的重要 指标,对于预测煤的燃烧特性和焦炭 质量具有重要意义。挥发分含量越高, 煤的热解温度越低,燃烧效率越高。
固定碳分析
总结词
固定碳是煤中除去水分、灰分和挥发分 后的剩余部分,是煤的主要可燃成分。
VS
详细描述
固定碳是评估煤品质和利用价值的重要指 标,其含量越高,煤的发热量越大,燃烧 效率越高。固定碳的分析通常采用差减法 或元素分析仪进行测定。
灰分分析
总结词
灰分是煤燃烧后剩余的矿物质残留物,通常以百分数表示。
详细描述
灰分分析可以反映煤中矿物质的含量,对评估煤的品质和利用价值具有重要意 义。灰分含量过高会影响煤的燃烧效率,同时也会对环境造成污染。
挥发分分析
总结词
挥发分是煤在加热过程中释放出的气 体和液体的混合物,通常以百分数表 示。
详细描述
氧含量分析
总结词
氧含量是煤中另一种杂质元素,其含量越高 ,煤的质量越差。
详细描述
氧含量分析通常采用燃烧法和滴定法进行, 燃烧法是将煤样在高温下燃烧,通过测定释 放出的氧气确定氧含量;滴定法则利用酸碱
滴定或氧化还原滴定等方法测定。
硫含量分析
要点一
总结词
硫是煤中的有害元素之一,其含量对煤的燃烧特性和环境 影响具有重要影响。
煤的工业分析

煤的工业分析一、煤的化学成分和工艺性质煤是重要的工业原料。
它的用途很广泛,除作燃料用外,还是重要的化工原料。
为了合理的利用煤炭资源,必须对煤的化学成分及其性质进行研究,以便综合利用。
(一)煤的元素组成煤主要是由碳C、氢H、氧O、氮N、硫S、磷P等元素构成的有机质,以及一些矿物杂质、水分等无机质组成。
其中,有机质主要是由碳、氢、氧组成,它们占有机质的95%以上;此外,还有氮、硫、少量的磷及金属元素等。
对煤的元素组成的研究,主要是通过元素分析进行的。
1.碳碳是煤中有机物质的主要组成部分。
也是煤燃烧过程中产生热量的重要元素,每公斤纯碳完全燃烧时能放出34080.6KJ的热量。
煤中碳元素的含量是随变质程度的加深而增加。
泥炭的含碳量为50~60%,褐煤为60-77%,烟煤为74~92%,无烟煤为90~98%。
2.氢氢是煤中有机质的重要元素。
每公斤氢完全燃烧时能产生143138.3KJ的热量,约为碳的4.2倍。
煤中含氢量的多少与成煤原始物质有直接关系。
腐泥煤的氢含量比腐植煤高,一般在6%以上,有时可达11%;而腐植煤的氢含量一般不超过6%.最低为1%左右。
随着变质程度的加深,氢含量有逐渐减少的趋势。
3.氧煤中氧的含量变化很大,并随变质程度加深而降低。
泥炭中氧含量为30-40%,褐煤中氧含量高达15~30%,烟煤为1~16%,无烟煤更不,一般小于2%。
当煤氧化时,氧含量迅速增高,碳、氢含量明显降低。
因此,氧含量是确定煤层风、氧化带深度的主要指标之一。
4.氮氮在煤中含量较少,它主要来自成煤植物中的蛋白质。
碳含量小于75%的某些褐煤,氮含量可达2~2.7%,无烟煤为0.5~1.5%。
氮含量随变质程度增高稍有降低。
在高温加工时,一部分氮转化为氨及吡啶类等有机含氮化合物,这些化学产品可回收制成硫酸铵、尿素、氨水等氮肥。
5.硫硫是煤的有害物质。
它在煤中常以三种形式出现,第一种为硫化物硫,绝大部分是以黄铁矿FeS2和少量白铁矿FeS2硫形态存在;第二种为有机硫,主要来自成煤时植物和微生物中的蛋白质;第三种为硫酸盐硫,主要是石膏CaS04·2H20中的硫。
第三章 第二节 煤样的制备

图3-5 棋盘法缩分示意图
是将物料排成一定厚度 的均匀薄层。然后用铁 皮做成的有若干个长宽 各为25-30mm的格板 将物料薄层分割成若干 个小方块,如图3-5所 示。再用平底小方铲每 间隔一个小方块铲出一 个小方块,将其他抛弃 或保存。剩余的部分继 续进行破碎、混合、缩 分。
九点缩分法
此法只适合全水 分煤样的缩分。 缩分前稍加混合 即可摊成圆饼, 按九点取样。
• 球磨机。适于细碎,而且特别适于一次磨制 多个样品(依滚动轴的多少而定)。特点是 转速低,煤样在磨制过程中基本没有升温, 有较好的混合作用,磨制时间较长(3050min)。但在一次磨制多个样品时,平均磨 制一个样品的时间不长。
• 联合破碎—缩分机。将破碎设备和缩分设备组合在 一起,有些还加装了给煤机。如:
(6)煤样的缩分,除水分大,无法使用机械缩分 者外,应尽可能使用二分器和缩分机械,以减少缩 分误差。
①缩分机必须经过检验方可使用。检验缩分机的煤 样(包括留样和弃样)的进一步缩分,必须使用二 分器。
②使用二分器缩分煤样,缩分前不需要混合。入料 时,簸箕应向一侧倾斜,并要沿着二分器的整个长 度往复摆动,以使煤样比较均匀地通过二分器。缩 分后任取一边的煤样。
(4)煤样的制备既可一次完成,也可分几部分处理。 若分几部分,则每部分都应按同一比例缩分出煤样, 再将各部分煤样合起来作为一个煤样。
(5)每次破碎和缩分前后,机器和用具都要清扫干 净。制样人员在制备煤样的过程中,应穿专用鞋, 以免污染煤样。
对不易清扫的密封式破碎机(如锤式破碎机)和 联合破碎缩分机,只用于处理单一品种的大量煤样 时,处理每个煤样之前,可用该煤样的煤通过机器 予以“冲洗”,弃去“冲洗”煤后再处理煤样。处 理完之后,应反复开、停机器几次,以排净滞留煤 样。
第三章 第四节煤的工业分析

(2)内在水分(Minh) 定义:指在一定条件下达到空气干燥状态时所 保留的水分,即存在于煤粒内部直径小于10-5cm的 毛细孔中的水分。简记符号为Minh。该水分以物理
化学方式与煤结合,其含量与煤的表面积大小和吸
附能力有关,蒸汽压小于纯水的蒸汽压,故在室温 下这部分水分不易失去。 将空气干燥煤样加热至105-110℃时失去的水 分即为内在水分。失去内在水分的煤称为干燥煤。
②测定方法。用预先干燥和已称量过的称量瓶 称取粒度小于0.2mm的空气干燥煤样(1〒 0.1) g(称准到0.0002g),平摊在称量瓶中,打开 称量瓶盖,放入预先通入干燥氮气10min并已 加热到105-110℃的干燥箱中。烟煤干燥1.5h, 褐煤和无烟煤干燥2h。从干燥箱中取出称量瓶, 立即盖上盖,放入干燥器中冷却至室温(约 20min)后称量并进行检查性干燥,每次30min。 直到连续两次干燥煤样质量的减少不超过 0.0010g或质量增加时为止。
图3-9
MHC与Vdaf的关系
最高内在水分可以作为低煤化度煤的 一个分类指标。 经风化后的煤,内在水分增加,因此, 煤的内在水分的大小,也是衡量煤风化程 度的标志之一。 煤中的化合水与煤的变质程度没有关 系,但化合水多,说明含化合水的矿物质 多,会间接地影响煤质。
3.全水分的测定
(1)测定原理 国标规定,煤中全水分测 定可采用四种方法,即通氮干燥法、空气干 燥法、微波干燥法及空气干燥的一步法和两 步法。 (2)测定方法 A、B、C、D四种方法的测 定要点及适用范围如表3-15所示。
(5)全水分分级 煤中全水分分级见表3-17。我国煤以低水 分煤和中等水分煤为主,二者共占61.90;特低水分煤次之, 约占22%;其它水分级别的煤所占比例很小。
煤的工业分析与元素分析 PPT

焦渣是由固定炭和灰分构成的。
焦渣特征分为8类(判断煤的粘结性、熔融性和膨胀性):
① 粉状
② 粘着
③ 弱粘结 ④ 不熔融粘结
焦渣的序号越大,表明粘结性越强。
⑤ 不膨胀熔融粘结
⑥ 微膨胀熔融粘结
⑦ 膨胀熔融粘结
恒定。根据煤样的质量损失计算出水分的质量分数。
结果计算:
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
煤的灰分是煤在规定条件下完全 燃烧后的残留物,即煤中矿物质 在一定温度下经过一系列分解、 化合等复杂反应后剩下的残渣。 用A(%)表示 。
灰分全部来自矿物质,但组成和 质量又不同于矿物质 。
加上煤的发热量和煤中全硫的测定 则称为全工业分析。
挥发分和固定炭则初步反映煤中有机质的数量与性质。
1.1 煤中的水分
1.1.1 煤中水分的存在形式 外在水分Mf
附着在煤颗粒表面及直径大于10-5cm的大毛细孔中的水分 。 室温下失去。仅失去外在水分的煤称为空气干燥煤。 内在水分Minh 吸附或凝聚在煤颗粒内部毛细孔(直径<10-5cm)中的水分 。 将空气干燥煤样加热至105~110℃时所失去的水分 。 化合水 以化学方式与矿物质结合的水分。
(2)利用途径
①作为煤转化过程的催化剂 ②生产建筑材料 ③制成环保制剂或材料 ④回收稀有金属和其它有用成分 ⑤用作化肥和土壤改良剂
1.3.1 煤的挥发分(volatile matter)
煤在高温条件(900℃)下隔绝空气加热一定时间,煤的有机质受热分解 出部分气体和蒸气状态产物,称为挥发物;挥发物占煤样质量的百分数称为挥 发分产率,简称为挥发分,用V表示。
当碳酸盐的CO2含量≥2%时,
Vad校正= Vad -(CO2)ad ,%
煤的工业分析实验报告

煤的工业分析实验报告1. 引言煤是一种重要的能源资源,广泛应用于工业和生活领域。
为了了解煤的工业特性和分析方法,我们进行了一系列实验,旨在对煤的成分、燃烧特性以及环境影响进行分析。
2. 实验目的本实验的目的是通过一系列实验方法,对煤的工业分析进行深入研究,包括以下几个方面:1.分析煤的元素组成和质量特性;2.研究煤的燃烧特性,包括灰分、挥发分和固定碳的含量;3.分析煤的环境影响,包括二氧化碳排放和气候变化等。
3. 实验方法3.1 煤的取样和制备我们从工业煤矿中采集了多个煤样,并进行了样品制备。
首先,我们将煤样进行破碎和研磨,以获得均匀的粉末样品。
然后,我们从粉末中取出适量样品,用于后续的实验分析。
3.2 煤的元素组成分析我们采用了X射线荧光光谱仪(XRF)对煤的元素组成进行分析。
通过该仪器,我们可以快速准确地测定煤样中各种元素的含量,包括碳、氢、氧、硫等。
3.3 煤的燃烧特性分析我们使用煤的热值测定仪器对煤样的燃烧特性进行测定。
该仪器可以测量煤样的发热量,从而了解煤的热能价值。
同时,我们还对煤样的灰分、挥发分和固定碳进行分析,以了解煤的燃烧性能和煤质特征。
3.4 煤的环境影响分析为了研究煤的环境影响,我们对煤燃烧过程中产生的二氧化碳排放进行了测定。
我们使用了气体分析仪对煤燃烧产生的废气进行采样,并分析其中二氧化碳的含量。
通过对二氧化碳排放的测定,我们可以评估煤燃烧对环境的影响。
4. 实验结果经过实验分析,我们得到了以下结果:1.煤样的元素组成分析表明,煤中主要含有碳、氢、氧和硫等元素,其中碳是主要元素,占煤样质量的大部分。
2.煤样的燃烧特性分析结果显示,煤样的热值较高,表明其具有较高的热能价值。
同时,煤样的灰分、挥发分和固定碳的含量也得到了测定和分析。
3.煤燃烧产生的二氧化碳排放测定结果显示,煤燃烧是一个高碳排放过程,对二氧化碳的排放有一定的影响。
5. 结论通过对煤的工业分析实验,我们得到了以下结论:1.煤是一种重要的能源资源,具有丰富的碳含量和较高的热能价值。
煤化学课件第三章第二节

• 球磨机。适于细碎,而且特别适于一次磨制 多个样品(依滚动轴的多少而定)。特点是 转速低,煤样在磨制过程中基本没有升温, 有较好的混合作用,磨制时间较长(30-50min)。 但在一次磨制多个样品时,平均磨制一个样 品的时间不长。
• 联合破碎—缩分机。将破碎设备和缩分设备组合在一起, 有些还加装了给煤机。如:
• EPS-1/8联合破碎缩分机出料粒度小于6mm或小于13mm, 可调破碎比5-10,缩分比(留样量与进样量比)为1/8, 处理量为250-300kg/h。它的特点是缩分精密度高,操作容 易,适于实验室煤样的制备。
• PS-110/3型联合破碎机—缩分机的出料粒度为3mm以下, 缩分比1/30-1/60可调。特点是处理量大(0.9-1.5t/h),运转 平稳,振动小。适于在装车点和卸车点就地随采随制大量 的商品煤样。
• 用于制样的方孔筛,其孔径为25mm、13mm、6mm、 3mm、1mm及0.2mm,外加一只3mm的圆孔筛;
• 用于煤粉细度测定,孔径为200μm(1μm=10-6m)及 90μm的标准试验筛,并配筛底及筛盖;
• 用于测定哈氏可磨性指数的孔径为1.25mm及0.63mm 的制样筛及孔径为0.071mm的筛分筛,并配筛底及筛 盖。
煤样制备的程序
煤样的制备包括破碎、筛分、混合、缩分和干 燥等程序。煤样的缩制实际上是按粒度不同分级进 行的,通常分为25mm、13mm、6mm、3mm、1mm 五组,最后制备成小于0.2mm的分析煤样。煤的粒 度越大,所保留的样品量越多。
1. 破碎
定义:是用机械或人工方法减小煤样粒度的操作过 程。目的在于增加不均匀物质的分散程度,以减少 缩分误差。破碎是保持煤样代表性并减少其质量的 准备工作。
破碎的方法:一种是机械法,即试样先用破碎机粗 碎,然后用密封式研磨机细碎;另一种是手工法, 在钢板上用手锤破碎后,在钢乳钵中细碎。
煤质分析

煤的元素分析与工业分析通过元素分析方法得出的煤的主要组成成分,称元素分析成分。
它包括碳(C)、氢(H)、氧(O)、氮(N)、硫(S)、灰分(A)、水分(M)。
其中碳、氢、硫是可燃成分。
硫燃烧后要生成SO2,及少量SO3,故它是有害成分。
煤中的水分和灰分也都是有害成分。
通过元素分析成分可以了解煤的特性及实用价值,燃烧计算也都使用元素分析数据。
但元素分析方法较为复杂。
发电厂常用较为简便的工业分析方法得到工业分析成分,用它可以基本了解煤的燃烧特性。
煤的工业分析是把煤加热到不同温度和保持不同的时间而获得水分、挥发分、固定碳、灰分的百分组成。
一、煤的元素分析煤的元素分析是测定煤中碳(C)、氢(H)、氧(O)、氮(N)、硫(S)、磷(P)等元素的含量。
碳是煤中最主要的可燃元素,也是煤中最基本的成分,其含量约占40%~85%。
1KG碳完全燃烧生成二氧化碳,能放出约32825.56KJ热量。
1KG碳不完全燃烧生成一氧化碳,只能放出约9258.06KG的热量。
碳的燃烧特点是不易着火,燃烧缓慢,火焰短。
煤的碳化程度越深,即含碳量越多,则着火和燃烧越困难。
氢是煤中单位发热量最高的元素,但含量不多,约占3%~6%。
氢极容易燃烧,且燃烧速度快。
煤中的硫由有机硫、硫化铁和硫酸盐中的硫三部分组成。
前两种硫可以燃烧,构成所谓的挥发硫或可燃硫;后一种硫不能燃烧,将其并入灰分。
硫是煤中的有害元素。
氧是煤中的杂质,不能产生热量。
由于氧的存在,使得煤中可燃元素的含量相对降低。
煤中的氧有两部分,一部分是游离的氧,它能助燃;另一部分以化合物状态存在,不能助燃。
氮、磷是煤中的杂质,其含量很小,对煤的燃烧影响不大。
二、煤的工业分析煤的工业分析是对煤的水分、灰分、挥发分和固定碳等指标的测定。
通常煤的水分、灰分、挥发分是直接测出的,而固定碳是用差减法计算出来的。
广义上讲,煤的工业分析还包括煤的全硫分和发热量的测定,又叫煤的全工业分析。
(一)煤的水分煤的水分,是煤炭计价中的一个辅助指标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灰分全部来自矿物质,但其组成和数量又不同于煤 中原有矿物质,因此煤的灰分应称为“灰分产率” 。
测定煤的灰分,对于鉴定煤的质量以 及确定其使用价值也有重要意义。 因为煤中灰分是有害物质,所以各种用 途的煤,灰分越低也就越好。虽然煤灰是 煤中有害物,但进行综合利用后,也会变 废为宝,为国家创造财富的。
分为两类 :化合水、游离水
1.化合水:
以化合方式和煤中矿物质结合的水,即通常所说的结 晶 水 , 例 如 硫 酸 钙 ( CaSO42H2O ) 、 高 岭 土 ( Al2O32SiO42H2O )中的结晶水。结晶水要在 200℃ 以上才能分解析出。
2.游离水 以物理状态(如附着、吸附等形式)和煤结合的水。 根据存在的不同结构状态,分为以下两种: 外在水分(Mf) 是指煤在开采、运输、储存和洗选过程中润湿在 煤的外表及大毛细孔(直径> 10cm )中的水分。 内在水分(Minh)
5.测定挥发分产率的允许误差
表5
挥发分 产率 (%) <10 10~45 >45
挥发分产率测定的允许误差
平行测定结果 的允许误差 (%) 0.3 0.5 1.0 不同化验室同一煤 样的测定结果的允 许误差(%) 0.5 1.0 1.5
五、固定碳含量的计算
固定碳 —是指除去水分、灰分和挥发分后 的残留物,用符号FCad表示。 固定碳的化学组分, 主要是 C 元素,另外还 有一定数量的H、O、N、S等其它元素。
m M M (1 M ) m
1 t 1 1
M1为煤样在运送过程中水分的损失量(%)
全水份测定注意问题
2. 全水分测定结果的允许误差
表3 平行测定全水分的允许误差
全水分 (Mt,%)
平行测定结果的 允许误差(%)
<10 ≥10
0.40 0.50
* 在同一化验室进行全水分测定时
(三)分析煤样的水分测定
1.仪器
磨口坩埚 高温炉 坩埚架
坩埚盖外缘 槽形,此槽 正好盖在坩 埚口的外缘 上,在盖内 边有凹处, 以备挥发释 出。
高温炉 带热电偶和调温器,炉壁留有一个排气孔。炉 膛内必须有一个温度稳定的恒温区,以保证炉 内温度能恒定在90010℃范围内。
用镍铬丝制成, 其规格以能放置6 个坩埚为好, 大 小应与炉内 90010℃稳定温 度区相适应,放 在架上的坩埚底 部应与炉堂底距 离20~30mm。 坩埚架
1.仪器 灰皿
长方形灰皿
2.测定过程
称取分析煤样 10.1g ,于已经在 81510℃灼烧恒 量的灰皿中,轻微振动,使样品分散为均匀的薄层, 置 温 度 低 于 100℃ 的 高 温 炉 中 。 在 炉 门 留 有 约 15mm左右的缝隙供自然通风,控制加热速度,使 炉温在 30min 左右缓慢升高至 500℃并保持此温度 30min 。然后,升高温度至 81510℃,关闭炉门, 在此温度下继续灼烧 1h 。取出灰皿,于干燥器中 冷至室温(约20min)称量,然后进行检查性灼烧, 每次进行20min,直到煤样的质量变化小于0.001g 时为止,取最后一次质量计算。灰分<15%的样品, 可不必进行检查性灼烧。
§3.2
煤的元素分析
一、煤的元素组分
即碳、氢、氧、氮、硫五个元素.
氢
氢是煤中第二个重要的组成元素,它占 煤的质量分数为1~6%,越是年轻的煤, 其含量也越高。
§3.2
煤的元素分析
一、煤的元素组分 即碳、氢、氧、氮、硫五个元素.
氧
氧元素是组成煤有机质的十分重要的元素, 越是年轻的煤,氧元素的比例也越大,发 热量常随氧元素含量的增高而降低,其含 量从1~30%均有。
因为煤中可燃性挥发分不是煤的固有物质, 而是在特定条件下,煤受热的分解产物,而 且其测定值受温度、时间和所用坩埚的大小、 形状等不同而异,测定方法为规范性试验方 法,因此所测的结果应称为挥发分产率,用 符号V表示。
主要指标
根据挥发分产率的高低,可以初步判别煤的 变质程度、发热量及焦油产率等各种重要性质, 而且几乎世界各国都采用干燥无灰基挥发分作 为煤分类的一个主要指标。 工业生产上用煤也都首先需要了解挥发分是 否合乎要求,所以煤的挥发分是了解煤性质和 用途的最基本也是最重要的指标,也是煤分类 的重要指标。
M
A
C 、H、 O、 N、 S及煤灰中化学成分等仍以元素名 称为代表符号。
moisture ash volatile compound fixed carbon quantity of produced heat mineral matter
2.存在形态或操作情况指标及符号
表2 常用指标及符号
项 目
六、不同基准分析结果的换算
干基 = 空气干燥基 - 空气干燥基水分 干燥无灰基 = 空气干燥基 - 空气干燥基水分 - 空气 干燥基灰分
换算关系
煤的干燥无灰基组成不受水分和灰分的 影响。一般同一矿井的煤,它的干燥无灰 基组成不会发生很大的变化,因此煤矿的 煤质资料常以此基组成表示。也就是说煤 矿一般给的是干燥无灰基组成,而实际使 用时则为收到基。因此,不同基准时的组 成需要进行换算.
说 明
1.从煤的工业分析指标来看,发热量主要是 煤中固定碳燃烧产生的,因此国际上利用工 业分析结果计算发热量的公式,即以煤的固 定碳作为发热量的主要来源,
2. FCdaf煤的变质程度的一个参数
煤的干燥无灰基固定碳含量与挥发分一样,也 是表示煤的变质程度的一个参数,即煤中固定 碳含量随煤的变质程度的增高而增高,因此有 些国家(如日本、美国)的煤炭分类即以干燥 无灰基固定碳含量FCdaf作为分类指标之一。
空气干燥基(ad)
是指煤样所处环境与水蒸气压达到平衡时的 煤样。在新标准中规定:煤样若在空气中连续干 燥1小时后质量变化不超过0.10%,则认为达到空 气干燥状态。
干基(d)
以无水状态的煤样为标准的分析结果表示方法。
干燥无灰基(daf)
以假想的无水无灰状态的煤为基准的分析结果表示 方法。
二、水分的测定
换算系数是由物料平衡关系计算得到的
例如收到基与干燥无灰基的转换 :设 已知FCdaf、ar、Aar,求FCar。
解:计算基准:100kg的收到基煤折合成干燥无灰 基煤 100-(Mar+Aar)kg,但含固定碳的绝对量 相等, 即:收到基含碳量=干燥无灰基含碳量
故:100×FCar =[100- (Mar+Aar)]×FCdaf ∴ FCar =FCdaf[100-(Mar+Aar)]/100
§3.1 煤的工业分析
一、常用的符号和基准
二、水分的测定
三、灰分的测定
四、挥发分产率的测定
五、固定碳含量的计算 六、不同基准分析结果的换算
一、常用的符号和基准
1.分析项目的名称及表示符号
表1 分析试验项目及符号 项 目 符 号 水分 灰分 挥发 分 V 固定 碳 FC 发热 量 Q 矿物 质 MM
符 号
外在 或 游离
f
free
内 全 在
inh t
高 位
gr
低 位
net
恒 容
v
恒 压
p
inherence total gross nether
3.各种基准的表示符号
基准是指煤样所处的状态。用不同状态的煤样分析 试验,将得出不同的结果,所以基准又是用以计算 和表达测定值的主要依据之一。 收到基(ar) as received air dry
例:煤的工业分析结果如下: 空气干燥基的水分Mad=1.76%, 灰分Aad=23.17%,挥发分Vad=8.59% 计算: (1)干基的灰分Ad=? (2)干燥无灰基的挥发分Vdaf=?
解:
100 Ad Aad 100 M ad
100 23.17% 23.59% 100 1.76
3. 计算
m1 Vad M ad m
式中 m——试料的质量,g; m1—— 样品加热后减少的质量, g 。
4.注意事项
当打开炉门,推入坩埚架时,炉温可能 下 降 , 但 是 在 3min 内 必 须 使 炉 温 达 到 90010℃,否则试验作废。 从加热至称量都不能揭开坩埚盖,以防 焦渣被氧化,造成测定误差。 每次测定后,坩埚内常附着一层黑色碳 烟,应灼烧除去后再使用。
内在水分是指吸附或凝聚在煤粒内部的毛细孔 (直径<10cm)中的水分。这部分水分较难蒸发。
(二)煤中全水分(Mt或Mar )的测定
煤中全水分的测定有三种方法: A 、B、 C
方法 A 仅适用于烟煤和无烟煤,并作为测定烟 煤和无烟煤水分的仲裁测定方法; 方法 B 和方法 C 适用于褐煤、烟煤和无烟煤,但 以方法B作为测定褐煤全水分的仲裁方法。 按测定的速度来说: 方法A为常规测定法,方法B、C为快速测定法。
空气干燥基(ad)
干基(d) dry
干燥无灰基(daf) dry and ash free
干燥无矿物质基(dmmf) dry and mineral matter free
收到基(ar)
就其含义而言,是从收到的一批煤样中取出具 有代表性的煤样,以此种状态的煤样测定的结果 并以此基表示的值,称为收到基。
3. 计算
式中
m A m
ad
1
m——试料的质量,g; m1——灼烧后残渣质量,g。
4.灰分测定的允许误差
表4
灰分测定的允许误差(%)
同一实验室 不同实验室
灰分(%)
<15 15~30 >30
0.2 0.3 0.5
0.3 0.5 0.7
四、挥发分产率的测定
将煤放在与空气隔绝的容器内,在高温下经 一定时间加热后,煤中的有机质和部分矿物质分 解为气体释出,由减小的质量再减去水的质量即 为煤的挥发分。